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Abstract

The current study is intended to provide a comprehensive application of Sturm-Liouville (S-L) problem
by benefiting from the proportional derivative which is a crucial mathematical tool in control theory.
This advantageous derivative, which has been presented to the literature with an interesting approach
and a strong theoretical background, is defined by two tuning parameters in control theory and a
proportional-derivative controller. Accordingly, this research is presented mainly to introduce the
beneficial properties of the proportional derivative for analyzing the S-L initial value problem. In
addition, we reach a novel representation of solutions for the S-L problem having an importing place
in physics, supported by various graphs including different values of arbitrary order and eigenvalues
under a specific potential function.

Keywords: Proportional-derivative controller; proportional integral; Sturm-Liouville problem; control
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1 Motivation

The advantage of using non-integer order integral-derivative operators lies in the fact that they
express numerous real-world problems better than classical analysis tools. Fractional calculus
provides a natural and intrinsic characterization of complex dynamical systems [1]. Also, the
concepts in fractional calculus shed some new light on the solutions methods of differential equa-
tions, especially when the traditional tools are limited and insufficient. As a way of describing
events in nature, this field whose history is as old as the classical differential has become quite
interesting. Several fractional integral and derivative operators with various features have recently
been introduced to the literature. While some researchers place a strong emphasis on the value of
local derivatives, others highlight the benefits of non-local and singular kernel operators, while
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others make the case that non-local and non-singular kernel operators are also beneficial. Al-
though this situation might be confusing, the availability of several derivative-integral definitions
has evolved into a fundamental motivational tool for researchers in order to produce superior
findings for the problems at hand. The amount of complex systems that have been studied from
the perspective of fractional dynamics has significantly increased over the past few decades.
Fractional calculus can be used to assess a variety of phenomena, including transmission line
theory, heat transfer, diffusion, electrochemistry, fractal processes, deoxyribonucleic acid decoding
for prototype systems, financial considerations, earthquake events, global warming, and even
musical rhythms. In addition, the existence of numerous complex systems, both natural and
human-made, shows the abundance of phenomena that can be described and studied with the
help of concepts in fractional calculus. The major goal is to establish the analysis framework of the
problems under consideration by enlarging it in the perspective of fractional calculus. Although
fractional calculus helps to expand the traditional definitions of derivative and integral, which
then obviously lead to fractional-type models, neither the restrictions of their application nor the
processes and tools for comprehending them are well-defined at the current stage of scientific
evaluation. With Caputo’s formulation of the fractional derivative, the scope of applications for
non-integer order differential operators has been widened, and exciting results have been obtained
by using them more frequently. The usage of fractional derivatives, which is expanding rapidly
today, is especially useful for characterizing processes and describing physical phenomena. It has
also taken on crucial tasks like eliminating the deficiencies in differential equations created with
classical derivatives.
The usage of local derivative and integral definitions defined in the limit form has also grown
in popularity, in addition to fractional derivatives, which are non-local because they are defined
in the integral form. The "proportional derivative" definition, which was developed with the
proportional derivative controller used in control theory, is one of them and may be the most
advantageous one. This derivative is defined with the help of two tuning parameters in control
theory and a proportional-derivative (PD) controller given by

u(t) = kpE(t) + kdE(t), (1)

for the controller output u at time t [2]. PD is a successful control method that is straightforward
to comprehend. Here, kp stands for the proportional gain, kd for the derivative gain, and E for the
error between the state and process variables. It is well-recognized that the proportional derivative
controller effectively addresses problems with real-world control. Also, the proportional term
offers a general control action that, via the gain coefficient, is proportionate to the error signal. The
derivative term improves the transient response through high-frequency compensation. Intuitively,
for these concepts, it makes sense to say that P depends on the current error and D is an estimate of
future errors. Controlling the considered system by the weighted sum of these two actions results
in the system reaching the desired state. Suppose that for η ∈ [0, 1], K0, K1 : [0, 1]× R → [0,∞)

functions are continuous and satisfy the following conditions:

lim
η→0+

K1(η, t) = 1, lim
η→0+

K0(η, t) = 0, (2)

lim
η→1−

K1(η, t) = 0, lim
χ→1−

K0(η, t) = 1. (3)

Then, for all t ∈ R, K1(η, t) ̸= 0, η ∈ [0, 1) and K0(η, t) ̸= 0, η ∈ (0, 1], the proportional derivative
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is defined as

PDηω(t) = K1(η, t)ω(t) + K0(η, t)ω ′(t). (4)

On the other hand, the proportional exponential function is given by

ep(t, r) = e
∫t

r
p(τ)−K1(η,τ)

K0(η,τ) dτ
, e0(t, r) = e

−
∫t

r
K1(η,τ)
K0(η,τ) dτ

, (5)

where χ ∈ (0, 1], r, t ∈ R, r ≤ t, p : [r, t] → R, and k0, k1 : [0, 1]× R → [0,∞) are continuous
functions. Also, p/k0 and k1/k0 are Riemann integrable on [s, t]. Furthermore, for η ∈ (0, 1],
proportional integral on [a, b] is

PIηω(t) =
∫ t

a
ω(r)e0(t, r)dηr =

∫ t

a

ω(r)e0(t, r)
K0(η, r)

dr, dηr =
1

K0(η, r)
dr. (6)

Figure 1. Block diagram of control system with proportional-derivative controller.

The derivative control method is known to change the controller output proportionally to the rate
of the error signal change. Derivative control, on the other hand, observes how much the error has
altered and tries to identify the current error. In order to minimize potential errors, it also generates
control motion through using the rate of change. The integral technique is occasionally added in
addition to the proportional method since the derivative method only affects the controller output
when the error changes. In this context, it can be stated that the derivative control approaches can
never be employed alone. The derivative value is determined by the rate of change of the error
signal, that is, by the slope of the error signal. An ideal derivative technique is expected to respond
with an infinite variation to the controller output and the derivative effect for quickly changing
signals is constrained. In the derivative receiver circuit, the frequency of the signal applied at
the input must be smaller than the cutoff frequency of the circuit, while the period of the signal
applied at the input is desired to be close to the derivative time for the differentiation process to
take place.
The difference signal between the set value and the measured value is subjected to a derivative
operation in proportional-derivative control. After the error signal first passes through the
proportional controller, the derivative signal, balancing voltage, and proportional signal are
collected in the collector circuit. Figure 1 depicts the control system diagram with a PD controller.
As shown in the diagram, the PD controller continuously determines the error value E(t) [3].
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2 Introduction

The study of Sturm between 1829 and 1836 serves as the basis of the Sturm-Liouville (S-L) theory.
Later, the brief but crucial study of Sturm-Liouville was published in 1837. In this study, they
addressed the boundary value problem (BVP) for the differential equation given as

−y ′′ + q(x)y = λy, 0 ≤ x ≤ 1, (7)

where λ is a complex parameter and q is a real-valued function that can be quadratically integrated
over the integral [0, 1]. Sturm and Liouville examined whether there are nontrivial solutions of
Eq. (7) satisfying the following boundary conditions [4]:

y(0) cos γ1 + y ′(0) sin γ1 = 0,

y(1) cos γ2 + y ′(1) sin γ2 = 0.
(8)

Here, γ1 and γ2 are real numbers between 0 and π. If (7)-(8) BVP is solved, the complex number λ is
called the eigenvalue of q, γ1, and γ2. Also, the nontrivial solutions for λ are called eigenfunctions
of q, γ1, and γ2, The set of all eigenvalues is the spectrum of the BVP given by (7)-(8). Significant
advances in spectral theory have been achieved for the Sturm-Liouville operator as follows

l = −
d2

dx2 + q(x), (9)

sometimes also called the one-dimensional time-dependent Schrödinger operator.

The first investigations on spectral theory for such operators were performed by Bernoulli,
D’alambert, Euler, Sturm, and Liouville for rod vibration problems. In the 20th century, spectral
theory developed rapidly for different classes of differential and integral operators. Famous
mathematicians including Birkhoff, Hilbert, Neumann, Steklov, Stone, and Weyl as well as many
others have made major contributions to this topic through outstanding ideas. On the other hand,
the main conclusions regarding the inverse problems of spectral theory were obtained in the
second half of the 20th century. Particularly in the latter half of the 20th century, the techniques
employed to study the Sturm-Liouvile operator have continuously improved. For instance, in
1967, a group of American physicists and mathematicians Gardner, Greene, Kruskal, and Miura
developed an important method by solving the Korteweg-de Vries (KDV) equation for a proposed
initial condition through using the inverse scattering method. In 1968, Lax evaluated the inverse
scattering method in a more general frame by solving the KDV equation with the help of linear
equations, and this frame later opened the way for generalizing the technique as a method for
solving other partial differential equations. The initial value problems of nonlinear partial dif-
ferential equations can be solved utilizing the inverse scattering method. The approach is based
on converting the initial value problem into a linear integral equation. Both mathematicians and
physicists continue to focus more on the inverse scattering problems of quantum theory for singu-
lar Sturm-Liouville operators, which have numerous applications in this area and geophysics [4].
For more information of fractional calculus in application, S-L problem and to see the S-L problem
in fractional calculus we refer the reader to [5–14].

This manuscript is organized as follows: In Section 1, we give a motivation part on the proportional
derivative by mentioning its importance in control theory before writing the introduction part
in Section 2. Then, the model description and solution method in order to solve the S-L problem
are given in Section 3. Additionally, we obtain the representation of the solution for the S-L
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problem through the proportional derivative operator in Section 4. On the other hand, in Section 5,
various graphs are shown for different values of arbitrary order η and eigenvalues. Finally, we
introduce some crucial concluding remarks of this study in Section 6.

3 Model description and solution method

The Sturm-Liouville operator T can be expressed through the proportional derivative as below:

T ≡ −PDη(PDη) + q(x), (10)

where η ∈ (0, 1] and q(x) is a real-valued continuous function on interval [a, b]. Here, the main
objective is to consider the S-L problem having separated boundary conditions given by

Ty(x) = −PDη [PDηy(x)] + q(x)y(x) = λy(x), (11)

y(a) cos γ1 + PDηy(a) sin γ1 = 0,

y(b) cos γ2 + PDηy(b) sin γ2 = 0.
(12)

If we take cot γ1 = −h and cot γ2 = H for a = 0 and b = π, that is x ∈ [0, π], the boundary
condition (12) takes the following form

PDηy(0)− hy(0) = 0,

PDηy(π) + Hy(π) = 0.
(13)

Furthermore, the BVP (11)-(12) has a nontrivial solution denoted by y(x, λn) for any λn. Also,
λn and y(x, λn) are called as eigenvalue and eigenfunction, respectively. In [15], the variation of
parameters method is defined by means of the proportional derivative. While this generalization
can be used to solve many real-life problems, it also enables the behavior of the problems to be
examined in more detail by obtaining more general solutions.
Let 0 ≤ η ≤ 1 and n ∈ {1, 2, 3, ...}, then PDnηy(x) is given by PDnηy = PDη

PDη . . . PDηy. For
simplicity of notation, one can write y(nη)(x) instead of PDnηy(x). Hence, here, the expression of
y(2η)(x) means that dη

dtη

(
dηy
dxη

)
.

The variation of parameters method, which is often used to find a particular solution of non-
homogeneous linear differential equations with constant or variable coefficients, is defined by the
proportional derivative as follows. It is well-known that the homogeneous part of a differential
equation of form (11) has two linearly independent solutions, y1(x) and y2(x). In this situation, we
have a particular solution of the proposed equation as yp(x) = ν1(x)y1(x) + ν2(x)y2(x). Hence,
with respect to the proportional variation of parameters method, we have the formulas addressed
by

ν ′
1(x) =

q(x)y(x)y2(x)
K2

0(η, x)Wp(y1, y2)(x)
, ν ′

2(x) =
−q(x)y(x)y1(x)

K2
0(η, x)Wp(y1, y2)(x)

, (14)

where Wp(y1, y2)(x) is the proportional Wronskian defined as

Wp(y1, y2)(x) =
∣∣∣∣ y1(x) y2(x)
PDηy1(x) PDηy2(x)

∣∣∣∣ . (15)
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Therefore, if we apply the integral to the functions ν ′
1(x) and ν ′

2(x), we get the functions ν1(x)
and ν2(x). By substituting these functions to the yp(x), we reach the particular solution. As a
result, the general solution is obtained by calculating the sum of the solution of the homogeneous
part of the equation under consideration and particular solution yp(x). For more information on
proportional derivatives and applications of different types of fractional derivatives, we refer the
reader to [16–20].

4 Main results

In the current section, we introduce the representation of the solution for the S-L problem employ-
ing the proportional derivative. Here, we use two suitable initial conditions and so we get two
representations of the solution by utilizing the proportional variation of parameters method. Let
φ(x, λ) be the solution of Eq. (11) with the initial condition given as

φ(0, λ) = 1, PDη φ(0, λ) = h, (16)

and the other solution is Φ(x, λ) under the following initial condition

Φ(0, λ) = 0, PDηΦ(0, λ) = 1. (17)

In order to obtain the solutions φ(x, λ) and Φ(x, λ), we benefit from the proportional variation of
parameters method. For this purpose, we employ the solution of the homogeneous counterpart of
Eq. (11) obtained as

yh(x) = c1e0(x, 0) cos

(∫ x

0

√
λ

K0(η, s)
ds

)
+ c2e0(x, 0) sin

(∫ x

0

√
λ

K0(η, s)
ds

)
. (18)

On the other hand, for the non-homogeneous equation (11), we assume that

yp(x) = ν1(x)e0(x, 0) cos

(∫ x

0

√
λ

K0(η, s)
ds

)
+ ν2(x)e0(x, 0) sin

(∫ x

0

√
λ

K0(η, s)
ds

)
. (19)

Also, the p-Wronskian can be computed as below:

Wp =

∣∣∣∣∣∣∣∣
e
−
∫x

0
K1(η,τ)
K0(η,τ) dτ

cos
(∫x

0

√
λ

K0(η,s)ds
)

e
−
∫x

0
K1(η,τ)
K0(η,τ) dτ

sin
(∫x

0

√
λ

K0(η,s)ds
)

PDη

[
e
−
∫x

0
K1(η,τ)
K0(η,τ) dτ

cos
(∫x

0

√
λ

K0(η,s)ds
)]

PDη

[
e
−
∫x

0
K1(η,τ)
K0(η,τ) dτ

sin
(∫x

0

√
λ

K0(η,s)ds
)]
∣∣∣∣∣∣∣∣ , (20)

and if we choice K1(η, s) = 1 − η and K0(η, s) = η, we reach

Wp =

∣∣∣∣∣∣∣
e−

(1−η)
η x cos

(√
λ

η x
)

e−
(1−η)

η x sin
(√

λ
η x
)

PDη

[
e−

(1−η)
η x cos

(√
λ

η x
)]

PDη

[
e−

(1−η)
η x sin

(√
λ

η x
)]
∣∣∣∣∣∣∣ , (21)

PDη

[
e−

(1−η)
η x cos

(√
λ

η
x

)]
= e−

(1−η)
η x

[
cos

(√
λ

η
x

)
−
√

λ sin

(√
λ

η
x

)]
, (22)
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and

PDη

[
e−

(1−η)
η x sin

(√
λ

η
x

)]
= e−

(1−η)
η x

[
sin

(√
λ

η
x

)
−
√

λ cos

(√
λ

η
x

)]
. (23)

Hence we get p-Wronskian as

Wp =
√

λe
2(η−1)

η x. (24)

By taking the integral of following expressions

ν ′
1(x) =

y2(x)q(x)y(x)
η2Wp

, ν ′
2(x) =

−y1(x)q(x)y(x)
η2Wp

, (25)

it can be reached the functions ν1(x) and ν2(x) as follows

ν1(x) =
∫ x

0

e−
(1−η)

η t sin
(√

λ
η t
)

η2
√

λe
2(η−1)

η

q(t)y(t)dt, ν2(x) = −

∫ x

0

e−
(1−η)

η t cos
(√

λ
η t
)

η2
√

λe
2(η−1)

η t
q(t)y(t)dt. (26)

If we arrange the above formulas, we get

ν1(x) =
1

η2
√

λ

∫ x

0
e
(1−η)

η t sin

(√
λ

η
t

)
q(t)y(t)dt, (27)

and

ν2(x) =
−1

η2
√

λ

∫ x

0
e
(1−η)

η t cos

(√
λ

η
t

)
q(t)y(t)dt. (28)

Substituting the functions ν1(x) and ν2(x) into Eq. (19), one can readily have

yp(x) = e−
(1−η)

η x cos

(√
λ

η
x

)
1

η2
√

λ

∫ x

0
e
(1−η)

η t sin

(√
λ

η
t

)
q(t)y(t)dt

− e−
(1−η)

η x sin

(√
λ

η

)
1

η2
√

λ

∫ x

0
e
(1−η)

η t cos

(√
λ

η
t

)
q(t)y(t)dt.

(29)

Thereby, the general solution is obtained as

y(x) = c1e−
(1−η)

η x cos

(√
λ

η
x

)
+ c2e−

(1−η)
η x sin

(√
λ

η
x

)

+
1

η2
√

λ

∫ x

0
q(t)y(t)e

(1−η)
η t sin

[√
λ

η
(x − t)

]
dt.

(30)
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Let λ be s2, then by applying the initial condition (16), we have the solution as follows

φ(x, s) = e−
(1−η)

η x cos
(

s
η

x
)
+

h
s

e−
(1−η)

η x sin
(

s
η

x
)

+
1

sη2

∫ x

0
q(t)φ(t)e

(1−η)
η t sin

[
s
η
(x − t)

]
dt,

(31)

and utilizing the initial condition (17), we can get the solution

Φ(x, s) =
1
s

e−
(1−η)

η x sin
(

s
η

x
)
+

1
sη2

∫ x

0
q(t)Φ(t)e

(1−η)
η t sin

[
s
η
(x − t)

]
dt. (32)

5 Visual results and discussions

This section includes graphs of the solution functions of S-L problem that are achieved by employ-
ing the benefits of proportional derivative. The behavior of the representation of solution function
φ(x, s) for the classical situation is first demonstrated when s = 1, 2, 3, and then it is shown how
the solution curve motions vary for η = 0.9, 0.7, 0.5 in Figure 2 and Figure 3. On the S-L problem,
which has physically crucial meanings, it has been clearly observed how different order values of
the proportional derivative affect the problem and how they change the behavior of the solution
functions.
On the other hand, it should be expressed that the reason for using the same eigenvalues is to see
the effect of different order values. In Figure 4-Figure 5, we demonstrate how the solutions change
as the η parameter takes different values for s=1, s=3 and s=5, respectively. Additionally, Figure 6
shows the behavior of the function φ(x, s) for η = 1, 0.8, 0.6, 0.4 when s =

√
0.1. Afterwards,

similarly, we plot the graphs for the solution function φ(x, s) by using the same parameter values
for the solution function Φ(x, s) in Figure 7-Figure 10. Here, the representation of solution function
φ(x, s) under the condition (16) is

φ(x, s) = e−
(1−η)

η x cos
(

s
η

x
)
+

h
s

e−
(1−η)

η x sin
(

s
η

x
)

+
1

sη2

∫ x

0
q(t)φ(t)e

(1−η)
η t sin

[
s
η
(x − t)

]
dt,

(33)

and the representation of solution function Φ(x, s) under the condition (17) is

Φ(x, s) =
1
s

e−
(1−η)

η x sin
(

s
η

x
)
+

1
sη2

∫ x

0
q(t)Φ(t)e

(1−η)
η t sin

[
s
η
(x − t)

]
dt. (34)

All graphs are obtained by the various values of arbitrary order and eigenvalues when the
potential function q(t) = 0. Accordingly, the main objective of the graphs is to see the effect of the
eigenvalues, which are important for the problem under investigation, on the solution functions
and to observe the effect of the proportional derivative on the S-L problem. To observe these two
situations separately, which are important for the current study, in some graphs, eigenvalues are
not changed, while arbitrary order of proportional derivative values are changed.
In a similar way, to see the effect of the eigenvalues, the derivative order is not changed and the
eigenvalues are changed.
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Figure 2. The solutions curves of the function φ(x, s) when η = 1 (classical case) (a) and η = 0.9 (arbitrary order
case) (b) for the values of s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (16).
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Figure 3. The solutions curves of the function φ(x, s) when η = 0.7 (a) and η = 0.5 (b) for the values of
s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (16).
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Figure 4. The solutions curves of the function φ(x, s) when s = 1 (a) and s = 3 (b) for different values of
arbitrary order η = 1, 0.8, 0.6, 0.4.
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Figure 5. The solutions curves of the function φ(x, s) when s = 5 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.
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Figure 6. The solution curves of the function φ(x, s) when s =
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0.1 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.
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Figure 7. The solutions curves of the function Φ(x, s) when η = 1 (classical case) (a) and η = 0.9 (arbitrary order
case) (b) for the values of s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (17).
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Figure 8. The solutions curves of the function Φ(x, s) when η = 0.7 (a) and η = 0.5 (b) for the values of
s = 1, 3, 5 (this corresponds to the λ = 1, 9, 25 eigenvalues) under the condition (17).
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Figure 9. The solutions curves of the function Φ(x, s) when s = 1 (a), s = 3 (b), and s = 5 (c) for different values
of arbitrary order η = 1, 0.8, 0.6, 0.4.
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Figure 10. The solution curves of the function Φ(x, s) when s =
√

0.1 for different values of arbitrary order
η = 1, 0.8, 0.6, 0.4.

6 Concluding remarks

The proportional derivative, which is considered in the class of local derivatives including arbitrary
order, is considered more advantageous than other local derivatives in terms of its features. Since
it is based on control theory, it has an important place, especially in engineering. In [2], the
authors state that since the unit operator cannot be obtained for the other local derivatives when
D0ω ̸= ω, that is, χ → 0, and on the other hand, there is a t ≥ 0 condition to satisfy the
Dχω(t) = t1−χω ′(t) formula, they have introduced a novel definition of local derivative called
proportional derivative in order to overcome these restrictions. This new and seemingly more
well-founded local derivative definition is created in such a way that D0 corresponds to the unit
operator and D1 corresponds to the integer-order classical derivative, while 0 ≤ χ ≤ 1 and t ∈ R.
In the definition of the proportional derivative, various special cases can be obtained for different
choices of the functions K1(η, t) and K0(η, t). For example, proportional derivatives of special
types can be obtained by choosing for any ω ∈ (0,∞), K1 ≡ (1 − χ)ωχ and K0 ≡ χω1−χ,
K1 = (1 − χ)|t|χ and K0 = χ|t|1−χ on R\{0}, or K1 = cos(χπ/2)|t|χ and K0 = sin(χπ/2)|t|1−χ.
This can be seen as another advantage of the proportional derivative. Because, in application, one
can have the opportunity to obtain better results by making the special choices needed according
to the behavior of the problem under consideration. Therefore, attention should be paid to whether
the special choices made are useful and meaningful in application. Due to all these advantages,
the proportional derivative is preferred in solving the S-L equation in this study. It is thought that
the results obtained as an alternative to the classical derivative will be useful for experts in the
field.
Also, it should be emphasized that addressing and examining the S-L problem, which is of great
physical importance, with the help of proportional derivatives used in control theory, can make a
significant contribution to the literature. It is known that there are many different S-L problems
in the literature. Therefore, this study is important in terms of encouraging the application of
proportional derivative to different problems in this field.
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