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Abstract. In a recent paper (Cf. [1]), we have introduced the definitions

and studied the essential properties of the generalized topological operators

g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) (g-Tg-derived and g-Tg-coderived oper-

ators) in a generalized topological space Tg = (Ω,Tg) (Tg-space). Mainly,
we have shown that (g-Derg, g-Codg) ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω)
is a pair of both dual and monotone g-Tg-operators that is (∅,Ω), (∪,∩)-

preserving, and (⊆,⊇)-preserving relative to g-Tg-(open, closed) sets. We have

also shown that (g-Derg, g-Codg) ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω) is a

pair of weaker and stronger g-Tg-operators. In this paper, we define by trans-

finite recursion on the class of successor ordinals the δth-iterates g-Der
(δ)
g ,

g-Cod
(δ)
g ∶ P (Ω) Ð→ P (Ω) (g-T

(δ)
g -derived and g-T

(δ)
g -coderived operators)

of g-Derg, g-Codg ∶P (Ω)Ð→P (Ω), respectively, and study their basic prop-

erties in a Tg-space. Moreover, we establish the necessary and sufficient condi-

tions for (g-Der
(δ)
g , g-Cod

(δ)
g ) ∶P (Ω)×P (Ω)Ð→P (Ω)×P (Ω) to be a pair of

g-Tg-derived and g-Tg-coderived operators in Tg. Finally, we diagram various

relationships amongst der
(δ)
g , g-Der

(δ)
g , cod

(δ)
g , g-Cod

(δ)
g ∶ P (Ω) Ð→ P (Ω)

and present a nice application to support the overall study.

1. Introduction

Axiomatically, a generalized derived operator (g-Ta-derived operator) in an or-
dinary (a = o) or generalized (a = g) topological space Ta = (Ω,Ta) (Ta-space)

is a set-valued map
g-Dera ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Dera (Sa)
satisfying the following

g-Ta-derived operator axioms:
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– AxDE,1 (g-Dera)
def←→ g-Dera (∅) = ∅

– AxDE,2 (g-Dera)
def←→ g-Dera (Rg) = g-Dera(Ra ∩ g-Opa ({ξ}))

– AxDE,3 (g-Dera)
def←→ g-Dera ○g-Dera (Ra) ⊆Ra ∪ g-Dera (Ra)

– AxDE,4 (g-Dera)
def←→ g-Dera (Ra ∪Sa) = ⋃

Ua=Ra,Sa

g-Dera (Ua)

for any ({ξ} ,Ra,Sa) ∈ ⨉α∈I∗3 P (Ω) such that {ξ} ⊂ g-Dera (Ra) [1, 2, 3, 4, 5,

6, 7, 8, 9]. A generalized coderived operator (g-Ta-coderived operator) in the Ta-

space Ta is a set-valued map
g-Coda ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Coda (Sa)
satisfying the

following g-Ta-coderived operator axioms:

– AxCD,1 (g-Coda)
def←→ g-Coda (Ω) = Ω

– AxCD,2 (g-Coda)
def←→ g-Coda(Ug) = g-Coda(Ua ∪ {ζ})

– AxCD,3 (g-Coda)
def←→ g-Coda ○g-Coda (Ua) ⊇ Ua ∩ g-Coda (Ua)

– AxCD,4 (g-Coda)
def←→ g-Coda (Ua ∩ Va) = ⋂

Wa=Ua,Va

g-Coda (Wa)

for any ({ζ} ,Ua,Va) ∈ ⨉α∈I∗3 P (Ω) [1, 2, 3, 4, 5, 6, 7, 8, 9]. Alternative axiomatic
descriptions for g-To-derived and g-To-coderived operators in To-spaces can be
found in the paper of Lei and Zhang [10].

If (Sa,g-Opea) ∈P (Ω) × {g-Dera,g-Coda} be arbitrarily given, then β factors

g-Opea ∶ P (Ω) Ð→P (Ω)
Sa z→ g-Opea (Sa)

yields:

Z0
+ ∋ β ←→ g-Ope(β)a (Sa) = g-Opea ○ ⋯ ○ g-Opea (Sa) def= ◯α∈I0

β
g-Opea (Sa)

Thus,
(g-Der(β)a ,g-Cod(β)a ) ∶ P (Ω) Ð→P (Ω)

Sa z→ (g-Der(β)a ,g-Cod(β)a ) (Sa)
is the βth

order of
(g-Dera,g-Coda) ∶ P (Ω) Ð→P (Ω)

Sa z→ (g-Dera,g-Coda) (Sa)
and, for any pair

(Sa,g-Opea) ∈P (Ω) × {g-Dera,g-Coda}, it holds that:

[(∃β ∈ Z0
+)(g-Ope(β)a (Sa) = ∅)] ∨ [(∀β ∈ Z0

+)(g-Ope(β)a (Sa) ≠ ∅)]

If g-Ope(β)a (Sa) = ∅ for some β ∈ Z0
+, then β is a type of density measure of Sa to

achieve emptiness (if this is ever achieved). But if S
(λ)
a

def= ⋂
β∈Z∗+

g-Ope(β)a (Sa) ≠ ∅,

then λ is a type of limit order of Sa, in which case the g-Ta-operators g-Ope(1)a ,

g-Ope(2)a , . . . ∶ P (Ω) Ð→ P (Ω) can again be applied on S
(ω)
a ∈ P (Ω), yield-

ing g-Ope(λ+1)a (Sa), g-Ope(λ+2)a (Sa), . . .. Viewing δ = 0, 1, 2, . . . as successor
ordinals while δ = λ as limit ordinal, the foregoing descriptions surprisingly intro-
duce by transfinite recursion on the class of successor ordinals the definitions of

the δth-iterates
g-Der(δ)a , g-Cod(δ)a ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Der(δ)a (Sa) , g-Cod(δ)a (Sa)
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( g-T
(δ)
a -derived and g-T

(δ)
a -coderived operators) of the g-Ta-derived and g-Ta-

coderived operators
g-Dera, g-Coda ∶ P (Ω) Ð→P (Ω)

Sa z→ g-Dera (Sa) , g-Coda (Sa) ,
respectively, in a Ta-space.

In a Tg-space Tg = (Ω,Tg), by virtue of AxDE,1 (g-Codg), . . ., AxDE,4 (g-Codg)
and AxCD,1 (g-Codg), . . ., AxCD,4 (g-Codg), generalized characterizations of Tg ∶
P (Ω) Ð→ P (Ω) in the Tg-space Tg can be realized by specifying either the

g-Tg-derived operator
g-Derg ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Derg (Sg)
or the g-Tg-coderived

operator
g-Codg ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Codg (Sg) ,
respectively [1]. Moreover, if the

δth-iterates
g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Der(δ)g (Sg) , g-Cod(δ)g (Sg)
are

also themselves g-Tg-derived and g-Tg-coderived operators in the Tg-space Tg, then
similar roles can be played, thereby realizing other generalized characterizations of
Tg ∶ P (Ω)Ð→P (Ω) in Tg.

Although the literature of Ta-spaces contains a wealth of information on the
study of different types of Tg, g-Tg-operators in Tg-spaces [2, 3, 4, 5, 6, 7, 8, 9, 11,

12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], including the study of g-T
(δ)
o -derived and

g-T
(δ)
o -coderived operators in To-spaces [23, 24, 25, 26, 27], it does, unfortunately,

not contain a study of any g-T
(δ)
g -derived and g-T

(δ)
g -coderived operators in Tg-

spaces.
In investigating the convergence of Fourier series, Cantor [23, 24] has intro-

duced and considered
dero∣R ∶ P (R) Ð→P (R)

So z→ dero∣R (So)
in R. He has also con-

sidered its iteration, thereby introducing the notion of ordinal and then the def-

inition of
der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

in R for some ordinal δ. Later on,

Rutt [25] has introduced a weaker form of
dero ∶ P (Ω) Ð→P (Ω)

So z→ dero (So)
and in-

vestigated some of its properties as well as the properties of its δth-order iterate

der(δ)o ∶ P (Ω) Ð→P (Ω)
So z→ der(δ)o (So)

from a sequential point of view. Adopting a

point of view similar to Rutt [25], Tucker [26] has presented a theorem concern-

ing the period of periodic sequences of To-derived sets with respect to the T
(δ)
o -

derived operator
der(δ)o ∶ P (Ω) Ð→P (Ω)

So z→ der(δ)o (So)
and has studied other prop-

erties in a To-space. Noticing that, for a large class of real To∣R-spaces of the type

To∣R = (R,To∣R), the To∣R-derived operator
der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

it-

self realizes an ordinary characterization of To∣R ∶ P (R) Ð→ P (R) in the To∣R-
space To∣R, Higgs [27] has given characterizations of To∣R-spaces for which the δth-

iterate
der
(δ)
o∣R ∶ P (R) Ð→P (R)

Sg z→ der
(δ)
o∣R (So)

is a To∣R-derived operator. He has also
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considered the unfortunate extent to which δth-iteration fails to relate well to sev-
eral To∣R-concepts and defined the limit δth-iterate of the T

(δ)
o∣R-derived operator in

To∣R.
Having introduced the definitions and then investigated the properties of a new

type of g-Tg-derived and g-Tg-coderived operators in Tg-spaces [1], it may be an-
other good research investigation to introduce the definitions and then investigate
the properties of the δth-order derivative g-Tg-derived and g-Tg-coderived opera-
tors defined by transfinite recursion on the class of successor ordinals in Tg-spaces.
Such inquiry is what we endeavor to undertake in the present paper.

Hereafter, the paper is structured as thus: In § 2, the preliminary and main
concepts are described in §§ 2.1 and §§ 2.2, respectively. The main results are
reported in § 3. In § 4, the various relationships amongst the Ta, g-Ta-derived and
Ta, g-Ta-coderived operators in a Ta-space are diagrammed in §§ 4.1, and a nice
application supporting the overall study is presented in §§ 4.2. Finally, the work is
concluded in § 5.

2. Theory

2.1. Preliminary Concepts. The standard reference for Ta-space notations and
notions is the Ph.D. Thesis of Khodabocus, M. I. [9], whereas that for Ta, g-Ta-
derived and Ta, g-Ta-coderived operators notations and preliminary concepts in
Ta-spaces is our recent paper on the subject matter [1] (Cf. [2, 3, 4, 5, 6, 7, 8]).

The notation Ta = (Ω,Ta) designates a topological structure called Ta-space
on which no separation axioms are assumed unless otherwise mentioned [7, 8, 9].
The relation (α1, α2, . . .)RA1 ×A2 × ⋯ is made a rule to mean α1RA1, α2RA2,
. . . where R =∈, ⊂, ⊃, . . .. Accordingly, (I0n, I∗n) = (v0, nw, v1, nw) ⊂ Z0

+ × Z∗+ and

(I0∞, I∗∞) = (v0,∞w, v1,∞w) ∼ Z0
+ × Z∗+ are pairs of finite and infinite index sets,

respectively, [8, 9]. For any Ta-space Ta = (Ω,Ta), the relations Γ ⊂ Ω, Oa ∈ Ta,

Ka ∈ ¬Ta
def= {Ka ∶ ∁Ω (Ka) ∈ Ta} and Sa ⊂ Ta state that Γ, Oa, Ka and Sa

are a Ω-subset, Ta-open set, Ta-closed set and Ta-set, respectively [8, 9]. The Ta-

operators
inta, cla ∶ P (Ω) Ð→P (Ω)

Sa z→ inta (Sa) , cla (Sa)
are the Ta-interior and

Ta-closure operators, respectively [8, 9]. Let the class of all possible pairs of compo-

sitions of these Ta-operators in Ta be La [Ω] def= {opa,ν = (opa,ν ,¬opa,ν) ∶ ν ∈ I03},
where

⟨opa,ν ∶ ν ∈ I03 ⟩ = ⟨inta, cla ○ inta, inta ○ cla, cla ○ inta ○ cla⟩
⟨¬opa,ν ∶ ν ∈ I03 ⟩ = ⟨cla, inta ○ cla, cla ○ inta, inta ○ cla ○ inta⟩

Then, Sa ⊂ Ta is called a g-Ta-set if and only if it holds that

(∃ξ)[(ξ ∈Sa) ∧ ((Sa ⊆ opa (Oa)) ∨ (Sa ⊇ ¬opa (Ka)))](2.1)

for some (Oa,Ka,opa) ∈ Ta×¬Ta×La [Ω]. In this way, the derived class g-ν-S[Ta] =
⋃

E∈{O,K}
g-ν-E[Ta] collects all g-Ta-sets of category ν ∈ I03 (g-ν-Ta-sets), whereas

g-S [Ta] = ⋃
ν∈I0

3

g-ν-S [Ta] = ⋃
(ν,E)∈I0

3×{O,K}
g-ν-E [Ta] = ⋃

E∈{O,K}
g-E [Ta]

(2.2)
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collects all g-Ta-sets irrespective of their categories in Ta [8, 9]. In particular,
S [Ta] = ⋃

(ν,E)∈{0}×{O,K}
g-ν-E [Ta] = ⋃

E∈{O,K}
E [Ta] collects all Ta-sets in Ta [8, 9].

Definition 2.1 (g-ν-Ta-Interior, g-ν-Ta-Closure Operators [2, 3]). In a Ta-space
Ta = (Ω,Ta), the one-valued maps

g-Inta,ν ∶ P (Ω) Ð→ P (Ω)(2.3)

Sa z→ ⋃
Oa∈Csub

g-ν-O[Ta][Sa]
Oa

g-Cla,ν ∶ P (Ω) Ð→ P (Ω)(2.4)

Sa z→ ⋂
Ka∈Csup

g-ν-K[Ta][Sa]
Ka

where Csub
g-ν-O[Ta] [Sa] def= {Oa ∈ g-ν-O[Ta] ∶ Oa ⊆ Sa} and Csup

g-ν-K[Ta] [Sa] def=
{Ka ∈ g-ν-K[Ta] ∶ Ka ⊇ Sa} are called g-ν-Ta-interior and g-ν-Ta-closure opera-

tors, respectively. Then, g-I [Ta] def= {g-Inta,ν ∶ ν ∈ I03} and g-C [Ta] def= {g-Cla,ν ∶
ν ∈ I03} are the classes of all g-Ta-interior and g-Ta-closure operators, respectively.

Definition 2.2 (g-ν-Ta-Vector Operator [2, 3]). In a Ta-space Ta = (Ω,Ta), the
two-valued map

g-Ica,ν ∶ P (Ω) ×P (Ω) Ð→ P (Ω) ×P (Ω)(2.5)

(Ra,Sa) z→ (g-Inta,ν (Ra) ,g-Cla,ν (Sa))

is called a g-ν-Ta-vector operator. Then, g-IC [Ta] def= {g-Ica,ν = (g-Inta,ν ,g-Cla,ν) ∶
ν ∈ I03} is the class of all g-Ta-vector operators.

Remark 2.3 (Ta-Vector Operator [1]). For each ν ∈ I03 , g-Ica,ν = ica
def= (inta, cla) if

based on O [Ta]×K [Ta]. Then,
ica ∶ P (Ω) ×P (Ω) Ð→P (Ω) ×P (Ω)

(Ra,Sa) z→ (inta (Ra) , cla (Sa))
is a Ta-vector operator in a Ta-space Ta = (Ω,Ta).

Definition 2.4 (Complement g-Ta-Operator [2, 3]). Let Ta = (Ω,Ta) be a Ta-
space. Then, the one-valued map

g-Opa,Ra
∶ P (Ω) Ð→ P (Ω)(2.6)

Sa z→ ∁
Ra

(Sa)

where ∁Ra
∶ P (Ω)Ð→P (Ω) denotes the relative complement of its operand with

respect to Ra ∈ g-S [Ta], is called a natural complement g-Ta-operator on P (Ω).

For the sake of clarity, g-Opa,Ra
= g-Opa whenever Ra = Ω, and g-Opa,Ra

=
Opa,Ra

whenever Ra ∈ S [Ta] in which case, the term natural complement Tg-
operator is employed and it stand for Opa,Ra

∶ P (Ω)Ð→P (Ω).

Definition 2.5 (g-ν-Ta-Derived, g-ν-Ta-Coderived Operators [1]). Let g-Inta,ν ,
g-Cla,ν ∶ P (Ω) Ð→ P (Ω), respectively, denote the g-ν-Ta-interior and g-ν-Ta-
closure operators and, g-Opa ∶ P (Ω) Ð→P (Ω) denote the absolute complement
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g-Ta-operator in a Ta-space Ta = (Ω,Ta). Then, the one-valued maps

g-Dera,ν ∶ P (Ω) Ð→ P (Ω)(2.7)

Sa z→ {ξ ∈ Ta ∶ ξ ∈ g-Cla,ν(Sa ∩ g-Opa ({ξ}))}

g-Coda,ν ∶ P (Ω) Ð→ P (Ω)(2.8)

Sa z→ {ζ ∈ Ta ∶ ζ ∈ g-Inta,ν(Sa ∪ {ζ})}

on P (Ω) ranging in P (Ω) are called, respectively, a g-Ta-derived operator of

category ν and a g-Ta-coderived operator of category ν. The classes g-DE [Ta] def=
{g-Dera,ν ∶ ν ∈ I03} and g-CD [Ta] def= {g-Coda,ν ∶ ν ∈ I03} are called, respectively,
the class of all g-Ta-derived operators and the class of all g-Ta-coderived operators.

Remark 2.6 (g-Ta-Derived, g-Ta-Coderived Sets [1]). In a Ta-space Ta, suppose
(g-Dera (ξ;Sa) ,g-Coda (ζ;Sa)) denotes a pair (ξ, ζ) ∈ Ta ×Ta of g-Ta-derived and

g-Ta-coderived points of Sa ∈P (Ω), then (g-Dera (Sa) ,g-Coda (Sa)) denotes the
pair of g-Ta-derived and g-Ta-coderived sets of Sa in Ta, where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g-Dera (Sa) def= {g-Dera (ξ;Sa) ∶ ξ ∈ Ta}

g-Coda (Sa) def= {g-Coda (ζ;Sa) ∶ ξ ∈ Ta}
(2.9)

denote the pair of g-Ta-derived and g-Ta-coderived sets of Sa in Ta.

Definition 2.7 (g-Ta-Vector Operator [1]). Let Ta = (Ω,Ta) be a Ta-space. Then,
an operator of the type

g-Dca,ν ∶ ⨉α∈I∗2 P (Ω) Ð→ ⨉
α∈I∗2

P (Ω)(2.10)

(Ra,Sa) z→ (g-Dera,ν (Ra) ,g-Coda,ν (Sa))

on ⨉α∈I∗2 P (Ω) ranging in ⨉α∈I∗2 P (Ω) is called a g-Ta-vector operator of category

ν and, g-DC [Ta] def= {g-Dca,ν = (g-Dera,ν ,g-Coda,ν) ∶ ν ∈ I03} is called the class of
all such g-Ta-vector operators.

Remark 2.8 (Ta-Vector Operator [1]). For any ν ∈ I03 , g-Dca,ν = dca
def= (dera, coda)

if based on (clg, intg). Then,
dca ∶ P (Ω) ×P (Ω) Ð→P (Ω) ×P (Ω)

(Ra,Sa) z→ (dera (Ra) , coda (Sa))
is a Ta-vector operator in a Ta-space Ta = (Ω,Ta).

Accordingly,

g-DC [Ta] def= {g-Dca,ν = (g-Derν ,g-Coda,ν) ∶ ν ∈ I03}

⊆ {g-Dera,ν ∶ ν ∈ I03} × {g-Coda,ν ∶ ν ∈ I03}
def= g-DE [Ta] × g-CD [Ta](2.11)

Then, g-DC [Ta] denotes the class of all g-Ta-vector operators in the T -space Ta =
(Ω,Ta); g-DE [Ta] denotes the class of all g-T-derived operators while g-CD [Ta]
denotes the class of all g-Ta-coderived operators in the Ta-space Ta = (Ω,Ta).
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2.2. Main Concepts. The main concepts underlying the δth-order derivative g-Tg-
derived and g-Tg-coderived operators defined by transfinite recursion on the class
of successor ordinals in Tg-spaces, a ∈ {o,g}, are now presented.

For any (Sg,g-Opeg) ∈P (Ω) × {g-Derg,g-Codg}, consider the description:

0 ←→ g-Ope(0)g (Sg) def= ◯α∈I0
0
g-Opeg (Sg)

1 ←→ g-Ope(1)g (Sg) def= ◯α∈I0
1
g-Opeg (Sg)

2 ←→ g-Ope(2)g (Sg) def= ◯α∈I0
2
g-Opeg (Sg)

⋮
β − 1 ←→ g-Ope(β−1)g (Sg) def= ◯α∈I0

β−1
g-Opeg (Sg)

β ←→ g-Ope(β)g (Sg) def= ◯α∈I0
β
g-Opeg (Sg)

(2.12)

where ◯α∈I0
0
g-Opeg (Sg) ←→ Sg; next, ◯α∈I0

1
g-Opeg (Sg) ←→ g-Opeg (Sg) and

◯α∈I0
2
g-Opeg (Sg)←→ g-Opeg ○g-Opeg (Sg); more generally,

◯α∈I0
β
g-Opeg (Sg)←→ g-Opeg ○g-Opeg ○⋯ ○ g-Opeg (Sg)

β factors g-Opeg. Thus, g-Der(0)g , g-Der(1)g , g-Der(2)g , . . ., g-Der(β)g , . . . ∶ P (Ω) Ð→
P (Ω) are the 0th, 1st, 2nd, . . ., βth, . . . order derivative g-Tg-derived operators

of g-Derg ∶ P (Ω) Ð→ P (Ω); g-Cod(0)g , g-Cod(1)g , g-Cod(2)g , . . ., g-Cod(β)g , . . . ∶
P (Ω)Ð→P (Ω) are the 0th, 1st, 2nd, . . ., βth, . . . order derivative g-Tg-coderived

operators of g-Codg ∶ P (Ω)Ð→P (Ω). Then, for any pair (Sg,g-Opeg) ∈P (Ω)×
{g-Derg,g-Codg}, it holds that:

[(∃β ∈ I0∞)(g-Ope(β)g (Sg) = ∅)] ∨ [(∀β ∈ I0∞)(g-Ope(β)g (Sg) ≠ ∅)]

Suppose the statement preceding ∨ hold, then the number of iterations of the g-Tg-
operator g-Opeg ∶ P (Ω) Ð→ P (Ω) required to achieve emptiness (if this is ever
achieved) is a type of density measure of Sg ∈P (Ω). But if the statement following

∨ holds, then S
(λ)
g

def= ⋂
β∈I∗∞

g-Ope(β)g (Sg) ≠ ∅. Therefore, the g-Tg-operators

g-Ope(1)g , g-Ope(2)g , . . ., g-Ope(β)g , . . . ∶ P (Ω) Ð→ P (Ω) can again be applied on

S
(ω)
g ∈ P (Ω), yielding g-Ope(λ+1)g (Sg), g-Ope(λ+2)g (Sg), . . ., g-Ope(λ+β)g (Sg),

. . ., with g-Opeg ∈ {g-Derg,g-Codg}.
In view of the above descriptions, 1, 2, . . ., β, . . . may be viewed as successor

ordinals while λ as limit ordinal and, despite the absence of a predecessor ordinal,
0 may, for conveniency, be included in the class of successor ordinals. To define the
notion of ordinal, the concepts of everywhere-ordered set, similarity and order-type
in chronological order have first to be defined. The definition of the first concept
(everywhere-ordered set) follows.

Definition 2.9 (Everywhere-Ordered Set). An ”everywhere-ordered set” is an or-
dered structure of the type

W
def= (W ,≼) def←→ ⟨α0, α1, α2, . . . , αν , . . .⟩(2.13)
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in which W ⊂ U is an ”underlying set” and,

≼ ∶ W ×W Ð→ W def= {α ≼ β ∶ (α,β) ∈ W ×W }(2.14)

(α,β) z→ α ≼ β
is a ”2-ary rule” satisfying these ”everywhere-ordering relation axioms:”

– Ax1 (≼)
def←→ (∀α ∈W)[α ≼ α ←→ α = α]

– Ax2 (≼)
def←→ (∀ (α,β) ∈W2)[(α ≼ β) ∧ (β ≼ α)Ð→ α = β]

– Ax3 (≼)
def←→ (∀ (α,β, γ) ∈W3)[(α ≼ β) ∧ (β ≼ γ)Ð→ α ≼ γ]

– Ax4 (≼)
def←→ (∀V ⊆W)[V def←→ ⟨β0, β1, β2, . . .⟩Ð→ β0 ≼ β1 ≼ β2 ≼ ⋯]

The above definition requires some few explanations. By Ax1 (≼), Ax2 (≼) and
Ax3 (≼) are meant that

≼ ∶ W ×W Ð→W
(α,β) z→ α ≼ β is reflexive, antisymmetric and

transitive, respectively; by Ax4 (≼) is meant that any ordered structure V = (V ,≼)
derived from W = (W ,≼) has a first element (i.e., β0 ∈ V ⊆ W). Moreover, the
following statement holds true:

(∀ (α,β) ∈W ×W)[(α ≼ β) ∨ (β = α) ∨ (β ≼ α)](2.15)

Thus, given (α,β) ∈W×W then, either α preceeds β (i.e., α ≼ β), α is of the same
order as β (i.e., β = α) or α succeeds β (i.e., β ≼ α). The remark below is presented
in order to avoid any danger of confusing the notations of underlying (not ordered)
and everywhere-ordered sets.

Remark 2.10 (Everywhere-Ordered Set). Instead of such plain sets notations as
α ∈ W , (α,β) ∈ W × W , . . . which, in actual fact, are improper, the ordered sets
notations α ∈ W, (α,β) ∈ W ×W, . . . are employed solely to stress that α, β, . . .
are elements of their ordered set W, not of the underlying set W of the ordered set
W. Indeed, in the present context, it does not hold that ⟨α0, α1, α2, . . . , αν , . . .⟩ ≠
{α0, α1, α2, . . . , αν , . . .}, though it does hold that {α ∶ α ∈W} = {α ∶ α ∈ W }.

For each U ∈ {V ,W }, set WU = {α ≼U β ∶ (α,β) ∈ WU × WU }. Then, the
second concept (similarity) may be defined as thus.

Definition 2.11 (Similarity). The everywhere-ordered sets V = (V ,≼V ) and W =
(W ,≼W ), where

≼V ∶ V × V Ð→WV

(α,β) z→ α ≼V β
and

≼W ∶ W ×W Ð→WW

(α,β) z→ α ≼W β,
respectively, are said to be ”similar,” written V ≈ W, if and only if there is an
”order isomorphism” φ ∶ V ≅ W relating the elements α0, α1, α2, . . . of V to the
elements β0, β1, β2, . . . of W as:

V = (V ,≼V )
def←→ ⟨α0, α1, α2, . . .⟩

≈ ←→ φ

W = (W ,≼W )
def←→ ⟨β0, β1, β2, . . .⟩

(2.16)

From this definition, given Y = (Y ,≼Y ) ←→ ⟨γ0, γ1, γ2, . . . , γν , . . .⟩ with

(Y,Y , γ) ∈ {(V,V , α) , (W,W , β)} and φ ∶ V ≅W, then α0 ≼V α1
φÐ→ β0 ≼W β1,

α1 ≼V α2
φÐ→ β1 ≼W β2, . . ., αν−1 ≼V αν

φÐ→ βν−1 ≼W αν , . . .. For any
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(V,W,Y) ∈ ⨉µ∈I∗3 {Wν = (Wν ,≼ν) ∶ ν ∈ I∗∞}, the relations V ≈V, V ≈W←→W ≈V
and (V ≈W) ∧ (W ≈Y) Ð→ (V ≈Y) hold. Therefore, the relation of similarity
≈ ∶ (V,W)z→V ≈W is reflexive, symmetrical and transitive.

The definition of the third concept (order-type) may be stated as thus.

Definition 2.12 (Order-Type). An operator of the type

OTyp ∶ Wz→ OTyp (W) def= τW(2.17)

assigning to any everywhere-ordered set W = (W ,≼W ) a uniquely determined sym-
bol τW is called the ”order-type” of W, provided that if V = (V ,≼V ) be any
other everywhere-ordered set together with its uniquely determined order-type

OTyp (V) def= τV , the following statement holds:

V ≈W ←→ τV = τW .(2.18)

Clearly, the manner of proceeding from the relation of similarity to the concept
of order-type is exactly the same as that from the relation of equivalence to the
concept of cardinal number. For, given any V = (V ,≼V ) and W = (W ,≼W ), then
V ≈ W ←→ OTyp (V) = OTyp (W) is analogous to V ∼ W ←→ card (V ) =
card (W ).

Remark 2.13. By V ≈ W ←→ τV = τW is meant that a uniquely determined
symbol actually is assigned not to a single set but to a class of everywhere-ordered
sets which are similar to each other.

Granted the definitions of the concepts of everywhere-ordered set, similarity and
order-type, the definition of the concept of ordinal may be stated as thus.

Definition 2.14 (Ordinal). The order-type OTyp (W) = τW of an everywhere-

ordered set W = (W ,≼W ) is called ”ordinal,” written ord (W) def= δW . Moreover:

– i. δW is called a ”predecessor ordinal” if and only if there exists no ordinal
ord (W) such that δW = ord (W) + 1.

– ii. δW is called a ”successor ordinal” if and only if there exists an ordinal
ord (W) such that δW = ord (W) + 1.

– iii. δW is called a ”limit ordinal,” denoted as δW
def= λW , if and only if it

has no immediate predecessor.

Let the symbols 0, δ, and λ (instead of the symbols 0W , δW , and λW ) stand
for predecessor ordinal, successor ordinal and limit ordinal, respectively. Then,
the definitions of the notions of ordered derivative g-Tg-derived and g-Tg-coderived
operators of g-Derg, g-Codg ∶ P (Ω)Ð→P (Ω), respectively, may well be stated as
thus.

Definition 2.15 (δth-Iterations: g-ν-Tg-Derived, g-ν-Tg-Coderived Operators).
Let g-Derg,ν , g-Codg,ν ∶ P (Ω) Ð→ P (Ω), respectively, be a g-Tg-derived and
a g-Tg-coderived operators of category ν in a Tg-space Tg = (Ω,Tg). Then:

— I. The ”δth-iterate of g-Derg,ν ∶ P (Ω) Ð→P (Ω)” is a set-valued map

g-Der(δ)g,ν ∶ Sg ∈P (Ω)z→ g-Der(δ)g,ν (Sg) defined by transfinite recursion on
the class of successor ordinals as,

– i. g-Der(0)g,ν (Sg)
def←→ Sg
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– ii. g-Der(1)g,ν (Sg)
def←→ g-Derg,ν (Sg)

– iii. g-Der(δ+1)g,ν (Sg)
def←→ g-Derg,ν ○g-Der(δ)g,ν (Sg)

– iv. g-Der(λ)g,ν (Sg)
def←→ ⋂

δ≺λ
g-Der(δ)g,ν (Sg)

— II. The ”δth-iterate of g-Codg,ν ∶ P (Ω)Ð→P (Ω)” is a set-valued map

g-Cod(δ)g,ν ∶ Sg ∈ P (Ω) z→ g-Cod(δ)g,ν (Sg) defined by transfinite recursion
on the class of successor ordinals as,

– i. g-Cod(0)g,ν (Sg)
def←→ Sg

– ii. g-Cod(1)g,ν (Sg)
def←→ g-Codg,ν (Sg)

– iii. g-Cod(δ+1)g,ν (Sg)
def←→ g-Codg,ν ○g-Cod(δ)g,ν (Sg)

– iv. g-Cod(λ)g,ν (Sg)
def←→ ⋂

δ≺λ
g-Cod(δ)g,ν (Sg)

In the following remark, the concepts of g-Tg-derived and g-Tg-coderived sets of

category ν and order δ (g-ν-T
(δ)
g -derived, g-ν-T

(δ)
g -coderived sets) are presented.

Remark 2.16 (g-ν-T
(δ)
g -Derived, g-ν-T

(δ)
g -Coderived sets). Suppose (R(δ)g ,Sg) ∈

⨉α∈I∗2 P (Ω) such that R
(δ)
g = g-Der(δ)g,ν (Sg) for some ordinal δ, then R

(δ)
g may

be called a g-Tg-derived set of Sg of category ν and order δ. Likewise, given

(U (δ)
g ,Vg) ∈ ⨉α∈I∗2 P (Ω) such that U

(δ)
g = g-Cod(δ)g,ν (Vg) for some ordinal δ, then

U
(δ)
g may be called a g-Tg-coderived set of Vg of category ν and order δ. Hence,

any {ξ} ∈P (Ω) such that (ξ ∈R
(δ)
g ∈P (Ω))∧(ξ ∉R

(δ+1)
g ∈P (Ω)) may be called

a g-Tg-derived unit set of Rg of category ν and order δ, and any {ζ} ∈P (Ω) such
that (ζ ∈ U

(δ)
g ∈ P (Ω)) ∧ (ζ ∉ U

(δ+1)
g ∈ P (Ω)) may be called a g-Tg-coderived

unit set of Ug of category ν and order δ.

Evidently, the use of derg, g-Derν , der ∶ P (Ω) Ð→P (Ω) instead of g-Derg,ν ∶
P (Ω) Ð→ P (Ω) introduce the notions of Tg-derived set of Sg of order δ, g-T-
derived set of Sg of category ν and order δ, and T-derived set of Sg of order δ,
respectively; the use of docg, g-Codν , cod ∶ P (Ω) Ð→P (Ω) instead of g-Codg,ν ∶
P (Ω) Ð→P (Ω) introduce the notions of Tg-coderived set of Sg of order δ, g-T-
coderived set of Sg of category ν and order δ, and T-coderived set of Sg of order
δ, respectively.

Of the notations To = (Ω,To) and T = (Ω,T ), either the first will be used
instead of the second, or both will be used interchangeably.

3. Main Results

In this section, the basic properties of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived

operators g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω), respectively, are studied in Tg-
spaces.

In a Tg-space, every g-Tg-derived set is contained in all the preceding g-Tg-
derived sets and, every g-Tg-coderived set contains all the preceding g-Tg-coderived
sets. The theorem follows.

Theorem 3.1. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:
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– i. g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Since g-Clg (Sg) ⊇ g-Derg (Sg), it follows that

g-Derg ∶ g-Derg (Sg) z→ {ξ ∈ Tg ∶ ξ ∈ g-Clg(g-Derg (Sg) ∩ g-Opg ({ξ}))}
⊆ {ξ ∈ Tg ∶ ξ ∈ g-Clg ○g-Clg (Sg)}
←→ {ξ ∈ Tg ∶ ξ ∈ g-Clg (Sg)}
←→ {ξ ∈ Tg ∶ ξ ∈ g-Clg(Sg ∩ g-Opg ({ξ}))}
←→ g-Derg (Sg)

Thus, g-Derg ○g-Derg (Sg) ⊆ g-Derg (Sg). But, g-Derg (Sg) ←→ g-Der(1)g (Sg)
and g-Der(2)g (Sg) ←→ g-Derg ○g-Derg (Sg). Thus, g-Der(2)g (Sg) ⊆ g-Der(1)g (Sg),
implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg) and consequently, it results that

g-Derg ○g-Der(δ+1)g (Sg) ⊆ g-Derg ○g-Der(δ)g (Sg). But, for each η ∈ {δ, δ + 1},

g-Derg ○g-Der(η)g (Sg)←→ g-Der(1)g ○g-Der(η)g (Sg) ←→ g-Der(η+1)g (Sg)

Hence, g-Der((δ+1)+1)g (Sg) ⊆ g-Der(δ+1)g (Sg), implying P (δ + 1) = 1. The inductive
case therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

←→ g-Derg(⋂
δ≺λ

g-Der(δ)g (Sg))

⊆ g-Derg ○g-Der(δ)g (Sg)←→ g-Der(δ+1)g (Sg)

⊆ g-Der(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.

— II. Introduce the Boolean-valued propositional formula

B ∋ Q (δ) def←→ g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
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Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (0) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]
– Case i. Let 1 = δ. Since g-Intg (Sg) ⊆ g-Codg (Sg), it results that

g-Codg ∶ g-Codg (Sg) z→ {ζ ∈ Tg ∶ ζ ∈ g-Intg(g-Codg (Sg) ∪ {ζ})}
⊇ {ζ ∈ Tg ∶ ζ ∈ g-Intg ○g-Intg (Sg)}
←→ {ζ ∈ Tg ∶ ζ ∈ g-Intg (Sg)}
←→ {ζ ∈ Tg ∶ ξ ∈ g-Intg(Sg ∪ {ζ})}
←→ g-Codg (Sg)

Thus, g-Codg ○g-Codg (Sg) ⊇ g-Codg (Sg). But, g-Codg (Sg) ←→ g-Cod(1)g (Sg)
and g-Cod(2)g (Sg) ←→ g-Codg ○g-Derg (Sg). Thus, the relation g-Cod(2)g (Sg) ⊇
g-Cod(1)g (Sg) holds true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg) and consequently, it results that

g-Codg ○g-Cod(δ+1)g (Sg) ⊇ g-Codg ○g-Cod(δ)g (Sg). But, for each η ∈ {δ, δ + 1},

g-Codg ○g-Cod(η)g (Sg)←→ g-Cod(1)g ○g-Cod(η)g (Sg) ←→ g-Cod(η+1)g (Sg)

Hence, g-Cod((δ+1)+1)g (Sg) ⊇ g-Cod(δ+1)g (Sg), implying Q (δ + 1) = 1. The induc-
tive case therefore holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that
g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

←→ g-Codg(⋂
δ≺λ

g-Cod(δ)g (Sg))

⊇ g-Codg ○g-Cod(δ)g (Sg)←→ g-Cod(δ+1)g (Sg)

⊇ g-Cod(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the theorem
is complete. □

The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.2. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Sg) ⊆ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

In a Tg-space, just as g-Derg ∶ P (Ω)Ð→P (Ω) is coarser (or, smaller, weaker)
than derg ∶ P (Ω) Ð→ P (Ω) (or, derg ∶ P (Ω) Ð→ P (Ω) is finer (or, larger,

stronger) than g-Derg ∶ P (Ω) Ð→ P (Ω)) [1], so is g-Der(δ)g ∶ P (Ω) Ð→ P (Ω)
coarser (or, smaller, weaker) than der(δ)g ∶ P (Ω)Ð→P (Ω) (or, der(δ)g ∶ P (Ω)Ð→
P (Ω) finer (or, larger, stronger) than g-Der(δ)g ∶ P (Ω) Ð→P (Ω)); likewise, just
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as g-Codg ∶ P (Ω) Ð→P (Ω) is finer (or, larger, stronger) than codg ∶ P (Ω) Ð→
P (Ω) or, codg ∶ P (Ω) Ð→P (Ω) is coarser (or, smaller, weaker) than g-Codg ∶
P (Ω) Ð→P (Ω) [1], so is g-Cod(δ)g ∶ P (Ω) Ð→P (Ω) finer (or, larger, stronger)

than cod(δ)g ∶ P (Ω) Ð→P (Ω) (or, cod(δ)g ∶ P (Ω) Ð→P (Ω) coarser (or, smaller,

weaker) than g-Cod(δ)g ∶ P (Ω)Ð→P (Ω)). Accordingly, the proposition follows.

Proposition 1. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let Tg = (Ω,Tg) be a Tg-space. Suppose g-Dcg ∈ g-DC [Tg] and dcg ∈
DC [Tg] be given and Sg ∈P (Ω) be arbitrary. Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Derg (Sg) ⊆ derg (Sg) holds true, implying

P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Sg) ⊆ der(δ)g (Sg) and consequently, it follows that

g-Der(δ+1)g (Sg) ←→ g-Derg ○g-Der(δ)g (Sg)

⊆ g-Derg ○der(δ)g (Sg)

⊆ derg ○der(δ)g (Sg) ←→ der(δ+1)g (Sg)

Hence, g-Der(δ+1)g (Sg) ⊆ der(δ+1)g (Sg), implying P (δ + 1) = 1. The inductive case
therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that
g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

⊆ derg ○der(λ)g (Sg)

←→ derg(⋂
δ≺λ

der(δ)g (Sg))

⊆ derg ○der(δ)g (Sg)←→ der(δ+1)g (Sg)

⊆ der(δ)g (Sg)
for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.
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— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg (Sg) ⊇ codg (Sg) holds true, implying
Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg) and consequently, it follows that

g-Cod(δ+1)g (Sg) ←→ g-Codg ○g-Cod(δ)g (Sg)

⊇ g-Codg ○ cod(δ)g (Sg)

⊇ codg ○ cod(δ)g (Sg) ←→ cod(δ+1)g (Sg)

Hence, g-Cod(δ+1)g (Sg) ⊇ cod(δ+1)g (Sg), implying Q (δ + 1) = 1. The inductive case
therefore holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

⊇ codg ○ cod(λ)g (Sg)

←→ codg(⋂
δ≺λ

cod(δ)g (Sg))

⊇ codg ○ cod(δ)g (Sg)←→ cod(δ+1)g (Sg)

⊇ cod(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the
proposition is complete. □

For any δ such that 1 ≼ δ ≺ λ, g-Der(δ)g ∶ P (Ω)Ð→P (Ω) is coarser (or, smaller,
weaker) than derg ∶ P (Ω) Ð→ P (Ω) or, derg ∶ P (Ω) Ð→ P (Ω) is finer (or,

larger, stronger) than g-Der(δ)g ∶ P (Ω) Ð→ P (Ω); g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)
is finer (or, larger, stronger) than codg ∶ P (Ω) Ð→ P (Ω) or, codg ∶ P (Ω) Ð→
P (Ω) is coarser (or, smaller, weaker) than g-Cod(δ)g ∶ P (Ω) Ð→P (Ω). Accord-
ingly, the following corollary is an immediate consequence of the above proposition.

Corollary 3.3. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g (Sg) ⊆ derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
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For any δ such that 1 ≼ δ ≺ λ, the notions of δth-order Tg, g-Tg-derived set opera-

tors can be interrelated among themselves and presented δth-order Tg, g-Tg-derived

set operators finness-coarseness diagrams; similarly, the notions of δth-order Tg,
g-Tg-coderived set operators can be interrelated among themselves and presented

δth-order Tg, g-Tg-coderived set operators finness-coarseness diagrams. A further
corollary follows.

Corollary 3.4. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω)Ð→P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators derg,
codg ∶ P (Ω)Ð→P (Ω) in a Tg-space Tg = (Ω,Tg), then:

– i. For any Rg ∈P (Ω),

g-Der(δ)g (Rg) ⊆ g-Derg (Rg) g-Der(δ)g (Rg) ⊆ derg (Rg)

der(δ)g (Rg) ⊆ derg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

(3.1)

– ii. For any Sg ∈P (Ω),

g-Cod(δ)g (Sg) ⊇ g-Codg (Sg) g-Cod(δ)g (Sg) ⊇ codg (Sg)

cod(δ)g (Sg) ⊇ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

(3.2)

For any δ such that 1 ≼ δ ≺ λ, the δth-order g-Tg-derived set operator is ∅-
grounded (alternatively, ∅-preserving); the δth-order g-Tg-coderived set operator
is Ω-grounded (alternatively, Ω-preserving). These are embodied in the following
theorem.

Theorem 3.5. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, in a strong Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, in a strong Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Der(1)g (∅)←→ g-Derg (∅) = ∅. Thus, g-Der(1)g (∅) =
∅, implying P (1) = 1. The base case therefore holds.
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– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (∅) = ∅ and consequently, it follows that

g-Der(δ+1)g (∅)←→ g-Derg ○g-Der(δ)g (∅)←→ g-Derg (∅) = ∅

Hence, g-Der(δ+1)g (∅) = ∅, implying P (δ + 1) = 1. The inductive case therefore
holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Der(λ+1)g (∅) ←→ g-Derg ○g-Der(λ)g (∅)

←→ g-Derg(⋂
δ≺λ

g-Der(δ)g (∅))←→ g-Derg (∅) = ∅

for all δ such that 1 ≺ δ ≺ λ, from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Cod(1)g (Ω)←→ g-Codg (Ω) = Ω. Thus, g-Cod(1)g (Ω) =
Ω, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Ω) = Ω and consequently, it follows that

g-Cod(δ+1)g (Ω)←→ g-Codg ○g-Cod(δ)g (Ω)←→ g-Codg (Ω) = Ω

Hence, g-Cod(δ+1)g (Ω) = Ω, implying Q (δ + 1) = 1. The inductive case therefore
holds.

Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that

g-Cod(λ+1)g (Ω) ←→ g-Codg ○g-Cod(λ)g (Ω)

←→ g-Codg(⋂
δ≺λ

g-Cod(δ)g (Ω))←→ g-Codg (Ω) = Ω

for all δ such that 1 ≺ δ ≺ λ, from which Q (λ) = 1 follows. The proof of the theorem
is complete. □

For any δ such that 1 ≼ δ ≺ λ, the δth-order g-Tg-derived set operator is ∪-
additive (alternatively, ∪-distributive); the δth-order g-Tg-coderived set operator is
∩-additive (alternatively, ∩-distributive). The theorem follows.

Theorem 3.6. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)
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– ii. g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a

Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Derg (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Derg (Wg) holds true,

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg) and consequently,

it follows that

g-Der(δ+1)g (Rg ∪Sg) ←→ g-Derg ○g-Der(δ)g (Rg ∪Sg)

= g-Derg( ⋃
Wg=Rg,Sg

g-Der(δ)g (Wg))

= ⋃
Wg=Rg,Sg

g-Derg ○g-Der(δ)g (Wg)

←→ ⋃
Wg=Rg,Sg

g-Der(δ+1)g (Wg)

Hence, g-Der(δ+1)g (Rg ∪Sg) = ⋃
Wg=Rg,Sg

g-Der(δ+1)g (Wg), implying P (δ + 1) = 1.

The inductive case therefore holds.
Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that P (λ) = 1 states that

⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)) ←→ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg))

and it is evident that any element in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)) is contained

in ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)). Thus, in order to prove that any element in

⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)) is also in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)), let it be sup-

posed that ξ ∈ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Der(δ)g (Wg)) such that, for some (α,β) ≺ (λ,λ)



PART IV. g-Tg-DERIVED AND g-Tg-CODERIVED OPERATORS IN Tg-SPACES 145

where α ≼ β, say, the statement ξ ∈ ⋂
Wg=Rg,Sg

( ⋂
δ=α,β

g-Der(δ)g (Wg)) holds true. Then,

ξ ∈ ⋂Wg=Rg,Sg
g-Der(α)g (Wg) and therefore ξ ∈ ⋂

δ≺λ
( ⋂

Wg=Rg,Sg

g-Der(δ)g (Wg)), imply-

ing P (λ) = 1 holds.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Codg (Wg) holds

true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg) and consequently,

it follows that

g-Cod(δ+1)g (Rg ∩Sg) ←→ g-Codg ○g-Cod(δ)g (Rg ∩Sg)

= g-Codg( ⋂
Wg=Rg,Sg

g-Cod(δ)g (Wg))

= ⋂
Wg=Rg,Sg

g-Codg ○g-Cod(δ)g (Wg)

←→ ⋂
Wg=Rg,Sg

g-Cod(δ+1)g (Wg)

Hence, g-Cod(δ+1)g (Rg ∩Sg) = ⋂
Wg=Rg,Sg

g-Cod(δ+1)g (Wg), implying Q (δ + 1) = 1.

The inductive case therefore holds.
Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ λ, it follows that Q (λ) = 1 states that

⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) ←→ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg))

and it is evident that any element in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) is contained

in ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)). Thus, in order to prove that any element in

⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)) is also in ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)), let it be sup-

posed that ζ ∈ ⋂
Wg=Rg,Sg

(⋂
δ≺λ

g-Cod(δ)g (Wg)) such that, for some (α,β) ≺ (λ,λ)
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where α ≼ β, say, the statement ζ ∈ ⋂
Wg=Rg,Sg

( ⋂
δ=α,β

g-Cod(δ)g (Wg)) holds true.

Then, ζ ∈ ⋂
Wg=Rg,Sg

g-Cod(α)g (Wg) and therefore, it follows that the statement

ζ ∈ ⋂
δ≺λ
( ⋂

Wg=Rg,Sg

g-Cod(δ)g (Wg)) holds, implying Q (λ) = 1 holds. The proof of

the theorem is complete. □

The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.7. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω), dcg ∈ DC [Tg] be a given pair of Tg-operators derg,
codg ∶ P (Ω) Ð→ P (Ω), and (Rg,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a Tg-space

Tg = (Ω,Tg), then:
– i. g-Der(δ)g (Rg ∪Sg) ⊆ ⋃

Wg=Rg,Sg

der(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Rg ∩Sg) ⊇ ⋂
Wg=Rg,Sg

cod(δ)g (Wg) (∀δ ∶ 1 ≼ δ ≺ λ)

For any (δ, η) such that 1 ≼ δ ≺ η ≺ λ, g-Der(η)g ∶ P (Ω) Ð→ P (Ω) is coarser

(or, smaller, weaker) than g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) or, g-Der(δ)g ∶ P (Ω) Ð→
P (Ω) is finer (or, larger, stronger) than g-Der(η)g ∶ P (Ω) Ð→ P (Ω); g-Cod(η)g ∶
P (Ω) Ð→ P (Ω) is finer (or, larger, stronger) than g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)
or, g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω) is coarser (or, smaller, weaker) than g-Cod(η)g ∶
P (Ω)Ð→P (Ω). Accordingly, the proposition follows.

Proposition 2. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(η)g (Sg) ⊆ g-Der(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

– ii. g-Cod(η)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Set η = δ + ε, where 1 ≼ ε, introduce B = {0,1} as Boolean domain and
introduce the Boolean-valued propositional formula

B ∋ P (ε) def←→ g-Der(δ+ε)g (Sg) ⊆ g-Der(δ)g (Sg) (∀ε ∶ 1 ≼ ε)

Then, to prove Item i., it only suffices to prove that,

(∀ε ∶ 1 ≼ ε)[(P (1) = 1) ∧ (P (ε) = 1 Ð→ P (ε + 1) = 1)]

– Case i. Let 1 = ε. Then, g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg), implying P (1) = 1.
The base case therefore holds.
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– Case ii. Let 1 ≺ ε and assume that the inductive hypothesis P (ε) = 1

holds true. Then, g-Der(δ+ε)g (Sg) ⊆ g-Der(δ)g (Sg) and consequently, it results

that g-Derg ○g-Der(δ+ε)g (Sg) ⊆ g-Derg ○g-Der(δ)g (Sg). But,

g-Derg ○g-Der(δ+ε)g (Sg) ←→ g-Der(δ+(ε+1))g (Sg)

⊆ g-Derg ○g-Der(δ)g (Sg)

←→ g-Der(δ+1)g (Sg) ⊆ g-Der(δ)g (Sg)

Hence, g-Der(δ+(ε+1))g (Sg) ⊆ g-Der(δ)g (Sg), implying P (ε + 1) = 1. The inductive
case therefore holds.

Since P (δ) = 1 for all δ such that 1 ≺ δ ≺ η ≺ λ, it follows that

g-Der(λ+1)g (Sg) ←→ g-Derg ○g-Der(λ)g (Sg)

←→ g-Derg(⋂
η≺λ

g-Der(η)g (Sg))

⊆ g-Derg ○g-Der(η)g (Sg)

←→ g-Der(η+1)g (Sg) ⊆ g-Der(δ+1)g (Sg)

⊆ g-Der(η)g (Sg) ⊆ g-Der(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ η ≺ λ, from which P (λ) = 1 follows.

— II. Set η = δ + ε, where 1 ≼ ε, introduce B = {0,1} as Boolean domain and
introduce the Boolean-valued propositional formula

B ∋ Q (ε) def←→ g-Cod(δ+ε)g (Sg) ⊇ g-Cod(δ)g (Sg) (∀ε ∶ 1 ≼ ε)

Then, to prove Item ii., it only suffices to prove that,

(∀ε ∶ 1 ≼ ε)[(Q (1) = 1) ∧ (Q (ε) = 1 Ð→ Q (ε + 1) = 1)]

– Case i. Let 1 = ε. Then, g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg), implying Q (1) = 1.
The base case therefore holds.

– Case ii. Let 1 ≺ ε and assume that the inductive hypothesis Q (ε) = 1 holds

true. Then, g-Cod(δ+ε)g (Sg) ⊇ g-Cod(δ)g (Sg) and consequently, it results that

g-Codg ○g-Cod(δ+ε)g (Sg) ⊇ g-Codg ○g-Cod(δ)g (Sg). But,

g-Codg ○g-Cod(δ+ε)g (Sg) ←→ g-Cod(δ+(ε+1))g (Sg)

⊇ g-Codg ○g-Cod(δ)g (Sg)

←→ g-Cod(δ+1)g (Sg) ⊇ g-Cod(δ)g (Sg)

Hence, g-Cod(δ+(ε+1))g (Sg) ⊇ g-Cod(δ)g (Sg), implying Q (ε + 1) = 1. The inductive
case therefore holds.
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Since Q (δ) = 1 for all δ such that 1 ≺ δ ≺ η ≺ λ, it follows that

g-Cod(λ+1)g (Sg) ←→ g-Codg ○g-Cod(λ)g (Sg)

←→ g-Codg(⋂
η≺λ

g-Cod(η)g (Sg))

⊇ g-Codg ○g-Cod(η)g (Sg)

←→ g-Cod(η+1)g (Sg) ⊇ g-Cod(δ+1)g (Sg)

⊇ g-Cod(η)g (Sg) ⊇ g-Cod(δ)g (Sg)

for all δ such that 1 ≺ δ ≺ η ≺ λ, from which Q (λ) = 1 follows. The proof of the
proposition is complete. □

The corollary stated below is an immediate consequence of the above proposition.

Corollary 3.8. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(η)g (Sg) ⊆ der(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

– ii. g-Cod(η)g (Sg) ⊇ cod(δ)g (Sg) (∀ (δ, η) ∶ 1 ≼ δ ≺ η ≺ λ)

For any (δ, η) such that 1 ≼ δ ≺ η ≺ λ, the (δ + η)th-order g-Tg-derived set

operator is equivalent to the composition of the δth-order and the ηth-order of the

g-Tg-derived set operator; likewise, the (δ + η)th-order g-Tg-coderived set operator

is equivalent to the composition of the δth-order and the ηth-order of the g-Tg-
coderived set operator. The proposition follows.

Proposition 3. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))

– ii. g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼
(δ, η))

where (δ, η) ≺ (λ,λ).

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ, η) def←→ g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg)
(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
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Then, to prove Item i., it only suffices to prove that,

(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
[(P (1,1) = 1) ∧ (P (δ, η) = 1 Ð→ P (δ + 1, η + 1) = 1)]

– Case i. Let (1,1) = (δ, η). Then,
g-Der(2)g (Sg)←→ g-Der(1+1)g (Sg) = g-Der(1)g ○g-Der(1)g (Sg)←→ g-Der(2)g (Sg)
implying P (1,1) = 1. The base case therefore holds.

– Case ii. Let (1,1) ≺ (δ, η) ≺ (λ,λ) and assume that the inductive hypoth-

esis P (δ, η) = 1 holds true. Then, g-Der(δ+η)g (Sg) = g-Der(δ)g ○g-Der(η)g (Sg) and
consequently, g-Der(2)g ○g-Der(δ+η)g (Sg) = g-Der(2)g ○g-Der(δ)g ○g-Der(η)g (Sg). But,

g-Der(2)g ○g-Der(δ+η)g (Sg)←→ g-Der((δ+1)+(η+1))g (Sg) and,

g-Der(2)g ○g-Der(δ)g ○g-Der(η)g (Sg)
←→

g-Der(2)g ○g-Der(δ−1)g ○g-Der(1)g ○g-Der(η)g (Sg)

←→

g-Der(δ+1)g ○g-Der(η+1)g (Sg)

Hence, it follows that g-Der((δ+1)+(η+1))g (Sg) = g-Der(δ+1)g ○g-Der(η+1)g (Sg), imply-
ing P (δ + 1, η + 1) = 1. The inductive case therefore holds.

Suppose P (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ+η≺λ+λ

g-Der(δ+η)g (Sg) = ⋂
δ+η≺λ+λ

g-Der(δ)g ○g-Der(η)g (Sg)

←→

g-Der(λ+λ)g (Sg) = g-Der(λ)g ○g-Der(λ)g (Sg)
from which P (λ,λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ, η) def←→ g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg)
(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

Then, to prove Item ii., it only suffices to prove that,

(∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
[(Q (1,1) = 1) ∧ (Q (δ, η) = 1 Ð→ Q (δ + 1, η + 1) = 1)]

– Case i. Let (1,1) = (δ, η). Then,
g-Cod(2)g (Sg)←→ g-Cod(1+1)g (Sg) = g-Cod(1)g ○g-Cod(1)g (Sg)←→ g-Cod(2)g (Sg)
implying Q (1,1) = 1. The base case therefore holds.
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– Case ii. Let (1,1) ≺ (δ, η) ≺ (λ,λ) and assume that the inductive hypothesis

Q (δ, η) = 1 holds true. Then, g-Cod(δ+η)g (Sg) = g-Cod(δ)g ○g-Cod(η)g (Sg) and con-

sequently, g-Cod(2)g ○g-Cod(δ+η)g (Sg) = g-Cod(2)g ○g-Cod(δ)g ○g-Cod(η)g (Sg). But,

g-Cod(2)g ○g-Cod(δ+η)g (Sg)←→ g-Cod((δ+1)+(η+1))g (Sg) and,

g-Cod(2)g ○g-Cod(δ)g ○g-Cod(η)g (Sg)

←→

g-Cod(2)g ○g-Cod(δ−1)g ○g-Cod(1)g ○g-Cod(η)g (Sg)

←→

g-Cod(δ+1)g ○g-Cod(η+1)g (Sg)

Hence, it follows that g-Cod((δ+1)+(η+1))g (Sg) = g-Cod(δ+1)g ○g-Cod(η+1)g (Sg), im-
plying Q (δ + 1, η + 1) = 1. The inductive case therefore holds.

Suppose Q (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ+η≺λ+λ

g-Cod(δ+η)g (Sg) = ⋂
δ+η≺λ+λ

g-Cod(δ)g ○g-Cod(η)g (Sg)
←→

g-Cod(λ+λ)g (Sg) = g-Cod(λ)g ○g-Cod(λ)g (Sg)

from which Q (λ,λ) = 1 follows. The proof of the proposition is complete. □

The corollary stated below is an immediate consequence of the above proposition.

Corollary 3.9. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ+η)g (Sg) ⊆ der(δ)g ○der(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))

– ii. g-Cod(δ+η)g (Sg) ⊇ cod(δ)g ○ cod(η)g (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η))
where (δ, η) ≺ (λ,λ).

For any (δ, η) such that (1,1) ≼ (δ, η) ≺ (λ,λ), the δηth-order g-Tg-derived set

operator is equivalent to the ηth-order of the δth-order of the g-Tg-derived set

operator; likewise, the δηth-order g-Tg-coderived set operator is equivalent to the

ηth-order of the δth-order of the g-Tg-coderived set operator. Accordingly, the
following proposition presents itself.

Proposition 4. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and
a g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a
Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

– ii. g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))
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Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (η) def←→ g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) (∀η ∶ 1 ≼ η ≺ λ)

Then, to prove Item i., it only suffices to prove that,

(∀η ∶ 1 ≼ η ≺ λ)[(P (1) = 1) ∧ (P (η) = 1 Ð→ P (η + 1) = 1)]
– Case i. Let 1 = η. Then,

g-Der(δ)g (Sg)←→ g-Der(δ×1)g (Sg) = (g-Der(δ)g )
(1) (Sg)←→ g-Der(δ)g (Sg)

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ η ≺ λ and assume that the inductive hypothesis P (η) = 1

holds true. Then, g-Der(δη)g (Sg) = (g-Der(δ)g )
(η) (Sg) and consequently, it re-

sults that g-Der(δ)g ○g-Der(δη)g (Sg) = g-Der(δ)g ○(g-Der(δ)g )
(η) (Sg). But, the rela-

tion g-Der(η)g ○g-Der(δη)g (Sg) ←→ g-Der(δ(η+1))g (Sg) holds true and on the other

hand, the relation g-Der(δ)g ○(g-Der(δ)g )
(η) (Sg) ←→ (g-Der(δ)g )

(η+1) (Sg) also holds

true. Hence, it follows that g-Der(δ(η+1))g (Sg) = (g-Der(δ)g )
(η+1) (Sg), implying

P (η + 1) = 1. The inductive case therefore holds.
Suppose P (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ≺λ
(⋂
η≺λ

g-Der(δη)g (Sg)) = ⋂
δ≺λ
(⋂
η≺λ
(g-Der(δ)g )

(η) (Sg))

←→

⋂
δ≺λ

g-Der(δλ)g (Sg) = ⋂
δ≺λ
(g-Der(δ)g )

(λ) (Sg)

←→

g-Der(λ×λ)g (Sg) = (g-Der(λ)g )
(λ) (Sg)

from which P (λ,λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (η) def←→ g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) (∀η ∶ 1 ≼ η ≺ λ)

Then, to prove Item ii., it only suffices to prove that,

(∀η ∶ 1 ≼ η ≺ λ)[(Q (1) = 1) ∧ (Q (η) = 1 Ð→ Q (η + 1) = 1)]
– Case i. Let 1 = η. Then,

g-Cod(δ)g (Sg)←→ g-Cod(δ×1)g (Sg) = (g-Cod(δ)g )
(1) (Sg)←→ g-Cod(δ)g (Sg)



152 M. I. KHODABOCUS, N. -UL. -H. SOOKIA, AND R. D. SOMANAH

implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ η ≺ λ and assume that the inductive hypothesis Q (η) = 1

holds true. Then, g-Cod(δη)g (Sg) = (g-Cod(δ)g )
(η) (Sg) and consequently, it re-

sults that g-Cod(δ)g ○g-Cod(δη)g (Sg) = g-Cod(δ)g ○(g-Cod(δ)g )
(η) (Sg)). But, the

relation g-Cod(η)g ○g-Cod(δη)g (Sg) ←→ g-Cod(δ(η+1))g (Sg) holds true and on the

other hand, the relation g-Cod(δ)g ○(g-Cod(δ)g )
(η) (Sg)) ←→ (g-Cod(δ)g )

(η+1) (Sg)
also holds true. Hence, it follows that g-Cod(δ(η+1))g (Sg) = (g-Cod(δ)g )

(η+1) (Sg),
implying Q (η + 1) = 1. The inductive case therefore holds.

Suppose Q (δ, η) = 1 holds for all (δ, η) such that (1,1) ≺ (δ, η) ≺ (λ,λ). Then,

⋂
δ≺λ
(⋂
η≺λ

g-Cod(δη)g (Sg)) = ⋂
δ≺λ
(⋂
η≺λ
(g-Cod(δ)g )

(η) (Sg))

←→
⋂
δ≺λ

g-Cod(δλ)g (Sg) = ⋂
δ≺λ
(g-Cod(δ)g )

(λ) (Sg)
←→

g-Cod(λ×λ)g (Sg) = (g-Cod(λ)g )
(λ) (Sg)

from which Q (λ,λ) = 1 follows. The proof of the proposition is complete. □

An immediate consequence of the above proposition is the following corollary.

Corollary 3.10. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δη)g (Sg) ⊆ (der(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

– ii. g-Cod(δη)g (Sg) ⊇ (cod(δ)g )
(η) (Sg) (∀ (δ, η) ∶ (1,1) ≼ (δ, η) ≺ (λ,λ))

For any δ such that 1 ≼ δ ≺ λ, the union of a Tg-set and its g-Tg-derived set

includes the image of the Tg-set under the δth-order g-Tg-derived set operator
composition with itself; the intersection of a Tg-set and its g-Tg-coderived set is

included in the image of the Tg-set under the δ
th-order g-Tg-coderived set operator

composition with itself. These are embodied in the following theorem.

Theorem 3.11. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a
g-Tg-coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-
space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-
coderived operators, respectively, and let Sg ∈ P (Ω) be arbitrary in a Tg-space
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Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Derg ○g-Derg (Sg) ⊆Sg ∪ g-Derg (Sg) holds true,

implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g ○g-Der(δ)g (Sg) ⊆ Sg ∪ g-Derg (Sg) and consequently,

it follows that g-Der(2)g ○g-Der(δ)g ○g-Der(δ)g (Sg) ⊆ g-Der(2)g (Sg ∪ g-Derg (Sg)).
But, g-Der(2)g ○g-Der(δ)g ○g-Der(δ)g (Sg)←→ g-Der(δ+1)g ○g-Der(δ+1)g (Sg) and, on the

other hand, the relation g-Der(2)g (Sg ∪ g-Derg (Sg)) ⊆ g-Derg(Sg ∪ g-Derg (Sg)) ⊆
Sg ∪ g-Derg (Sg) also holds true. Hence, g-Der(δ+1)g ○g-Der(δ+1)g (Sg) ⊆ Sg ∪
g-Derg (Sg), implying P (δ + 1) = 1. The inductive case therefore holds.

Suppose P (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,
g-Der(λ+1)g ○g-Der(λ+1)g (Sg) ←→ g-Der(2)g ○g-Der(λ)g ○g-Der(λ)g (Sg)

←→ g-Der(2)g ○g-Der(λ+λ)g (Sg)

←→ g-Der(2)g ( ⋂
δ+δ≺λ+λ

g-Der(δ+δ)g (Sg))

⊆ g-Der(2)g ○g-Der(δ+δ)g (Sg)

←→ g-Der(δ+1)g ○g-Der(δ+1)g (Sg)

⊆ g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ g-Derg (Sg)
from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ g-Codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]
– Case i. Let 1 = δ. Then, g-Codg ○g-Codg (Sg) ⊇ Sg ∩ g-Codg (Sg) holds

true, implying Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇ Sg ∩ g-Codg (Sg) and consequently,

it follows that g-Cod(2)g ○g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇ g-Cod(2)g (Sg ∩ g-Codg (Sg)).
But, g-Cod(2)g ○g-Cod(δ)g ○g-Cod(δ)g (Sg) ←→ g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg) and, on
the other hand, g-Cod(2)g (Sg ∩ g-Codg (Sg)) ⊇ g-Codg(Sg ∩ g-Codg (Sg)) ⊇ Sg ∩
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g-Codg (Sg). Hence, g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg) ⊇ Sg ∩ g-Codg (Sg), implying
Q (δ + 1) = 1. The inductive case therefore holds.

Suppose Q (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

g-Cod(λ+1)g ○g-Cod(λ+1)g (Sg) ←→ g-Cod(2)g ○g-Cod(λ)g ○g-Cod(λ)g (Sg)

←→ g-Cod(2)g ○g-Cod(λ+λ)g (Sg)

←→ g-Cod(2)g ( ⋂
δ+δ≺λ+λ

g-Cod(δ+δ)g (Sg))

⊆ g-Cod(2)g ○g-Cod(δ+δ)g (Sg)

←→ g-Cod(δ+1)g ○g-Cod(δ+1)g (Sg)

⊇ g-Cod(δ)g ○g-Cod(δ)g (Sg)
⊇ Sg ∩ g-Codg (Sg)

from which Q (λ) = 1 follows. The proof of the theorem is complete. □

The following corollary is an immediate consequence of the above theorem.

Corollary 3.12. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators
derg, codg ∶ P (Ω) Ð→ P (Ω), and let Sg ∈ P (Ω) be arbitrary in a Tg-space
Tg = (Ω,Tg), then:

– i. g-Der(δ)g ○g-Der(δ)g (Sg) ⊆Sg ∪ derg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g ○g-Cod(δ)g (Sg) ⊇Sg ∩ codg (Sg) (∀δ ∶ 1 ≼ δ ≺ λ)

For any δ such 1 ≼ δ ≺ λ, the image of a Tg-set under the δth-order g-Tg-derived
operator is equivalent to the image of the relative complement of any g-Tg-derived

unit set in the Tg-set under the δth-order g-Tg-derived operator; the image of the

Tg-set under the δth-order g-Tg-coderived operator is equivalent to the image of

the union of the Tg-set and any g-Tg-coderived unit set under the δth-order g-Tg-
coderived operator. The theorem follows.

Theorem 3.13. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a

g-Tg-coderived operators, respectively, and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

– i. g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

Proof. Let g-Derg, g-Codg ∶ P (Ω) Ð→ P (Ω) be a g-Tg-derived and a g-Tg-

coderived operators, respectively, and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary

in a Tg-space Tg = (Ω,Tg). Then:

— I. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ P (δ) def←→ g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)
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Then, to prove Item i., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(P (1) = 1) ∧ (P (δ) = 1 Ð→ P (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Derg (Sg) = g-Derg(Sg ∩ g-Opg ({ξ})) holds true,
implying P (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis P (δ) = 1

holds true. Then, g-Der(δ)g (Sg) = g-Der(δ)g (Sg ∩ g-Opg ({ξ})) and consequently,

it follows that g-Derg ○g-Der(δ)g (Sg) = g-Derg ○g-Der(δ)g (Sg ∩ g-Opg ({ξ})). But,

g-Derg ○g-Der(δ)g (Sg) ←→ g-Der(δ+1)g (Sg) and, on the other hand, the relation

g-Derg ○g-Der(δ)g (Sg ∩ g-Opg ({ξ})) ←→ g-Der(δ+1)g (Sg ∩ g-Opg ({ξ})) also holds

true. Hence, g-Der(δ+1)g (Sg) = g-Der(δ+1)g (Sg∩g-Opg ({ξ})), implying P (δ + 1) = 1.
The inductive case therefore holds.

Suppose P (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

⋂
δ≺λ

g-Der(δ)g (Sg) = ⋂
δ≺λ

g-Der(δ)g (Sg ∩ g-Opg ({ξ}))

←→

g-Der(λ)g (Sg) = g-Der(λ)g (Sg ∩ g-Opg ({ξ}))
from which P (λ) = 1 follows.

— II. Introduce B = {0,1} as Boolean domain and introduce the Boolean-valued
propositional formula

B ∋ Q (δ) def←→ g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)
Then, to prove Item ii., it only suffices to prove that,

(∀δ ∶ 1 ≼ δ ≺ λ)[(Q (1) = 1) ∧ (Q (δ) = 1 Ð→ Q (δ + 1) = 1)]

– Case i. Let 1 = δ. Then, g-Codg(Sg) = g-Codg(Sg∪{ξ}) holds true, implying
Q (1) = 1. The base case therefore holds.

– Case ii. Let 1 ≺ δ ≺ λ and assume that the inductive hypothesis Q (δ) = 1

holds true. Then, g-Cod(δ)g (Sg) = g-Cod(δ)g (Sg ∪ {ξ}) and consequently, it follows

that g-Codg ○g-Cod(δ)g (Sg) = g-Codg ○g-Cod(δ)g (Sg ∪ {ξ}). But on the one hand,

g-Codg ○g-Cod(δ)g (Sg) ←→ g-Cod(δ+1)g (Sg) and, on the other hand, the relation

g-Codg ○g-Cod(δ)g (Sg ∪ {ξ}) ←→ g-Cod(δ+1)g (Sg ∪ {ξ}) also holds true. Hence,

g-Cod(δ+1)g (Sg) = g-Cod(δ+1)g (Sg ∪{ξ}), implying Q (δ + 1) = 1. The inductive case
therefore holds.

Suppose Q (δ) = 1 holds for all δ such that 1 ≺ δ ≺ λ. Then,

⋂
δ≺λ

g-Cod(δ)g (Sg) = ⋂
δ≺λ

g-Cod(δ)g (Sg ∪ {ξ})

←→

g-Cod(λ)g (Sg) = g-Cod(λ)g (Sg ∪ {ξ})
from which Q (λ) = 1 follows. The proof of the theorem is complete. □
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The corollary stated below is an immediate consequence of the above theorem.

Corollary 3.14. If g-Dcg ∈ g-DC [Tg] be a given pair of g-Tg-operators g-Derg,
g-Codg ∶ P (Ω) Ð→ P (Ω) and dcg ∈ DC [Tg] be a given pair of Tg-operators

derg, codg ∶ P (Ω) Ð→ P (Ω), and let ({ξ} ,Sg) ∈ ⨉α∈I∗2 P (Ω) be arbitrary in a

Tg-space Tg = (Ω,Tg), then:
– i. g-Der(δ)g (Sg) ⊆ der(δ)g (Sg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Sg) ⊇ cod(δ)g (Sg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

Our research objective concerning the definitions and the essential properties
of the concepts of δth-order derivative g-Tg-derived and g-Tg-coderived operators
defined by transfinite recursion on the class of successor ordinals in Tg-spaces is now

complete. Of the notions of the δth-iterates of the g-Tg-derived and g-Tg-coderived
operators in Tg-spaces, we conclude the present section with two corollaries and
two axiomatic definitions derived from these two corollaries.

The first corollary stated below gives the necessary and sufficient condition for
a δth-order g-Tg-derived operator to be a g-Tg-derived operator.

Corollary 3.15. A necessary and sufficient condition for the δth-iterate g-Der(δ)g ∶
Sg ∈ P (Ω) z→ g-Der(δ)g (Sg) of g-Derg ∶ P (Ω) Ð→ P (Ω) to be a g-Tg-derived

operator in a strong Tg-space Tg = (Ω,Tg) is that, for every ({ξ} ,Rg,Sg) ∈
⨉α∈I∗3 P (Ω), it satisfies:

– i. g-Der(δ)g (∅) = ∅ (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Der(δ)g (Rg) = g-Der(δ)g (Rg ∩ g-Opg ({ξ})) (∀δ ∶ 1 ≼ δ ≺ λ)

– iii. g-Der(δ)g ○g-Der(δ)g (Rg) ⊆Rg ∪ g-Derg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

– iv. g-Der(δ)g (Rg ∪Sg) = ⋃
Ug=Rg,Sg

g-Der(δ)g (Ug) (∀δ ∶ 1 ≼ δ ≺ λ)

The second corollary stated below gives the necessary and sufficient condition
for a δth-order g-Tg-coderived operator to be a g-Tg-coderived operator.

Corollary 3.16. A necessary and sufficient condition for the δth-iterate g-Cod(δ)g ∶
Sg ∈P (Ω)z→ g-Cod(δ)g (Sg) of g-Codg ∶ P (Ω)Ð→P (Ω) to be a g-Tg-coderived

operator in a Tg-space Tg = (Ω,Tg) is that, for every ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω),
it satisfies:

– i. g-Cod(δ)g (Ω) = Ω (∀δ ∶ 1 ≼ δ ≺ λ)

– ii. g-Cod(δ)g (Rg) = cod(δ)g (Rg ∪ {ξ}) (∀δ ∶ 1 ≼ δ ≺ λ)

– iii. g-Cod(δ)g ○g-Cod(δ)g (Rg) ⊇Rg ∩ g-Codg (Rg) (∀δ ∶ 1 ≼ δ ≺ λ)

– iv. g-Cod(δ)g (Rg ∩Sg) = ⋂
Ug=Rg,Sg

g-Cod(δ)g (Ug) (∀δ ∶ 1 ≼ δ ≺ λ)

Hence, in a strong Tg-space, for the δth-iterate of a set-valued map g-Derg ∶
P (Ω)Ð→P (Ω) on P (Ω) ranging in P (Ω) to be characterized as a g-Tg-derived
operator it must necessarily and sufficiently satisfy a list of derived set g-Tg-derived

operator conditions (Items i.–iv. of Cor. 3.15), and similarly, for the δth-iterate
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of a set-valued map g-Derg ∶ P (Ω) Ð→ P (Ω) on P (Ω) ranging in P (Ω) to
be characterized as a g-Tg-coderived operator it must necessarily and sufficiently
satisfy a list of derived set g-Tg-coderived operator conditions (Items v.–viii. of
Cor. 3.16).

Evidently, Items i., ii., iii. and iv. of Cor. 3.15 state that the δth-iterate
of the g-Tg-derived operator g-Derg ∶ P (Ω) Ð→ P (Ω) is ∅-grounded (alterna-
tively, ∅-preserving), ξ-invariant (alternatively, ξ-unaffected), g-Clg-intensive and
∪-additive (alternatively, ∪-distributive), respectively. On the other hand, Items
i., ii., iii. and iv. of Cor. 3.16 state that the δth-iterate of the g-Tg-coderived
operator g-Codg ∶ P (Ω) Ð→ P (Ω) is Ω-grounded (alternatively, Ω-preserving),
ζ-invariant (alternatively, ζ-unaffected), g-Intg-extensive and ∩-additive (alterna-
tively, ∩-distributive), respectively.

Viewing the δth-order derived set g-Tg-derived operator conditions (Items i.–

iv. of Cor. 3.15 above) as δth-order g-Tg-derived operator axioms, the axiomatic

definition of the concept of a δth-order g-Tg-derived operator, then, can be defined

as a δth-order set-valued map g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) on P (Ω) ranging in

P (Ω) satisfying a list of δth-order g-Tg-derived operator axioms. The axiomatic

definition of the concept of a δth-order g-Tg-derived operator in strong Tg-spaces
follows.

Definition 3.17 (Axiomatic Definition: g-Tg-Derived Operator). The δth-iterate

g-Der(δ)g ∶ Sg ∈ P (Ω) z→ g-Der(δ)g (Sg) of g-Derg ∶ P (Ω) Ð→ P (Ω) is called

a ”g-Tg-derived operator of δth order” on P (Ω) ranging in P (Ω) for some or-

dinal δ such that 1 ≼ δ ≺ λ if and only if, for any ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω)
such that {ξ} ⊂ g-Derg (Rg), it satisfies each ”g-Tg-derived operator axiom” in

AX[g-DE(δ) [Tg] ;B] def= {AxDE,ν(g-Der(δ)g ) ∶ ν ∈ I∗4 }, where the mapping AxDE,ν ∶
g-DE(δ) [Tg]Ð→ B def= {0,1}, ν ∈ I∗4 , is defined as thus:

– AxDE,1(g-Der(δ)g )
def←→ g-Der(δ)g (∅) = ∅

– AxDE,2(g-Der(δ)g )
def←→ g-Der(δ)g (Rg) = g-Der(δ)g (Rg ∩ g-Opg ({ξ}))

– AxDE,3(g-Der(δ)g )
def←→ g-Der(δ)g ○g-Der(δ)g (Rg) ⊆Rg ∪ g-Derg (Rg)

– AxDE,4(g-Der(δ)g )
def←→ g-Der(δ)g (Rg ∪Sg) = ⋃

Ug=Rg,Sg

g-Der(δ)g (Ug)

Similarly, viewing the δth-order derived set g-Tg-coderived operator conditions

(Items i.–iv. of Cor. 3.16 above) as δth-order g-Tg-coderived operator axioms,

the axiomatic definition of the concept of a δth-order g-Tg-coderived operator, then,

can be defined as a δth-order set-valued map g-Cod(δ)g ∶ P (Ω)Ð→P (Ω) on P (Ω)
ranging in P (Ω) satisfying a list of g-Tg-coderived operator axioms. The axiomatic

definition of the concept of a δth-order g-Tg-coderived operator in Tg-spaces follows.

Definition 3.18 (Axiomatic Definition: g-Tg-Coderived Operator). The δth-iterate

g-Cod(δ)g ∶ Sg ∈ P (Ω) z→ g-Cod(δ)g (Sg) of g-Codg ∶ P (Ω) Ð→ P (Ω) is called

a ”g-Tg-coderived operator of δth order” on P (Ω) ranging in P (Ω) for some or-

dinal δ such that 1 ≼ δ ≺ λ if and only if, for any ({ξ} ,Rg,Sg) ∈ ⨉α∈I∗3 P (Ω)
such that {ξ} ⊂ g-Codg (Rg), it satisfies each ”g-Tg-derived operator axiom” in
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AX[g-CD(δ) [Tg] ;B] def= {AxCD,ν(g-Cod(δ)g ) ∶ ν ∈ I∗4 }, where the mapping AxCD,ν ∶
g-CD(δ) [Tg]Ð→ B def= {0,1}, ν ∈ I∗4 , is defined as thus:

– AxCD,1(g-Cod(δ)g )
def←→ g-Cod(δ)g (Ω) = Ω

– AxCD,2(g-Cod(δ)g )
def←→ g-Cod(δ)g (Rg) = g-Cod(δ)g (Rg ∪ {ξ})

– AxCD,3(g-Cod(δ)g )
def←→ g-Cod(δ)g ○g-Cod(δ)g (Rg) ⊇Rg ∩ g-Codg (Rg)

– AxCD,4(g-Cod(δ)g )
def←→ g-Cod(δ)g (Rg ∩Sg) = ⋂

Ug=Rg,Sg

g-Cod(δ)g (Ug)

On the essential properties of the δth-order derivative g-Tg-derived and g-Tg-
coderived operators defined by transfinite recursion on the class of successor ordinals
in Tg-spaces, the discussion of the present section terminates here.

4. Discussion

4.1. Categorical and Ordinal Classifications. In the present section, based on
the notions of coarseness (or, smallness, weakness), or alternatively, finness (or,

largeness, strongness), the various relationships amongst the T
(δ)
a , g-ν-T

(δ)
a -derived

and T
(δ)
a , g-ν-T

(δ)
a -coderived operators

⎧⎪⎪⎨⎪⎪⎩

der(δ)a , g-Der(δ)a,ν

cod(δ)a , g-Cod(δ)a,ν

∶ P (Ω) Ð→P (Ω)

Sa z→
⎧⎪⎪⎨⎪⎪⎩

der(δ)a (Sa) , g-Der(δ)a,ν (Sa)
cod(δ)a (Sa) , g-Cod(δ)a,ν (Sa)

(4.1)

are established in Ta-spaces (a ∈ {o,g}) with respect to their category ν ∈ I03 and
their ordinal δ ∈ [o] = {δ ∶ 1 ≼ δ ≺ λ}, taking into account the required properties of
the corresponding Ta, g-Ta-derived and Ta, g-Ta-coderived operators established
in Ta-spaces (a ∈ {o,g}) in a recent paper [1].

For illustrative purposes, the discussion will be furnished by (T(δ)a ,g-T
(δ)
a )a=o,g-

derived operators and (T(δ)a ,g-T
(δ)
a )a=o,g-coderived operators diagrams. For clarity,

the notations T = (Ω,T ), der, g-Der, cod, g-Cod, . . ., der(δ), g-Der(δ), cod(δ),
g-Cod(δ), . . . will be considered instead of To = (Ω,To), dero, g-Dero, codo, g-Codo,

. . ., der(δ)o , g-Der(δ)o , cod(δ)o , g-Cod(δ)o , . . ., respectively, or both will be considered
interchangeably.

In a Tg-space Tg = (Ω,Tg) ⊇ (Ω,To) = To, the so-called (Ta,g-Ta)a=o,g-coderived
sets diagram [See [1]: Diag. (4.1), §§ 4.1, p. 213.]

cod (Sg) ⊆ cod (Sg) ⊆ cod (Sg) ⊇ cod (Sg)

⊆ ⊆ ⊆ ⊆

g-Cod0 (Sg) ⊆ g-Cod1 (Sg) ⊆ g-Cod3 (Sg) ⊇ g-Cod2 (Sg)

⊆ ⊆ ⊆ ⊆

g-Codg,0 (Sg) ⊆ g-Codg,1 (Sg) ⊆ g-Codg,3 (Sg) ⊇ g-Codg,2 (Sg)

⊇ ⊇ ⊇ ⊇

codg (Sg) ⊆ codg (Sg) ⊆ codg (Sg) ⊇ codg (Sg)
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as well as the so-called (Ta,g-Ta)a=o,g-derived sets diagram [See [1]: Diag. (4.2),

§§ 4.1, p. 214.]

der (Sg) ⊇ der (Sg) ⊇ der (Sg) ⊆ der (Sg)

⊇ ⊇ ⊇ ⊇
g-Der0 (Sg) ⊇ g-Der1 (Sg) ⊇ g-Der3 (Sg) ⊆ g-Der2 (Sg)

⊇ ⊇ ⊇ ⊇

g-Derg,0 (Sg) ⊇ g-Derg,1 (Sg) ⊇ g-Derg,3 (Sg) ⊆ g-Derg,2 (Sg)

⊆ ⊆ ⊆ ⊆

derg (Sg) ⊇ derg (Sg) ⊇ derg (Sg) ⊆ derg (Sg)

Let it be granted some pair (ν,µ) ∈ I03 × I03 of categories and some pair of or-

dinals (δ, η) ∈ [o] × [o]. Suppose the relations

⎧⎪⎪⎨⎪⎪⎩

g-Cod(η)a,ν ≾ g-Cod(δ)a,µ

g-Der(η)a,ν ≿ g-Der(δ)a,µ

stand for

⎧⎪⎪⎨⎪⎪⎩

g-Cod(η)a,ν (Sa) ⊆ g-Cod(δ)a,µ (Sg)
g-Der(η)a,ν (Sa) ⊇ g-Der(δ)a,µ (Sa)

or equivalently,

⎧⎪⎪⎨⎪⎪⎩

g-Cod(δ)a,µ ≿ g-Cod(η)a,ν

g-Der(δ)µ ≾ g-Der(η)ν

stand

for

⎧⎪⎪⎨⎪⎪⎩

g-Cod(δ)a,µ (Sa) ⊇ g-Cod(η)a,ν (Sa)
g-Der(δ)a,µ (Sa) ⊆ g-Der(η)a,ν (Sa) ,

respectively, in a Ta-space Ta = (Ω,Ta).

Then, g-Cod(η)ν , g-Der(δ)µ ∶ P (Ω) Ð→ P (Ω) are coarser (or, smaller, weaker)

than g-Cod(δ)µ , g-Der(η)ν ∶ P (Ω) Ð→ P (Ω) or, g-Cod(δ)µ , g-Der(η)ν ∶ P (Ω) Ð→
P (Ω) are finer (or, larger, stronger) than g-Cod(η)ν , g-Der(δ)µ ∶ P (Ω) Ð→P (Ω);
g-Cod(δ)g,µ, g-Der(η)g,ν ∶ P (Ω)Ð→P (Ω) are finer (or, larger, stronger) than g-Cod(η)g,ν

,g-Der(δ)g,µ ∶ P (Ω) Ð→P (Ω) or, g-Cod(η)g,ν ,g-Der(δ)g,µ ∶ P (Ω) Ð→P (Ω) are coarser

(or, smaller, weaker) than g-Cod(δ)g,µ, g-Der(η)g,ν ∶ P (Ω)Ð→P (Ω).
In view of the above descriptions, for any pair (δ, η) ∈ [o] × [o], the following

(T(δ)a ,g-T
(δ)
a )a=o,g-coderived operators diagram, which is to be read horizontally,

from left to right and vertically, from top to bottom, presents itself:

cod(η) ≾ cod(η) ≾ cod(η) ≿ cod(η)

≾ ≾ ≾ ≾

g-Cod
(η)
0 ≾ g-Cod

(η)
1 ≾ g-Cod

(η)
3 ≿ g-Cod

(η)
2≿ ≿ ≿ ≿

g-Cod
(δ)
0 ≾ g-Cod

(δ)
1 ≾ g-Cod

(δ)
3 ≿ g-Cod

(δ)
2≾ ≾ ≾ ≾

g-Cod
(δ)
g,0 ≾ g-Cod

(δ)
g,1 ≾ g-Cod

(δ)
g,3 ≿ g-Cod

(δ)
g,2≾ ≾ ≾ ≾

g-Cod
(η)
g,0 ≾ g-Cod

(η)
g,1 ≾ g-Cod

(η)
g,3 ≿ g-Cod

(η)
g,2≿ ≿ ≿ ≿

cod(η)g ≾ cod(η)g ≾ cod(η)g ≿ cod(η)g

(4.2)
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On the other hand, for any pair (δ, η) ∈ [o] × [o], the following (T(δ)a ,g-T
(δ)
a )a=o,g-

derived operators diagram, which is to be read horizontally, from left to right and
vertically, from top to bottom, also presents itself:

der(η) ≿ der(η) ≿ der(η) ≾ der(η)

≿ ≿ ≿ ≿
g-Der

(η)
0 ≿ g-Der

(η)
1 ≿ g-Der

(η)
3 ≾ g-Der

(η)
2≾ ≾ ≾ ≾

g-Der
(δ)
0 ≿ g-Der

(δ)
1 ≿ g-Der

(δ)
3 ≾ g-Der

(δ)
2≿ ≿ ≿ ≿

g-Der
(δ)
g,0 ≿ g-Der

(δ)
g,1 ≿ g-Der

(δ)
g,3 ≾ g-Der

(δ)
g,2≿ ≿ ≿ ≿

g-Der
(η)
g,0 ≿ g-Der

(η)
g,1 ≿ g-Der

(η)
g,3 ≾ g-Der

(η)
g,2≾ ≾ ≾ ≾

der(η)g ≿ der(η)g ≿ der(η)g ≾ der(η)g .

(4.3)

The relationships amongst the T
(δ)
a , g-ν-T

(δ)
a -derived operators der(δ)a , g-Der(δ)a,ν ∶

P (Ω) Ð→ P (Ω) and the T
(δ)
a , g-ν-T

(δ)
a -coderived operators cod(δ)a , g-Cod(δ)a,ν ∶

P (Ω) Ð→P (Ω), respectively, are, therefore, established in Ta-spaces (a ∈ {o,g})
with respect to their category ν ∈ I03 and their ordinal δ ∈ [o].

4.2. A Nice Application. It is the intent of the present section to present a nice

application, highlighting some essential properties of the T
(δ)
g , g-ν-T

(δ)
g -derived op-

erators der(δ)g , g-Der(δ)g,ν ∶ P (Ω) Ð→P (Ω) and T
(δ)
g , g-ν-T

(δ)
g -coderived operators

cod(δ)g , g-Cod(δ)g,ν ∶ P (Ω) Ð→ P (Ω), respectively, in a Tg-space with respect to

their category ν ∈ I03 and their ordinal δ ∈ [o].
In considering the same Tg-space upon which a nice application was presented

in a recent paper [1, §§ 4.2], namely the Tg-space Tg = (Ω,Tg) based on the 7-point

set Ω = {ξν ∶ ν ∈ I∗7 }, and the latter topologized by the choice:

Tg (Ω) = {∅, {ξ1} , {ξ1, ξ3, ξ5} , {ξ1, ξ3, ξ4, ξ5, ξ7}}
= {Og,1, Og,2, Og,3, Og,4}

¬Tg (Ω) = {Ω, {ξ2, ξ3, ξ4, ξ5, ξ6, ξ7} , {ξ2, ξ4, ξ6, ξ7} , {ξ2, ξ6}}
= {Kg,1, Kg,2, Kg,3, Kg,4}

with Rg = {ξ1, ξ2, ξ4}, Sg = Rg ∪ {ξ7}, Ug = {ξ3, ξ5, ξ6, ξ7}, and Vg = Ug ∖ {ξ3},
it was shown through calculations [See [1]: Sys. of Eqs (4.11), §§ 4.2, p. 216.]
that the g-Tg-derived operation of g-Derg,ν ∶ P (Ω) Ð→P (Ω) on the Tg-sets Rg,
Sg ⊂ Tg, and the g-Tg-coderived operation of g-Codg,ν ∶ P (Ω) Ð→P (Ω) on the
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Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 , result in:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Derg,ν (Wg) =Kg,4 ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}
g-Derg,ν (Wg) = Og,1 ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}
g-Codg,ν (Yg) = Og,4 ∀ (ν,Yg) ∈ {0,2} × {Ug,Vg}
g-Codg,ν (Yg) =Kg,1 ∀ (ν,Yg) ∈ {1,3} × {Ug,Vg}

implying

⎧⎪⎪⎨⎪⎪⎩

g-Derg,0 (Wg) ⊇ g-Derg,1 (Wg) ⊇ g-Derg,3 (Wg) ⊆ g-Derg,2 (Wg)
g-Codg,0 (Yg) ⊆ g-Codg,1 (Yg) ⊆ g-Codg,3 (Yg) ⊇ g-Codg,2 (Yg)

for each Wg ∈ {Rg,Sg} and Yg ∈ {Ug,Vg} [See [1]: Sys. of Eqs (4.13), §§ 4.2, p.
216.]. It was also shown through calculations [See [1]: Sys. of Eqs (4.12), §§ 4.2,
p. 216.] that the Tg-derived operation of derg ∶ P (Ω) Ð→ P (Ω) on the Tg-sets
Rg, Sg ⊂ Tg, and the Tg-coderived operation of codg ∶ P (Ω) Ð→ P (Ω) on the
Tg-sets Ug, Vg ⊂ Tg result in:

⎧⎪⎪⎨⎪⎪⎩

derg (Wg) =Kg,2 ∀Wg ∈ {Rg,Sg}
codg (Yg) = Og,2 ∀Yg ∈ {Ug,Vg}

implying

⎧⎪⎪⎨⎪⎪⎩

g-Derg,ν (Wg) ⊆ derg (Wg) ∀ (ν,Wg) ∈ I03 × {Rg,Sg}
g-Codg,ν (Yg) ⊇ codg (Wg) ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

in the Tg-space Tg [See [1]: Sys. of Eqs (4.14), §§ 4.2, p. 216.].

Consider again the Tg-sets Rg = {ξ1, ξ2, ξ4}, Sg =Rg∪{ξ7}, Ug = {ξ3, ξ5, ξ6, ξ7},
and Vg = Ug ∖ {ξ3}. Then, for any δ ∈ [o], the g-ν-T

(δ)
g -derived operation of

g-Der(δ)g,ν ∶ P (Ω)Ð→P (Ω) on the Tg-sets Rg, Sg ⊂ Tg, and the g-ν-T
(δ)
g -coderived

operation of g-Cod(δ)g,ν ∶ P (Ω)Ð→P (Ω) on the Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 ,
produce the following results:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Der(δ)g,ν (Wg) =Kg,4 ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}

g-Der(δ)g,ν (Wg) = Og,1 ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}

g-Cod(δ)g,ν (Yg) = Og,4 ∀ (ν,Yg) ∈ {0,2} × {Ug,Vg}

g-Cod(δ)g,ν (Yg) =Kg,1 ∀ (ν,Yg) ∈ {1,3} × {Ug,Vg}

(4.4)

Likewise, for any δ ∈ [o], the T(δ)g -derived operation of der(δ)g ∶ P (Ω)Ð→P (Ω) on
the Tg-sets Rg, Sg ⊂ Tg, and the T

(δ)
g -coderived operation of cod(δ)g ∶ P (Ω) Ð→

P (Ω) on the Tg-sets Ug, Vg ⊂ Tg, for all ν ∈ I03 , also produce the following results:

⎧⎪⎪⎨⎪⎪⎩

der(δ)g (Wg) =Kg,2 ∀Wg ∈ {Rg,Sg}

cod(δ)g (Yg) = Og,2 ∀Yg ∈ {Ug,Vg}
(4.5)

By virtue of Sys. of Eqs (4.4), it follows that

g-Der(λ)g,ν (Wg) = ⋂
δ≺λ

g-Der(δ)g,ν (Wg) = ∅ ∀ (ν,Wg) ∈ {1,3} × {Rg,Sg}(4.6)
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Again, by virtue of Sys. of Eqs (4.4), it also follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g-Der(λ)g,ν (Wg) = ⋂
δ≺λ

g-Der(δ)g,ν (Wg) ≠ ∅ ∀ (ν,Wg) ∈ {0,2} × {Rg,Sg}

g-Cod(λ)g,ν (Yg) = ⋂
δ≺λ

g-Cod(δ)g,ν (Yg) ≠ ∅ ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

der(λ)g (Wg) = ⋂
δ≺λ

der(δ)g (Wg) ≠ ∅ ∀ (ν,Wg) ∈ I03 × {Rg,Sg}

cod(λ)g (Yg) = ⋂
δ≺λ

cod(δ)g (Yg) ≠ ∅ ∀ (ν,Yg) ∈ I03 × {Ug,Vg}

(4.7)

Hence, for any δ ∈ [o], it results that the following results hold true for each Wg ∈
{Rg,Sg} and Yg ∈ {Ug,Vg}:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

g-Der
(δ)
g,0 (Wg) ⊇ g-Der

(δ)
g,1 (Wg) ⊇ g-Der

(δ)
g,3 (Wg) ⊆ g-Der

(δ)
g,2 (Wg)

g-Cod
(δ)
g,0 (Yg) ⊆ g-Cod(δ)g,1 (Yg) ⊆ g-Cod(δ)g,3 (Yg) ⊇ g-Cod(δ)g,2 (Yg)

(4.8)

For any δ ∈ [o], the (≾,≿)-relations g-Der
(δ)
g,0 ≿ g-Der

(δ)
g,1 ≿ g-Der

(δ)
g,3 ≾ g-Der

(δ)
g,2 and

g-Cod
(δ)
g,0 ≾ g-Cod

(δ)
g,1 ≾ g-Cod

(δ)
g,3 ≿ g-Cod

(δ)
g,2 are thus verified. Clearly, for any δ ∈ [o],

the following results also hold true:

⎧⎪⎪⎨⎪⎪⎩

g-Der(δ)g,ν (Wg) ⊆ der(δ)g (Wg) ∀ (ν,Wg) ∈ I03 × {Rg,Sg}

g-Cod(δ)g,ν (Yg) ⊇ cod(δ)g (Wg) ∀ (ν,Yg) ∈ I03 × {Ug,Vg}
(4.9)

Thus, the (≾,≿)-relations g-Der(δ)g,ν ≾ der(δ)g and g-Cod(δ)g,ν ≿ cod(δ)g , for all ν ∈ I03 , are
also verified.

The presentation of this nice application, highlighting some essential properties

of the T
(δ)
g , g-ν-T

(δ)
g -derived operators der(δ)g , g-Der(δ)g,ν ∶ P (Ω)Ð→P (Ω) and T

(δ)
g ,

g-ν-T
(δ)
g -coderived operators cod(δ)g , g-Cod(δ)g,ν ∶ P (Ω) Ð→ P (Ω), respectively, in

a Tg-space with respect to their category ν ∈ I03 and their ordinal δ ∈ [o] are,
therefore, accomplished and ends here.

If the presentation be explored a step further, other interesting properties can

be deduced from the study of other essential properties of T
(δ)
g , g-ν-T

(δ)
g -derived

operators and T
(δ)
g , g-ν-T

(δ)
g -coderived operators in Tg-spaces.

5. Conclusion

In a recent paper [1], we introduced the definitions and studied the essential prop-
erties of the g-Tg-derived and g-Tg-coderived operators g-Derg, g-Codg ∶ P (Ω)Ð→
P (Ω), respectively, in Tg-spaces. Mainly, we showed that (g-Derg,g-Codg) ∶
P (Ω) × P (Ω) Ð→ P (Ω) × P (Ω) is a pair of both dual and monotone g-Tg-
operators that is (∅,Ω), (∪,∩)-preserving, and (⊆,⊇)-preserving relative to g-Tg-
(open, closed) sets [See [1]: Cors 3.15 & 3.16, §§ 2.2, p. 198.]. We also showed
that (g-Derg,g-Codg) ∶ P (Ω) ×P (Ω)Ð→P (Ω) ×P (Ω) is a pair of weaker and
stronger g-Tg-operators [See [1]: Thm. 3.1, §§ 2.2, p. 187.]. In the present paper,
we have introduced by transfinite recursion on the class of successor ordinals the

definitions and investigated the essential of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived

operators g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω), respectively, in Tg-spaces [See §
3: Thms 3.1–3.13; Cors 3.2–3.16; Props 1–4; Defs 3.17 & 3.18].
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The following three statements sum up the outstanding facts resulting from the

investigation of the essential of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived operators

g-Der(δ)g , g-Cod(δ)g ∶ P (Ω)Ð→P (Ω), respectively, in Tg-spaces:

– i. For any Sg ∈ P (Ω), ⟨g-Der(δ)g (Sg)⟩δ∈[o] is a monotone decreasing

sequence of g-T
(δ)
g -derived sets while ⟨g-Cod(δ)g (Sg)⟩δ∈[o] is a monotone

increasing sequence of g-T
(δ)
g -derived sets in a Tg-space Tg [See § 3: Thm.

3.1 & Cor. 3.2].

– ii. The g-T
(δ)
g -derived operator g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) is weaker

than the T
(δ)
g -derived operator der(δ)g ∶ P (Ω) Ð→P (Ω) while the g-T

(δ)
g -

coderived operator g-Cod(δ)g ∶ P (Ω) Ð→P (Ω) is stronger than the T
(δ)
g -

coderived operator cod(δ)g ∶ P (Ω) Ð→ P (Ω) in a Tg-space Tg [See § 3:
Prop. 1; Cors 3.3 & 3.4].

– iii. For any ({ξ} ,g-Intg,g-Clg) ∈ P (Ω) × g-IC [Ta], the g-T
(δ)
g -derived

operator g-Der(δ)g ∶ P (Ω) Ð→ P (Ω) is ∅-grounded (alternatively, ∅-
preserving), ξ-invariant (alternatively, ξ-unaffected), g-Clg-intensive and
∪-additive (alternatively, ∪-distributive) [See § 3: Cor. 3.15: Items i.–

iv.] while the g-T
(δ)
g -coderived operator g-Cod(δ)g ∶ P (Ω) Ð→ P (Ω)

is Ω-grounded (alternatively, Ω-preserving), ξ-invariant (alternatively, ξ-
unaffected), g-Intg-extensive and ∩-additive (alternatively, ∩-distributive)
[See § 3: Cor. 3.16: Items i.–iv.] in a Tg-space Tg.

Hence, it follows that the study of the g-T
(δ)
g -derived and g-T

(δ)
g -coderived oper-

ators
g-Der(δ)g , g-Cod(δ)g ∶ P (Ω) Ð→P (Ω)

Sg z→ g-Der(δ)g (Sg) , g-Cod(δ)g (Sg)
in a Tg-

space Tg = (Ω,Tg) has resulted in several advantages. Indeed, it has resulted in

axiomatic definitions of these g-T
(δ)
g -coderived operators in the Tg-space Tg [See §

3: Defs 3.17 & 3.18]. The g-T
(δ)
g -derived and g-T

(δ)
g -coderived structures D

(δ)
g

def=
(Ω,g-Der(δ)g ) and C

(δ)
g

def= (Ω,g-Cod(δ)g ), then, are both themselves Tg-spaces which

may well be called T
(δ)
g,der, T

(δ)
g,cod-spaces, respectively. Accordingly, if Cantor [23, 24]

had also considered the T
(δ)
o∣R-derived operator

der
(δ)
o∣R ∶ P (R) Ð→P (R)

So z→ der
(δ)
o∣R (So)

in his investigations of the convergence of Fourier series in R, then the study of con-

vergence in any of the T
(δ)
g,der, T

(δ)
g,cod-spaces D

(δ)
g , C

(δ)
g , respectively, might be made

another subject of inquiry. The discovery of properties in this direction would defi-
nitely bring some benefits to the field of Mathematical Analysis, and the discussion
of this paper ends here.
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ematics, Réduit 80837, MAURITIUS

Email address, N. -Ul. -H. Sookia: sookian@uom.ac.mu

(R. D. Somanah) Department of Emerging Technologies, Faculty of Sustainable De-
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