
                                                                                                                                                                                                              Research Article/Araştırma Makalesi 

 

                                                                                                                                                                   

GAZİ  
JOURNAL OF ENGINEERING SCIENCES 

To cite this article: M. A. Karabıyık, “A Framework for Parametric Model Selection in Time Series Problems,” 
Gazi Journal of Engineering Sciences, vol.9, no.4, pp. 82-91, 2023. doi:10.30855/10.30855/gmbd.0705S09 

  

 
 
 
 
 
 
 
 
 

 
 

Keywords: Time series, lstm, cnn, 
dnn, forecasting.  

 
a,* Niğde Ömer Halisdemir University, 

Bor Vocational School,  
Dept. of Computer Programming  

51700 - Niğde, Türkiye  
Orcid: 0000-0001-7927-8790 

e mail: abdulhamidkarabiyik@ohu.edu.tr 
 
 

*Corresponding author: 
abdulhamidkarabiyik@ohu.edu.tr 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 

Anahtar  Kelimeler: Zaman 
serileri, lstm, cnn, dnn, 

tahminleme 

 
 

 
A Framework for Parametric Model Selection in Time 
Series Problems 
Muhammed Abdulhamid Karabıyık*a  
Submitted: 17.11.2023 Revised: 03.12.2023 Accepted: 04.12.2023 doi:10.30855/10.30855/gmbd.0705S09 

ABSTRACT  
People make future plans with the aim of simplifying their lives, and these plans are essential for 
preparing for forthcoming challenges. Forecasting methodologies take precedence in order to 
anticipate and plan for future events. Time series data stands out as a pivotal information type 
employed for predicting the future. This research introduces a framework for selecting the 
optimal model among classical artificial neural networks in time series forecasting. The classical 
artificial neural networks considered encompass the LSTM, CNN, and DNN models. The 
framework employs various parameters – including the dataset, model depth, loss functions, 
minimal success rate in model performance, epochs, and optimization algorithms – to determine 
the best-fitting model. Users have the flexibility to adjust these parameters to address specific 
issues. By default, the framework incorporates seven distinct loss functions and five optimization 
algorithms to facilitate model selection. The mean average error loss function is used as the metric 
for evaluating model performance. To validate the framework, Brent oil prices were utilized as 
the dataset in a series of tests, encompassing a total of 9000 daily price data points. The dataset 
was partitioned into 80\% for training and 20\% for testing purposes. The training iterations 
within the framework were 50 epochs. In the test scenarios, the price for the eighth day was 
predicted using price data from the preceding seven days. Consequently, a mean average error 
score of 1.1239657 was achieved. The results showed that the LSTM model, comprising two layers, 
the Adadelta optimization algorithm, and the mean square error loss function, emerged as the 
most successful configuration.  

Zaman Serisi Problemlerinde Parametrik Model  
Seçimi İçin Bir Çerçeve 
ÖZ 
İnsanlar yaşamlarını kolaylaştırmak için geleceğe yönelik planlamalar yapmaktadır. Bu 
planlamalar gelecekte karşılaşabilecek problemlere hazırlıklı olmak için önemlidir. Geleceğe 
yönelik hazırlıklar yapılabilmesi için de tahmin yöntemleri ön plana çıkmaktadır. Geleceğe 
yönelik tahminler için kullanılan verilerden birisi de zaman serileridir. Bu çalışmada zaman serisi 
tahminlerinde kullanılacak klasik yapay sinir ağları için en iyi modeli seçen bir çerçeve 
geliştirilmiştir. Klasik yapay sinir ağları olarak LSTM, CNN ve DNN modelleri kullanılmaktadır.   
Framework en iyi modeli seçmek için veri seti, model derinliği, kayıp fonksiyonları, model 
performansında minimum başarı oranı, tekrar sayısı ve optimizasyon algoritmalarını parametre 
olarak kullanmaktadır. Kullanıcılar bu parametreleri kendi problemlerine uygun 
güncelleyebilmektedir. Model seçimi içinse varsayılan olarak 7 farklı kayıp fonksiyonu ve 5 farklı 
optimizasyon algoritması kullanmaktadır. Model performansları Mean Avarage Error kayıp 
fonksiyonuyla belirlenmektedir. Framework deneylerinde, veri seti olarak Brent Ham Petrol 
fiyatları kullanılmış olup veri seti 9000 günlük fiyat bilgisi içermektedir.  Veri seti %80 eğitim ve 
%20 test olarak iki bölünmüştür. Çerçeve testindeyse eğitimler 50 tekrar ile gerçekleştirilmiştir.  
Deneyde 7 günlük ardışık fiyat bilgisiyle 8. gündeki fiyat tahmin ettirilmiştir. Sonuç olarak 
1.1239657 Mean Average Error skoru elde edilmiştir. En başarılı model, 2 katmanlı Adadelta 
optimizasyon algoritmasını ve Mean Square Error kayıp fonksiyonu kullanan LSTM modeli 
olmuştur. 
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1. Introduction  
 
Deep learning has recently garnered considerable attention as a machine learning technique for addressing 
various issues. It has been effective in a variety of industries, attributed to its capability to discern complex 
data structures automatically. This approach is particularly employed due to its ability to handle huge datasets 
[1]. Nonetheless, an important factor, namely model selection, profoundly influences the application of deep 
learning. Choosing an appropriate deep learning model requires a careful consideration of both the problem's 
characteristics and the data [2]. Moreover, the performance of the chosen model is significantly impacted by 
the proper setup of its parameters. As a result, choosing the right model and the set of parameters for a given 
problem has become a key research domain for researchers. 

 
There are several techniques available in the literature for the selection of deep learning models. Okewu et al. 
focused on enhancing a deep learning model by optimizing both loss functions and neural network 
parameters using a meta-heuristic search algorithm [3]. Meanwhile, Srivastaca et al. approached model 
selection by evaluating the performance of different architectures, such as ResNet and MobileNet, for the task 
of face recognition [4]. Kotthoff et al. conducted hyperparameter optimization for machine learning models 
using Bayesian optimization [5]. Taylor et al. introduced an approach for model selection that addresses the 
complexities of selecting deep learning models in embedded systems [6]. Additionally, Bertrand et al. explored 
Bayesian model selection through the integration of hyperparameter optimization and model selection [7]. 
Gharibi et al. developed a system called ModelKB and conducted model experiments in a self-sufficient 
environment [8]. Murdock et al. proposed a method for simultaneous regularization and model selection that 
involves teaching model architecture and parameters together [9]. 

 
In this study, we present a framework for objectively selecting the most suitable deep learning model. 
Abbreviations of technical terms are provided upon their first usage. This framework builds upon the 
foundational deep learning models such as Long Short-Term Memory (LSTM), Convolutional Neural 
Network (CNN), and Deep Neural Network (DNN) to facilitate well-informed decision-making. These 
models are chosen for their ability to producing successful results across diverse problem sets. Developed 
framework empowers users to tailor personalized models by using Tensorflow and Keras libraries [10], [11]. 
Moreover, it offers the flexibility to expand the model's structure based on user-specified parameters. The 
effectiveness of each model is evaluated using a variety of metrics. 

 
The study focuses on time series analysis, a technique widely applied across various domains such as 
meteorology, medicine, and economics. This analytical approach serves the purpose of identifying evolving 
trends, aiding decision-making, and facilitating future forecasting. The dataset under examination pertains to 
Brent crude oil pricing, spanning a 9000-day period. This dataset was partitioned into 80% for training and 
20% for testing. The experimental results are derived from this dataset, with the objective being the prediction 
of the 8th-day price based on a 7-day historical price sequence. The framework incorporates multiple 
parameters, providing users the ability to create personalized models. These parameters comprise of loss 
functions, optimization algorithms, training epochs, and minimum accuracy. Importantly, these parameters 
play a vital role in the model selection process within the framework.  

 
As a result, a total of 120 distinct models were generated, with the most optimal model being identified as the 
2-layer LSTM model. This particular model was trained by utilizing the Adadelta optimization algorithm, 
while the mean squared error was adopted as the designated loss function. With a training duration of 50 
epochs, the resulting average absolute error score was calculated as 1.1239657. In conclusion, this study 
demonstrated the effectiveness of a framework for deep learning model selection and its application. The 
proposed framework allows users to select and customize models suitable for different problem sets, and the 
experimental results confirm the effectiveness and success of the proposed framework. Our approach holds 
the potential to enhance the efficiency of deploying deep learning models. 
 
2. Methodology  
 
In this study, the method of the developed framework comprises the subsequent steps: Initially, experiments 
are performed on diverse deep learning models, containing LSTM, CNN, and DNN. Throughout these 
experiments, the models undergo training for a designated number of training cycles employing distinct loss 
functions and optimization algorithms. This procedure produces a collection of models. From this collection, 
the model exhibiting the lowest mean absolute error (MAE) score is identified as the most effective model. 
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The employed parameters are presented in Table 1.  
 

Table 1. Framework parameters and descriptions. 
Parametres Default Values Descriptions 
Dataset - Changeble for every problem so user must define Dataset. 
Models CNN, LSTM,DNN It can be changed according to the type of problem. The users can use their cutom 

models.  
Epochs 50 Users can adjust it according to their preferences. 
Loss 
Functions  

MAE,MSE, MASE  Users can adjust it according to their preferences. 

Optimizers Adam, Adadelta,Adamax  All optimizers supported by the Keras library can be used. 
Success Rate Avarage of  Training Set 

Values 
Users can use this parameter if they prefer models below a certain success rate. 

 
2.1. Dataset  
 
Brent crude oil prices serve as the dataset, containing a comprehensive collection of 9000 daily price data 
points. Upon analyzing the distribution of these prices, it becomes evident that the lowest price is 9.1 USD, 
while the highest price is 143.95 USD. The mean price is 48.421 USD. This considerable price range 
significantly influenced the choice of this dataset, ensuring the inclusion of diverse price trajectories over time. 
To facilitate effective modeling, the dataset was partitioned, allocating 80% for the training set and the 
remaining 20% for the test set. The graphical representation of price fluctuations within the training and test 
sets is illustrated in Figure 1. 
 

 
Figure 1. Training set and test set graph. 

 
2.2. Deep learning models 
 
Convolutional Neural Networks (CNN), a fundamental method in deep learning, is notably efficient for 
analyzing visual data. CNNs generate feature maps by employing filters in layers and achieve results by 
integrating these features in alignment with the desired output [12]. Long Short Term Memory (LSTM) is 
utilized for analyzing sequential data. The model operates through input, output, and forget gates, enabling it 
to scrutinize long-term connections and comprehend extended sequences of sequential data [13]. Deep 
Neural Networks (DNN) form the basis for general deep learning models. These models consist of layers of 
artificial neural network cells with connections established by weight values. The weight values are learned to 
address problems [14]. 
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2.3. Loss functions 
 
This study assesses the impact of loss functions on the training of models employed for regression problems. 
The selection of loss functions was aligned with the respective model and evaluated during the training of the 
models. They represent a crucial component in the training of deep learning models. Following loss functions 
were employed: 
 
• Mean Squared Error  
• Root Mean Squared Error  
• Mean Absolute Error  
• Mean Absolute Percentage Error  
• Mean Squared Logarithmic Error  
• Cosine Similarity  
• Log Cosh Error 
 
The MAE is a measure of success calculated by averaging the absolute differences between the actual values 
and model results [15]. Equation 1 demonstrates the formula for MAE. 
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The MSE is a measure of success calculated as the mean of the squares of the differences between the model 
results and the actual values [16]. Equation 2 demonstrates the formula for MSE. 
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The RMSE is calculated by taking the square root of the MSE value and shows the average of the errors 
between the predicted values and the actual values [17]. Equation 3 demonstrates the formula for RMSE. 
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MAPE calculates the error between model predictions and actual values as a percentage [18]. Equation 4 
demonstrates the formula for MAPE. 
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MASE assesses model effectiveness using MAE values that have been normalized to the dataset's 
characteristics. MASE enables the assessment of errors in the training history [19]. Equation 5 demonstrates 
the formula for MASE. 
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2.4. Optimization algorithms 
 
Choice of the optimization algorithm is a crucial step for effective training of models. Following optimization 
algorithms were considered: 
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• Adam   
• Stochastic Gradient Descent 
• Adadelta   
• Nadam   
• Adamax 
 
These optimization algorithms were applied to mitigate the error rates derived from the loss functions. The 
selection of the appropriate optimization algorithm was determined with consideration of the problem nature 
and the underlying data structure. This selection aimed to enhance the optimization of deep learning models, 
thereby facilitating improved understanding and prediction of price fluctuations within the dataset. 
 
Adam is a gradient-based optimisation algorithm commonly utilised in deep learning models. It was initially 
proposed by Kingma and Ba in 2014. Adam adjusts the learning rate through the use of moving averages of 
the gradient momentum and the square of the gradient, facilitating accelerated learning and decreasing the 
necessity for hyperparameter tuning [20].  
 
Stochastic Gradient Descent (SGD) is a fundamental optimisation algorithm widely used in machine learning 
and deep learning models. SGD learns by updating the weights for each data sample. However, this can cause 
fluctuations and may require some modifications to ensure faster convergence [21]. 
 
Adadelta is an optimisation algorithm that attempts to overcome the disadvantages of SGD without the need 
to specifically set the learning rate hyperparameter. Adadelta automatically adjusts the learning rate using 
moving averages of the gradients. This can provide better convergence to the model [22]. 
 
Nadam is an optimisation approach that combines the Nesterov Momentum and Adam algorithms. Nesterov 
Momentum employs a technique that encourages swift convergence in momentum-based optimisation 
algorithms, while also maintaining the adaptive properties of Adam. Consequently, Nadam frequently attains 
rapid and steady convergence [23]. 
 
Adamax is a variant of the Adam optimization algorithm. It works similarly to Adam but employs the 
unbounded norm of the gradient values instead of moving averages. This approach can result in superior 
performance, particularly when the L2 norm is significant [24]. 
 
2.5. The Framework 
 
The primary objective of the framework is to generate diverse models by replicating the layers of the input 
model. These generated models undergo training phase using a variety of loss functions and optimization 
algorithms. Finally, the framework assesses the performance of these models resulting from different 
parameter combinations. 
 
The framework systematically gathers and compares the performance scores of the models generated through 
varied training processes. These scores effectively gauge the predictive capability of each model, aiding in the 
identification of the most suitable one. Thus, the framework identifies and presents the model that aligns best 
with the user-specified criteria. 
 
The fundamental workflow of the framework is illustrated in Figure 2. It depicts the creation of diverse models 
by replicating input model layers and employing diverse loss functions and optimization algorithms. 
Subsequently, these models are evaluated during the training processes to determine the optimal choice. The 
framework's objective is to attain optimal results by promoting model diversity through systematic 
experimentation with distinct parameters. 
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Figure 2. Workflow of the framework. 

 
The framework presents a structured approach for the selection and development of models. Users have the 
flexibility to input models of their preference into the framework, thereby optimizing training costs for models 
tailored to specific problems. Developed by utilizing the Tensorflow and Keras libraries, the framework 
accepts models that are created using Keras' layer class as its input. By default, it employs CNN, DNN, and 
LSTM models, chosen based on their proven efficacy across diverse problem domains. 
 
Multiple versions of the model can be provided to the framework via its parameters. These variations are 
created by implementing different loss functions and optimization algorithms. To determine the total number 
of models, the product of NL (number of layers), NLF (number of loss functions), and NOA (number of 
optimization algorithms) must be calculated. The number of divergent models generated can be determined 
using the formula outlined in Equation 6. 
 
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑀𝑜𝑑𝑒𝑙𝑠 = 𝑁𝐿 ∗ 𝑁𝑂𝐴 ∗ 𝑁𝐿𝐹 (6) 

 
A distinctive diversification process is executed for each model and layer provided as a parameter, considered 
a measure towards achieving diversity. The results of diversification are evaluated based on the Mean Absolute 
Error (MAE) results for the respective model. The framework utilises the early stopping function from the 
Keras library to address overfitting and underfitting situations that may arise during model training. 
Therefore, the outcomes acquired from the models are prepared for comparison. The most suitable model is 
retained in memory and compared with subsequent diversification processes. The inclusion of layers is halted 
if the success rate falls below that of the previous step. The framework promotes variation based on the input 
models, achieved through various combinations of loss functions and optimization algorithms. MAE results 
are utilized within the framework to assess the effectiveness of diversified versions of the models. As a result, 
the most optimal model is selected. 
 
The framework selects the optimal outcome among various models and presents it to the user. 
Simultaneously, upon the user's request, a compilation can display optimal outcomes alongside additional 
successful examples. This level of flexibility empowers users to showcase and select the most suitable models. 
 
3. Results and Discussion 
 
The framework was tested using Brent Crude Oil prices. To introduce model diversity in the tests, a range of 
loss functions including MSE, MAE, and MAPE, along with optimization algorithms such as Adam, Adadelta, 
Nadam, and Adamax, were employed. The process of adding layers was implemented on the default LSTM, 
CNN, and DNN models, resulting in a foundational model comprising ten distinct layers. This foundational 
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model was assessed in 120 variations, encompassing different loss functions and optimization algorithms. The 
training process of the models involved 50 epochs. The results of the most successful model, employing 50 
epochs for the ten base models, are presented in Table 2. 
 

Table 2. The most successful model with 50 epochs for the base 10 models. 

 
From the 120 models created, the optimal performance was exhibited by the LSTM model with two layers. 
The most successful model employed MSE as its loss function and Adadelta as its optimization algorithm. 
The results are shown in Figure 3. 
 

 
Figure 3. Best model results for Windows size 7. 

 
The experiment entailed a window size of 7 for the series in the data set. To view the outcomes from an 
alternative viewpoint, the experiment was re-executed with a window size of 15. Table 3 exhibits the effects of 
the experiment carried out with a window size of 15. 
 

Table 3. The most successful model with 50 epochs for the base 7 models. 
 

 
 
 
 
 
 
 
In the second experiment, from the 96 models created, the optimal performance was exhibited by the LSTM 

Model Loss Function Optimizer MAE MSE RMSE MAPE MASE 
CNN-1L MAE ADAMAX 1.1951666 3.2317772 1.7977145 2.0679417 1.0574669 
CNN-2L MSE ADAMAX 1.1716549 3.0966759 1.7597374 2.020125 2.020125 
CNN-3L MSE ADADELTA 1.2711904 3.4629989 1.8609134 2.1794298 1.1247317 
DNN-1L  MSE ADAMAX 1.2403895 3.4186473 1.8489584 2.151392 1.0974795 
DNN-2L MSE ADADELTA 1.2403287 3.2778876 1.8104937 2.138884 1.0974256 
DNN-3L  MSE ADAMAX 1.1692218 3.074043 1.753295 2.0136263 1.0345112 
DNN-4L MSE ADADELTA 1.1800587 3.036366 1.7425171 2.03344 1.0440996 
LSTM-1L MSE ADADELTA 1.1503365 2.9347835 1.7131209 1.9893798 1.0178018 
LSTM-2L MSE ADADELTA 1.1239657 2.840379 1.6853424 1.9417524 0.99446934 
LSTM-3L MSE ADADELTA 1.1298846 2.903611 1.7039986 1.9573519 0.99970627 

Model Loss Function Optimizer MAE MSE RMSE MAPE MASE 
CNN-1L MSE ADAMAX 1.2158406 3.2258146 1.7960552 2.0856576 1.07523 
CNN-2L MSE ADAMAX 1.470338 4.511765 2.1240916 2.5233996 1.300295 
DNN-1L  MSE ADAMAX 1.3783844 3.6747472 1.916963 2.3201127 1.2189758 
DNN-2L MSE ADADELTA 1.2984885 3.767063 1.9408923 2.236332 1.1483197 
DNN-3L MAE ADADELTA 1.4727191 4.197971 2.048895 2.4877105 1.3024007 
LSTM-1L MSE ADAMAX 1.2086239 3.277059 1.810265 2.0864668 1.0688479 
LSTM-2L MSE ADAMAX 1.2292047 3.4163816 1.8483456 2.1175768 1.0870485 



89 

Karabıyık 
 

Gazi Mühendislik Bilimleri Dergisi: 9(4), 2023  

PRINT ISSN: 2149-4916 E-ISSN: 2149-9373 © 2022 Gazi Akademik Yayıncılık  

model with one layer. The most successful model employed MSE as its loss function and Adamax as its 
optimization algorithm. The results are shown in Figure 4. 

 

 
Figure 4. Best model results for Windows size 15. 

 
4. Conclusions  
 
In this study, we have designed a framework for the development and selection of models in the context of 
time series analysis. User-specified models are input into the framework, which subsequently evaluates their 
performance by constructing a diverse collection of models. These models, generated through a variety of loss 
functions and optimization algorithms, are then assessed based on their Mean Absolute Error (MAE) results. 
These findings offer valuable insights to users facilitating the process of model selection and refinement. 
 
The framework has been implemented using the Tensorflow and Keras libraries, supporting tailored to 
diverse problem domains. By default, a comprehensive collection of models, including Convolutional Neural 
Networks (CNN), Deep Neural Networks (DNN), and Long Short-Term Memory (LSTM) networks, is 
available. The determination of diverse models depends on the combination of distinct loss functions and 
optimization algorithms, with the most proficient model selected the optimal choice. 
 
This study affords users substantial ease in both model selection and performance assessment. The framework 
empowers users to identify appropriate models for specific problems and attain optimal results by iteratively 
experimenting with various loss functions and optimization algorithms. Furthermore, it offers support for 
different models. In particular, the default CNN, DNN, and LSTM models can be applied to wide range of 
problem domains. 
 
The future perspective of the study is to extend the framework by incorporating additional models and 
diversification methods. Furthermore, extending the framework's domain to ensemble learning will pave the 
way for exploration of different research studies. In deep learning problem-solving, an array of techniques is 
implemented to enhance result success. However, the success strategies presented within the framework only 
encompass methods that cover all problems. In forthcoming research, problem-specific approaches could be 
integrated into the framework. To reduce the runtime cost of the framework, search algorithms that are 
effectively used in parameter selection can be integrated into the model in future studies. In this way, some 
steps that can be defined as unnecessary during model diversification can be removed from the process. 
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