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Abstract — The effective moment of inertia expressions 

proposed by Branson and Bischoff are examined by comparing 

the deflection estimates from these two approaches to the 

measured deflection values  of  reinforced concrete beams with 

high reinforcement ratios (0.024<ρ<0.034). It was found out that 

both  methods  yield  to  deflection  estimates  in  close  agreement 

with  the  actual  values  and  the  method  proposed  by  Bischoff 

taken   into   account   by  the  effective  moment  of  inertia 

approach, which is summarized in the following discussion. 

When the maximum moment (Ma) in a beam does not 

exceed the cracking moment (Mcr), the beam is in the 

uncracked condition. The uncracked moment of inertia of a 

beam with no compression reinforcement is obtained from the 
following equation: 

 
bending  deformations  of  heavily-reinforced  concrete  beams. 

Furthermore,  the  restrained  shrinkage  cracking  was  found to 
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cause  the  deflection response of a concrete beam to be much 
weaker than the responses estimated by the effective moment of 

inertia expressions. Finally, the cracking moment estimates from 

the methods given in ACI 318-05, Eurocode 2 and TS 500 are 

compared to the experimental cracking moments of reinforced 

concrete beams. The cracking moment estimates based on the 

modulus of rupture expression in Eurocode 2 were found to be in 

closest agreement with the experimental values. 
 

 
Index Terms —Effective moment of inertia; Serviceability; 

Deflection; Reinforced concrete; Tension stiffening; In-plane 

bending. 
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where b and h are the width and height of the beam, 

respectively; y’ is the depth of the centroid of the transformed 

uncracked cross-section from the compression face; n is the 

modular  ratio  of  steel  to  concrete;  As   is  the  total  cross- 

sectional area of the longitudinal reinforcement; and d is the 

effective   depth   of   the   tension   reinforcement.   With   the 

exception of beams with heavy reinforcement, the gross 

moment of inertia (Ig) gives close values to the uncracked 

moment of inertia (Iucr). Ig, which neglects the contribution of 

the reinforcement, is obtained from the following equation: 

 
I. INTRODUCTION I     
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The in-plane bending stiffness (EIx) of a beam is the product 

of two variables: (1) the in-plane second moment of area (the 

in-plane moment of inertia Ix), reflecting the cross-sectional 

resistance to loading; and (2) the modulus of elasticity (E), 

reflecting  the  material  resistance  to  loading.  In  concrete 

beams, both variables are subject to change during the course 

of loading. The variation in the modulus of elasticity with the 

increasing load is caused by the inelastic stress-strain behavior 

of concrete beyond the elastic limits, while the variation in the 

moment of inertia is associated with the cracking of concrete 

 

When the in-plane bending moment (M) at a cross-section of 

the beam reaches Mcr, vertical flexural cracks form in the 

outermost layers of the tension zone. These cracks propagate 

upwards, as M increases. The section becomes fully-cracked, 

when the flexural cracks reach the neutral axis, rendering the 

entire  tension  zone  ineffective  in  resisting  the  bending 

moment. The moment of inertia of the section in the fully- 

cracked condition is determined from the following equation: 

due to the tensile strains greater than the cracking strain of 

concrete. The cracked zones in a concrete beam are ineffective 

I   
 1 

 b  c
3 

cr  
12 

 n  As d  c 
2

 (3) 

in resisting stresses originating from applied loads and 

moments. Therefore, cracking of concrete decreases the 

resistance of a concrete beam to loading, leading to greater 

deformations in the beam. The decrease in the second moment 

of area of a concrete beam during the course of loading is 

where c is the neutral axis depth of the fully-cracked section. 

Equation (3) assumes that the concrete in the compression 

zone has a linear elastic behavior up to the yielding of the 

tension reinforcement. 

The overall moment of inertia of a concrete beam decreases 

gradually from the uncracked moment of inertia (Iucr) to the 

fully-cracked moment of inertia (Icr), as flexural cracks form 
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at discrete locations along the span. The concrete in the 

uncracked portions of the beam between the discrete cracks 

contributes  to  resisting  tensile  stresses,  due  to  the  bond 

between concrete and reinforcement. The tensile contribution 

of the concrete between the cracks is known as tension- 

stiffening. Tension-stiffening decreases as the applied load (or 

moment) increases and more cracks from along the span. The 

decrease in the tension-stiffening of concrete with the 

increasing load leads to the gradual decrease in the moment of 

inertia of the beam. This gradual decrease is taken into 

consideration  by the effective moment of  inertia approach. 

The following effective moment of inertia expression was 

originally proposed by Branson (1965): 

reinforcement  ratio  (ρ).  Branson’s  expression  provides 

accurate estimates for reinforced concrete beams with 

reinforcement ratios greater than 1%, which corresponds to an 

Ig/Icr  ratio of 3. For lower reinforcement ratios (Ig/Icr>3), the 

member response estimated by Branson’s approach is stiffer 

than the actual response, resulting in the underprediction of 

the deflections. 

The  deflection  calculations  in  the  European  structural 

concrete codes, Eurocode 2 (CEN 2002) and BS 8110-2 (BS 

1985), are based on the determination of the curvatures and 

deflections of a concrete beam corresponding to its uncracked 

and fully-cracked conditions. Eurocode 2 (CEN 2002) states 

in Section 7.4.3 that “Members which are expected to crack 

should   behave   in   a   manner   intermediate   between   the 
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the  calculation  of  a  deflection  value  which  is  a  weighted 
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where Mcr  is the cracking moment and Ma  is the maximum 

moment in the beam. 
Branson’s effective moment of inertia expression 

(Equation 4), which averages the moments of inertia of the 

average of the uncracked and fully-cracked deflections of the 

member. Based on Equation (7.18) given in Eurocode 2 (CEN 

2002), the following equation is used for the calculation of the 

deflections (δ) of a reinforced concrete beam loaded at a level 

causing the beam to crack: 

uncracked and fully-cracked portions of a concrete beam, is   M    
 2 
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1994) and TS 500 (TS 2000) in the immediate deflection 

calculations  of  concrete  beams.  All  of  these  codes  set  the 

value of m to 3 to obtain an average moment of inertia for the 

entire span of a beam. Previously, Al-Shaikh and Al-Zaid 

(1993) found out that the value of m decreases as the 

reinforcement ratio (ρ) of a concrete beam increases. 

Accordingly, they proposed the following equation for m: 

 

where δll and δl are the deflection values corresponding to the 

fully cracked and uncracked conditions of the beam, 

respectively; and β is a coefficient accounting for the duration 

of loading or of repeated loading on the average strain. β is 

taken 1.0 for a single short-term loading (immediate 

deflections)    and    0.5    for    sustained    loads    (long-term 

deflections) or many cycles of repeated loading. The long- 
m  3  0.8   (5) term deflections of reinforced concrete beams are out of scope 

of this study. Therefore, β is taken 1.0 in the present study. 
Furthermore, Al-Zaid et al. (1991) experimentally showed that 
the power m in the effective moment of inertia expression is 

affected by the loading conditions of a beam and the load level 

(Ma/Mcr). 

The effective moment of inertia expression proposed by 

Branson (1965) was developed empirically based on the test 

results of simply-supported rectangular reinforced concrete 

beams with reinforcement ratios between 1% and 2%. 

Branson’s expression accurately estimates the moments of 

inertia of concrete beams with medium to high reinforcement 

ratios (ρ>1%). Nonetheless, different studies [Scanlon et al. 

(2001), Gilbert (1999), Gilbert (2006)] indicated that the 

expression constantly overestimates the moments of inertia of 

Eurocode 2 (CEN 2002) uses the concept of averaging the 

flexibilities of the uncracked and cracked portions of the beam 

rather than averaging the stiffnesses. The tension-stiffening 

model setting the stage for Equation (6) is presented in CEB- 

FIP Model Code (CEB 1990), where the application of the 

model to the axial response of reinforced concrete tension 

members  is  depicted.  Bischoff  (2005)  presented  the 

application of the method to the in-plane bending behavior of 

reinforced concrete beams and developed the following 

effective moment of inertia expression, which is a weighted 

average of the flexibilities of the uncracked and cracked 

portions of a reinforced concrete beam: 

reinforced  concrete  beams  with  low  reinforcement  ratios 

(ρ<1%),  which  causes  underestimation  of  the  deflections.
 

m 
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Bischoff  (2005)  found  out  that  the  misestimation  of  the 

moments  of  inertia  and  deflections  of  lightly-reinforced 
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concrete beams by the Branson’s approach is caused by the 

overestimation  of  the  tension  stiffening  of  concrete. 

According to the analytical study carried out by Bischoff 

(2005), the tension-stiffening component in Branson’s method 

depends on the applied load level (Ma/Mcr) and on the ratio of 

the gross moment of inertia to the cracked moment of inertia 

(Ig/Icr)   of   the   beam,   which   varies   inversely   with   the 

A value of 2 was proposed for the power m in Equation (7), 

based on the deflection equation given in Eurocode 2. The use 

of m=2 assures that the tension-stiffening contribution in the 

model is only dependant on the applied load level (Ma/Mcr), as 

explained by Bischoff (2005) and Bischoff (2007), in detail. 

Consequently,     the     tension-stiffening     model     becomes 
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independent from the gross-to-uncracked moment of inertia 

ratio (Ig/Icr) and the reinforcement ratio (ρ) of the beam. 

Gilbert (2006) and Bischoff and Scanlon (2007) compared 

the experimental results of the beams and slabs with different 

reinforcement ratios to the analytical deflection estimates 

obtained from the two approaches [Branson (1965) and 

Bischoff (2005)]. It was shown that the analytical estimates 

produced by the effective moment of inertia expression 

proposed by Bischoff (2005) are in closer agreement with the 

experimental results, particularly for the lightly-reinforced 

concrete beams. Although both approaches generate 

satisfactory load-deflection (or moment-curvature) curves at 

medium to high reinforcement ratios (ρ>1%), Bischoff’s 

approach  provides  a  better  agreement  with  the  measured 

values   at   low   reinforcement   ratios   (ρ<1%).   The   load- 

deflection response estimated by Branson approach was found 

to be much stiffer than the actual response of a lightly- 

reinforced concrete beam. 

To explain the differences between the effective moment of 

inertia expressions proposed by Branson (1965) and Bischoff 

(2005),  Bischoff  and  Scanlon  (2007)  and  Bischoff  (2007) 

used spring models (Fig. 1). Accordingly, Branson’s approach 

models the uncracked and cracked portions of a concrete beam 

as springs in parallel, while Bischoff’s approach models them 

as springs in series. In the springs-in-parallel model (Fig. 1b) 

the stiffnesses of the uncracked and cracked portions are 

averaged, while in springs-in-series model the flexibilities are 

averaged. The tension-stiffening approach used by Bischoff 

(2005)   indicates   that   the   weighted   flexibilities   of   the 

uncracked and cracked portions should be averaged to obtain 

the overall material response of a cracked concrete beam. A 

cracked portion and an uncracked portion of a concrete beam, 

neighboring each other, resist approximately the same bending 

moment and their curvatures are integrated when assessing the 

deflections of the member. Consequently, the springs-in-series 

model used in Bischoff’s approach represents the in-plane 

bending behavior of a cracked reinforced concrete beam more 

appropriately. 

 
II.   RESEARCH SIGNIFICANCE 

There are a limited number of studies in the literature 

comparing the actual deflections of reinforced concrete beams 

to  the  deflection  estimates  from  the  effective  moment  of 

inertia methods proposed by Branson (1965) and Bischoff 

(2005). The present study aims at contributing to the topic by 

comparing the estimates from the methods to the experimental 

in-plane  bending  deflections  of  the  heavily-reinforced 

concrete beams tested by Kalkan (2009). Although both 

methods were found out to provide satisfactory deflection 

estimates for reinforced concrete beams with medium to heavy 

reinforcement 

 
 

Fig. 1 – Spring Model for (a) Branson’s effective moment of inertia; (b) 

Bischoff’s effective moment of inertia 

 

ratios and Bischoff’s method was found out to produce 

deflection estimates superior to the ones of Branson’s method 

in the case of lightly-reinforced concrete beams [Bischoff 

(2005), Gilbert (2006), Bischoff and Scanlon (2007)], the 

present study depicts that the method proposed by Bischoff 

(2005) provides a slightly better correlation with the 

experimental results even in the case of heavily-reinforced 

concrete beams. 

 
III. APPLICATION OF BRANSON’S AND BISCHOFF’S 

METHODS TO THE EXPERIMENTAL DATA 
 

 
In the present study, the analytical load-deflection estimates 

obtained from Branson’s and Bischoff’s approaches are 

compared to the experimental load-deflection curves of 

reinforced concrete beams tested by Kalkan (2009). The 

nominal dimensions, material properties and cross-sectional 

details of the specimens tested by Kalkan (2009) are presented 

in Table 1. Reinforcing steel with an average yield strength of 

62.0 ksi (426.6 MPa) was used in all of the specimens, except 

the Specimens B22-2 and B18-2, whose longitudinal 

reinforcement had an average yield strength of 52.1 ksi (358.5 

MPa). Two 2x6-W2.5xW3.5 Welded Wire Reinforcement 

Sheets, one on each side of the longitudinal reinforcement, 

constituted the shear reinforcement of the specimens tested by 

Kalkan (2009). The beams, loaded with a single concentrated 

load at midspan, had simple support conditions in and out of 

plane at the ends (Fig. 2). 

 

 
 

Fig. 2 – Experimental Setup used by Kalkan (2009) 
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Specimen 

 

Nominal Dimensions 

Width x Height x Length 

b x h x L 

in. (mm) 

 

Effective 

Depth, 

d 

in. (mm) 

 

Number and 

Sizes of the 

Tension 

Rebars 

 

Percent 

Reinforcement 

Ratio, 

ρ% 

Compressive 

Strength of 

Concrete, 

f’ 

ksi (MPa) 

Modulus of 

Elasticity of 

Concrete, E 

ksi (MPa) 

 

B36L-1 3 x 36 x 468 

(76 x 914 x 11890) 
30.5 

(774.7) 
 

4#8 (4Ø25) 
 

2.9 7.90 

(54.47) 
4300 

(29650) 
 

B36L-2 3 x 36 x 468 

(76 x 914 x 11890) 
30.5 

(774.7) 
 

4#8 (4Ø25) 
 

2.9 7.94 

(54.74) 
4500 

(31000) 
 

B44-1 3 x 44 x 468 

(76 x 1118 x 11890) 
37.5 

(952.5) 
 

4#8 (4Ø25) 
 

2.4 8.47 

(58.40) 
4450 

(30700) 
 

B44-2 3 x 44 x 468 

(76 x 1118 x 11890) 
37.5 

(952.5) 
 

4#8 (4Ø25) 
 

2.4 8.54 

(58.88) 
4450 

(30700) 
 

B44-3 3 x 44 x 468 

(76 x 1118 x 11890) 
37.5 

(952.5) 
 

4#8 (4Ø25) 
 

2.4 8.56 

(59.02) 
4550 

(31400) 
 

B36 2.5 x 36 x 240 

(64 x 914 x 6100) 
31.1 

(789.9) 
 

3#9 (3Ø29) 
 

3.3 12.78 

(88.11) 
5850 

(40350) 
 

B30 2.5 x 30 x 240 

(64 x 762 x 6100) 
25.5 

(647.7) 
 

3#8 (3Ø25) 
 

3.2 12.22 

(84.25) 
5950 

(41000) 
 

B22-1 1.5 x 22 x 144 

(38 x 559 x 3660) 
18.7 

(474.9) 
3#5 & 1#3 

(3Ø16 & 1Ø10) 
 

3.2 11.73 

(80.87) 
5200 

(35800) 
 

B22-2 1.5 x 22 x 144 

(38 x 559 x 3660) 
18.7 

(474.9) 
3#5 & 1#3 

(3Ø16 & 1Ø10) 
 

3.2 
11.00 

(75.83) 
4850 

(33400) 
 

B18-1 1.5 x 18 x 144 

(38 x 457 x 3660) 
15.3 

(388.6) 
 

3#5 (3Ø16) 
 

3.4 11.46 

(79.01) 
5000 

(34450) 
 

B18-2 1.5 x 18 x 144 

(38 x 457 x 3660) 
15.3 

(388.6) 
 

3#5 (3Ø16) 
 

3.4 11.32 

(78.05) 
5000 

(34450) 

 

f 



c 

r 

 

Table 1 – Details of the specimens tested by Kalkan (2009) 

 
 
 

 
c c 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The value of cracking moment (Mcr) used in Branson’s 

and Bischoff’s effective moment of inertia expressions 

(Equations 4 and 7) significantly affects the analytical load- 

calculation of the modulus of rupture (fr), which is used in 

Equation (8): 

deflection curves of a beam. Previously, Yost et al. (2003) 

experimentally   found   out   that   the   cracking   moment 
fr   7.5  

'
 (9) 

estimates  from  the  empirical  relationships  given  in  ACI 

318-05 (ACI 2005) are 20-40% greater than the actual 

cracking moments of reinforced concrete beams, which 

influences the analytical deflection estimates to a major 

extent. Therefore, in the present study the experimental 

cracking moments of the specimens, obtained from the 

experimental  load  and  deflection  data, were used  in the 

where f’c  is the mean compressive strength of concrete in 

ksi, obtained from the cylinder tests. According to Section 

3.1.9 of Eurocode 2 (CEN 2002), the mean flexural tensile 

strength (modulus of rupture) of concrete is obtained from 

the following equation: 
 

  h    

effective moment of inertia expressions when obtaining the fr   max  fctm , 1.6  
1000 

  fctm  (10) 

analytical load-deflection curves. Structural concrete codes 

include  equations   for   the  evaluation   of  the  cracking 

moments of concrete beams. These equations are helpful, 

particularly in the design of beams. In Table 2, the cracking 

moment  estimates  obtained  from  the  equations  given  in 

ACI 318-05 (ACI 2005), Eurocode 2 (CEN 2002), and TS 

   

where fctm is the mean axial tensile strength of concrete, 

obtained from Equation (11); and h is the beam height in 

millimeters. 
 

  f 
' 

500 (TS 2000) are compared to the experimental cracking fctm   2.12  ln 1  
 

 c 


 (11) 

moments of the specimens. All three groups of analytical 

estimates are obtained from the following cracking moment 

equation with different modulus of rupture (fr) expressions: 

  10 


where f’c  is the mean compressive strength of concrete in 

MPa, obtained from the cylinder tests. Finally, the modulus 
 

M cr  
fr  I g 

yt 

 

(8) 
of  rupture  of  concrete  is  obtained  from  the  following 

equation according to Section 13.2.2 of TS 500 (TS 2000): 

 
where  yt   is  the  vertical  distance  of  the  extreme  tension 

 

f   2.5  
 f 

 

ctk  



(12) 

fibers  from  the  neutral  axis.  ACI  318-05  (ACI  2005) 
presents   the   following   empirical   expression   for   the 

 1.5 
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Table 2 – Cracking moments of the specimens tested by Kalkan (2009) 

 
 

 
Specimen 

Experimental 

Cracking Moment, 

Mcrex 

in.kip (mm.MN) 

 

Estimated Cracking Moment, Mcre 

in.kip (mm.MN) 

 

Experimental-to-Estimated Cracking 

Moment Ratio, Mcrex/ Mcre 

ACI 318-05 Eurocode 2 TS 500 ACI 318-05 Eurocode 2 TS 500 

B36L-1 

B36L-2 
 

B44-1 
 

B44-2 
 

B44-3 
 

B36 
 

B30 
 

B22-1 
 

B22-2 
 

B18-1 

330 (37.3) 

330 (37.3) 
 

566 (63.9) 
 

472 (53.3) 
 

460 (51.9) 
 

300 (33.9) 
 

240 (27.1) 
 

98 (11.0) 
 

95 (10.7) 
 

72 (8.1) 

420 (47.4) 

423 (47.8) 
 

626 (70.7) 
 

631 (71.3) 
 

636 (71.8) 
 

438 (49.5) 
 

300 (33.9) 
 

94 (10.6) 
 

88 (10.0) 
 

63 (7.1) 

361 (40.7) 

364 (41.1) 
 

536 (60.6) 
 

540 (61.0) 
 

544 (61.5) 
 

363 (41.0) 
 

250 (28.2) 
 

82 (9.3) 
 

77 (8.7) 
 

60 (6.8) 

393 (44.4) 

396 (44.8) 
 

586 (66.3) 
 

591 (66.8) 
 

595 (67.2) 
 

410 (46.4) 
 

281 (31.8) 
 

88 (10.0) 
 

83 (9.3) 
 

59 (6.7) 

0.79 

0.78 
 

0.90 
 

0.75 
 

0.72 
 

0.68 
 

0.80 
 

1.04 
 

1.08 
 

1.14 

0.91 

0.91 
 

1.06 
 

0.87 
 

0.85 
 

0.83 
 

0.96 
 

1.20 
 

1.23 
 

1.20 

0.84 

0.83 
 

0.97 
 

0.80 
 

0.77 
 

0.73 
 

0.85 
 

1.11 
 

1.14 
 

1.22 
Sample Mean 

Standard 

Deviation 

% Coefficient 

of Variation 

    0.87 
 

0.16 

 
18.79 

1.00 
 

0.16 

 
15.74 

0.93 
 

0.17 

 
18.67 

 

 

 
where  fctk   is  the  characteristic  axial  tensile  strength  of 

concrete, obtained from 

0.024-0.034. The figures depict that both methods provide 

close agreement with the measured deflection values of the 

specimens with the exception of Beams B36, B30, B22-1 

and   B22-2.   This   close   agreement   complies   with   the 

fctk   0.35  fck (13) findings  of  Gilbert  (2006)  and  Bischoff  and  Scanlon 

(2007),  who  found  out  that  both  methods  provide  good 

where fck is the characteristic compressive strength of 

concrete. Unlike Eurocode 2 (CEN 2002), the cracking 

moment  equation  in  TS  500  (TS  2000)  is  expressed  in 

terms of the characteristic strength values of concrete (fctk 

and  fck).  The  compressive  strength  values  presented  in 

Table 2 are the mean compressive strength values (f’c), 

obtained experimentally. Although f’c  and fck  are different, 

f’c values of the specimens were used in Equation (12) due 

to the lack of the equations in TS 500 applicable to the 

mean strength values. 

Table 2 shows that the Eurocode 2 method produced the 

cracking moment estimates in closest agreement with the 

experimental cracking moments of the specimens. The 

experimental-to-estimated cracking moment ratios 

corresponding to the Eurocode 2 method were in the range 

of 0.83-1.23 with a sample mean of 1.00 and a coefficient 

of variation of 15.74 %. The ACI 318-05 and TS 500 

methods generally overestimated the cracking moments of 

the specimens. The TS 500 method had a better agreement 

with the experimental values compared to the ACI 318-05 

method. 

In Figures 3-12, the analytical load-deflection curves 

obtained from Branson’s and Bischoff’s methods are 

compared   to   the   experimental   load-vertical   deflection 

curves of the specimens. The figures also include the 

analytical lines corresponding to the uncracked and fully 

cracked responses of the specimens. As shown in Table 1, 

the specimens had high reinforcement ratios, in the range of 

correlation with the test results at high reinforcement ratios. 

Figures 3-7 and Figure 12 also indicate that the method 

proposed  by  Bischoff  (2005)  provides  a  slightly  better 

correlation  with  the  experimental  measurements  as 

compared to the method proposed by Branson (1965), even 

at high reinforcement ratios. 

 

 
 

Fig. 3 - Specimen B36L-1 tested by Kalkan (2009) 



Fig. 6 - Specimen B44-2 tested by Kalkan (2009) 
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Fig. 4 - Specimen B36L-2 tested by Kalkan (2009) 

 

 

 
 

Fig. 5 - Specimen B44-1 tested by Kalkan (2009) 

 

Fig. 7 - Specimen B44-3 tested by Kalkan (2009) 

 

 

 
 

Fig. 8 - Specimen B36 tested by Kalkan (2009) 

 

 

 
 

Fig. 9 - Specimen B30 tested by Kalkan (2009) 



Fig. 12 - Specimen B18-2 tested by Kalkan (2009) 
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Fig. 10 - Specimen B22-1 tested by Kalkan (2009) 

 

 

 
 

Fig. 11 - Specimen B22-2 tested by Kalkan (2009) 

The experimental load-deflection curves of Specimens 

B36, B30, B22-1 and B22-2 are not in good agreement with 

the   analytical   curves   from   Branson’s   and   Bischoff’s 

methods (Figures 8-11). Both methods estimated responses 

which are much stiffer than the actual responses of these 

specimens. According to Kalkan (2009), the discrepancy 

between the analytical and experimental curves of these 

specimens was caused by the presence of restrained 

shrinkage cracks in these beams. Due to the presence of 

shrinkage   cracks,   the   specimens   did   not   reach   the 

uncracked beam response even at the initial stages of 

loading. The initial portions of the experimental load- 

deflection curves of Specimens B36, B30, B22-1 and B22- 

2 are coincident with the analytical lines corresponding to 

the fully cracked response, substantiating the influence of 

the restrained shrinkage cracks on the in-plane bending 

behavior of concrete beams. 

 
IV. CONCLUSIONS 

 

 
Based on the study presented in this paper, the following 

conclusions are drawn: 

1. The  methods  proposed  by  Branson  (1965)  and 

Bischoff (2005) closely estimate the load- 

deflection behavior of reinforced concrete beams 

with medium to high reinforcement ratios (ρ>1%). 

2. The method proposed by Bischoff (2005) provides 

a slightly better correlation with the actual load- 

deflection  curves  of  reinforced  concrete  beams 

with medium to high reinforcement ratios. 

3. Restrained shrinkage cracking of concrete has a 

significant influence on the in-plane bending 

behavior of reinforced concrete beams. The actual 

response of a reinforced concrete beam with 

shrinkage cracks is significantly weaker than the 

responses estimated by Branson’s and Bischoff’s 

methods. The initial linear part of the load- 

deflection  curve  of  a  reinforced  concrete  beam 

with major restrained shrinkage cracking overlaps 

with the analytical line corresponding to the fully 

cracked response     rather     than     the     line 

corresponding to the uncracked response. 

4. The effective moment of inertia and the analytical 

load-deflection curves corresponding to it are 

highly dependant on the cracking moment used in 

the effective moment of inertia expression. 

Therefore, experimental cracking moments, if 

known, of beams should be used in the effective 

moment of inertia calculations for a more accurate 

comparison of different analytical methods. 

5. The  cracking  moment  estimates  based  on  the 

modulus  of  rupture  expression  in  Eurocode  2 

(CEN  2002)  are  in  closer  agreement  with  the 

actual cracking moments of the specimens, 

compared to the methods given in ACI 318-05 

(ACI 2005) and TS 500 (TS 2000). 
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As 
 

: 
Total cross-sectional area of the 

longitudinal reinforcement 
b : Beam width 

 

c 
 

: 
Neutral-axis depth of the fully-cracked 

section 
 

d 
 

: 
Effective depth of the tension 

reinforcement 
E : Modulus of elasticity 

Ec : Modulus of elasticity of concrete 

Es : Modulus of elasticity of steel 

EIx : In-plane bending stiffness 
 

f’c 
 

: 
Mean compressive strength of concrete, 

obtained from the cylinder tests 
 

fck 
 

: Characteristic compressive strength of 

concrete 
 

fctk 
 

: 
Characteristic axial tensile strength of 

concrete 
fctm : Mean tensile strength of concrete 

fr : Modulus of rupture 

h : Beam height 

Icr : Cracked transformed moment of inertia 

Ie : Effective moment of inertia 

Ig : Gross moment of inertia 

Ix : In-plane moment of inertia 

Iucr : Uncracked transformed moment of inertia 

Ma : Maximum moment along the beam span 

Mcr : Cracking moment 
n : Modular ratio of steel to concrete (=Es/Ec) 

yt  Vertical distance of the extreme tension 

layer from the neutral axis 
 

y’ 
 

: 
Depth of the centroid of the uncracked 

transformed cross-section of the beam 

from the compression face 
δ  Deflection 

 

 

δ 
Deflection corresponding to the uncracked 

condition of a reinforced concrete beam 
 

δll 
Deflection corresponding to the fully 

cracked condition of a reinforced concrete 

beam 
ρ Reinforcement ratio 

 

 

6. The method of ACI 318-05 (ACI 2005) generally 

overestimates the cracking moments of reinforced 

concrete beams. 
 

 
V.   FUTURE RESEARCH 

In the present study, the major influence of restrained 

shrinkage cracking of concrete on the in-plane bending 

deformations of reinforced concrete beams was revealed 

with the help of the experimental data obtained by Kalkan 

(2009). Further studies are needed to investigate the degree 

of agreement of the deflection estimates from the effective 

moment of inertia expressions accounting for the restrained 

shrinkage cracking with the measured deflection values of 

the specimens tested by Kalkan (2009). 
 

 
 
 

VI. NOTATION 
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