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 Remote sensing (RS), Geographic information systems (GIS), and Machine learning can be 
integrated to predict land surface temperatures (LST) based on the data related to carbon 
monoxide (CO), Formaldehyde (HCHO), Nitrogen dioxide (NO2), Sulphur dioxide (SO2), 
absorbing aerosol index (AAI), and Aerosol optical depth (AOD). In this study, LST was 
predicted using machine learning classifiers, i.e., Extra trees classifier (ET), Logistic 
regressors (LR), and Random Forests (RF). The accuracy of the LR classifier (0.89 or 89%) 
is higher than ET (82%) and RF (82%) classifiers. Evaluation metrics for each classifier are 
presented in the form of accuracy, Area under the curve (AUC), Recall, Precision, F1 score, 
Kappa, and MCC (Matthew’s correlation coefficient). Based on the relative performance of 
the ML classifiers, it was concluded that the LR classifier performed better. Geographic 
information systems and RS tools were used to extract the data across spatial and temporal 
scales (2019 to 2022). In order to evaluate the model graphically, ROC (Receiver operating 
characteristic) curve, Confusion matrix, Validation curve, Classification report, Feature 
importance plot, and t- SNE (t-distributed stochastic neighbour embedding) plot were 
used. On validation of each ML classifier, it was observed that the RF classifier returned 
model complexity due to limited data availability and other factors yet to be studied post 
data availability. Sentinel-5-P and MODIS data are used in this study. 
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1. Introduction  
 

The land surface temperature (LST) can be 
considered an essential indicator in assessing the 
environmental conditions that might exist at a place at 
any point in time [1]. Satellite-derived products have 
helped us monitor the LST dynamics on a large scale for 
three decades, and more data is being added by the day, 
helping many researchers yield insights [2]. The urban 
centers are in focus since most of the population ingress 
is apparent there, causing congestion in the living space 
inside the regulatory frames of reference [3]. LST can be 
classified under critical geophysical parameters as it is 
dynamic across all the land-water interfaces we know 
[4]. It is a continuous task to monitor LST across spatial 
and temporal scales, which can assist governments in 
framing specific rules in extreme heat situations [5]. 
Aerosols suspended in the lower atmosphere can affect 
LST fluctuations and may induce a negative feedback 
mechanism on surface temperature that can influence 
the inhabitants [6]. The landscape dynamics initiated due 
to population ingress and unprecedented urban sprawl 

can alter local microclimate in terms of LST and Aerosol 
optical depth (AOD) [7]. The seasonal temperatures were 
lowered across the Indian subcontinent due to increased 
AOD levels [8]. Carbon monoxide (CO) emission can be 
anthropogenic, and its release into the lower atmosphere 
before an earthquake in 2001 was observed, reflecting 
that natural CO emission is possible [9]. The combined 
effect of forest fires and formaldehyde (HCHO) on surface 
temperature was observed using satellite-derived 
observations [10]. The fluctuation in HCHO 
concentrations in the troposphere was associated with 
the biogenic volatile organic compounds (BVOC) that 
were released by plants in response to abiotic stress 
(LST) [11]. The isoprene emissions released by the 
abiotically stressed plants were tracked using 
formaldehyde variations, and these emissions can affect 
radiative forcing on a large scale [12]. The surface 
temperatures are sensitive to the Nitrogen dioxide (NO2) 
levels, and lightning-induced reactions can also favor 
NO2 generation [13, 14]. The sulfur dioxide (SO2) 
concentrations affect the radiative forcing, surface 
temperature, and climate change on a global scale [15, 
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16]. Plants cannot tolerate surface temperatures greater 
than 35°C with few exceptions and will release 
compounds that we can interpret as abiotic stress signals 
[17–23]. 

Machine learning (ML) algorithms were used in land 
cover and land use (LULC) dynamics in relation to 
surface temperature fluctuations assisted by remote 
sensing instruments. The Artificial Neural Networks 
(ANN) and Cellular Automata (CA) supported by Support 
Vector Machine (SVM) [24] were used to understand LST 
dynamics over urban landscapes [18, 25]. Soil Moisture 
and Ocean Salinity (SMOS) derived soil moisture, 
Moderate Resolution Image spectrometer (MODIS) for 
LST, along with generalized linear models (GLM) of 
Artificial Intelligence (AI) framework was used in 
hydrological applications [26]. The urban form metrics, 
i.e., building density (BD) and floor area ratio (FAR), were 
associated with LST fluctuations with the aid of machine 
learning [27]. The LST products of MODIS were 
successfully downscaled using ML frameworks, enabling 
high spatial and temporal resolutions for use in diverse 
applications [28]. Deep learning and neural networks 
(DL-NN) were used to optimize LST retrieval (MODIS) 
methods, and other geophysical parameters were also 
obtained easily [29]. Convolutional neural networks 
(CNN) of DL were used to get the LST values from 
Advanced microwave scanning radiometer 2 (AMSR2), 
and long-term LST disparities were easily studied [30]. 
XGB (Extra Gradient Boosting) regression and ANN-CA 
were used to extract urban heat islands using LST and 
LULC data [31]. Land use/Land cover variations and 
population can change LST [32]. Changes in indices such 
as normalized difference vegetation index (NDVI), 
normalized difference bareness index (NDBaI), 
normalized difference built-up index (NDBI), and 
modified normalized difference water index (MNDWI) 
can influence LST [33]. The effect of seasons in estimating 
LST was estimated using Landsat 8 data, and the Thermal 
sharpening (TsHARP) algorithm was also used [34]. The 
tendency of interrelationships between MNDWI, NDBaI, 
NDBI, and NDVI was apparent in the winter season than 
summer [35]. Fallow lands and settlements can enhance 
LST rate but water bodies, agricultural land and forests 
can reduce LST rate [36]. 

This work is done to possibly fill the research gap in 
predicting LST using major air pollutants, i.e., CO, HCHO, 
NO2, SO2, and other parameters like Aerosol optical depth 
(AOD) and Aerosol absorption index (AAI) using machine 
learning algorithms. 

 

2. Method 
 

2.1. Data 
 

The datasets needed for this study are obtained from 
Earth Explorer (USGS) and Giovanni (NASA) websites 
[37, 38]. The required data is collected in the .csv and 
GeoTIFF formats so that the entire procedure involving 
processing, interpretation, and analysis can be done 
using in-house equipment. The satellite data is obtained 
from Sentinel-5- P (TROPOMI) [39] and MODIS platforms 
[40]. AAI, CO, HCHO, NO2, and SO2-related data is 
obtained from Sentinel-5- P, whereas Land surface 

temperature data is obtained from MODIS. AOD (500nm) 
related datasets are retrieved from MCD19A2.006: Terra 
& Aqua MAIAC. The spatial distribution maps of 
pollutants CO, HCHO, NO2, SO2, AAI, AOD, and LST were 
prepared to know the anomalies on a spatial scale. The 
LST values greater than 35oC are labeled as ‘Hot,’ and 
those less than 35oC are labeled as ‘Normal.’ These two 
classes were considered essential classes, and the 
datasets were passed onto the machine learning 
frameworks. Three ML algorithms, i.e., Extra Trees 
classifier (ET) [41, 42], Logistic regression (LR) [43, 44], 
and Random Forest (RF) [43], were used in this study as 
they performed better than others. 

 

2.2. Study area 
 

The study area selected for this study is Annamayya 
district, located in the southern part of Andhra Pradesh 
state, India [37], as shown in Figure 1. After reorganizing 
the Cuddapah and Chittoor districts of Andhra Pradesh, 
it is a newly formed district. The study area is about 7951 
square kilometers and extends from 78° 18’ 55” and 79° 
20’26” E longitude and 13° 19’ 55” and 14° 42’ 32” of N 
latitude. Rajampet, Rayachoti, and Madanapalle are the 
main urban centers of the district, and most of the 
business activities are witnessed here [45]. The effects of 
the selected pollutants on the land surface temperature 
were studied for the years 2019, 2020,2021, and 2022. 
The time-averaged maps (annual) are prepared to know 
the spatial and temporal spread of the effects produced 
due to selected pollutants, and their effect on time-
averaged LST is studied. The detailed methodology is 
given in Figure 2. 

 
2.3. Interpretation of metrics and outputs 
 

The evaluation metrics used in knowing the 
performance of the models are Accuracy, AUC (Area 
under the curve), Recall, Precision, F1 score (F-measure), 
Kappa, and MCC (Matthews correlation coefficient) 
values [46, 47]. After scrutinizing the evaluation metrics, 
accuracy values were given more weightage than other 
metrics. The results for each ML model are given through 
ROC (Receiver operating characteristic) curves, 
Confusion matrix, Validation curve, Classification report, 
Feature importance plot, and t-SNE (t-distributed 
stochastic neighbor embedding) manifold plots [48, 49]. 
The ROC curve illustrates model performance in a binary 
classification system with varied discrimination 
threshold or limit. It is generated using TPR or true 
positive rate and FPR or false positive rate. The primary 
advantage of an ROC curve is that there is no need for 
threshold optimization for each label or class. A 
confusion matrix can be employed to evaluate the 
classifier product quality. The diagonal values show us 
the points for which the label predicted = actual label. 
The off-diagonal values show the classifier's prediction 
error. If the diagonal values are higher than the off-
diagonal values, then we can assume that there are more 
correct predictions. The F1 score can be considered a 
harmonic mean of recall and precision (1-best, 0- worst). 
The kappa statistic vibrates between -1 (chance 
agreement) and +1 (complete agreement). 
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Figure 1. Study area with False colour composite. 

 

 
Figure 2. Methodology. 

MCC score reflects the quality of the binary 
classification in this case. The primary advantage of the 
MCC metric is that it is a balanced measure and can be 
employed for classes of varied sizes. The MCC (phi 
coefficient) values fluctuate between -1 (inverse 
prediction), 0 (random prediction), and +1 (Perfect 
prediction). The validation and training score can explain 
the model's performance, i.e., underfitting, overfitting, 
and fit (well fitted). If the validation and training scores 
are low, we can assume that the estimator/model will be 
underfitting and, if high, overfitting or a well-fitted 
estimator. The classification report shows all the metrics, 
such as precision, recall, F1, and support (occurrence of 
each class in test data). The depth or relative rank of a 
specific feature can be used to evaluate the importance of 
that feature in relation to the predictability of the desired 
variable (target), and this can be shown in the form of a 
feature importance plot. t-SNE can be used to visualize 
the data (high-dimension) by transforming the 
similarities between the data points to cumulative 
probabilities, and it also lowers the Kullback-Leibler 
divergence. 

 
2.4 Methodology 
          

The data pertaining to the major air pollutants were 
subjected to preprocessing. Random points were 
selected for all the variables. In preprocessing, we 
removed outliers, eliminated perfect collinearity, and 
applied normalization and transformation. The 
independent variables are CO, HCHO, NO2, SO2, AAI, AOD, 
and LST alone is a dependent variable. The dataset was 
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subjected to a machine learning framework. ML 
classifiers were used to predict LST (at two levels), and 
three were selected among several classifiers. The 
evaluation metrics like MCC, Kappa, F1 score, Precision, 
Recall, AUC, and accuracy were used to gauge prediction 
capability. The outputs were for selected ML classifiers. 
GIS maps were prepared for each variable to express 
their spatial distribution.  

 

3. Results  
 
3.1. GIS 
 

The spatial distribution of the Absorbing aerosol 
index (AAI), i.e., the prevalence of aerosols, is given in 
Figure 3 (a-d). The Aerosol index can be considered as a 
qualitative index of the presence of aerosols generated 
from dust and biomass burning (plumes from volcanic 
ash are ignored as the study area is devoid of volcanic 
activity) [50]. The wavelength variations of Rayleigh 
scattering (UV) are minimal due to limited ozone 
absorption [51]. Top Of atmosphere (TOA) reflectance 
and Rayleigh scattering reflectance result in residual 
values where the positive values represent aerosols (UV-
absorbing) [52]. The NE corners of the study area 
showed less aerosol index (-1.33844 in 2019) (-1.6613 in 
2020) (-1.40316 in 2021) (-0.705651 in 2022) and high 
in E and central portions (-0.986181 in 2019) (-1.37002 
in 2020) (-1.06346 in 2021) (-0.294711 in 2022). The 
spatial distribution of Aerosol optical depth (AOD) is 
given in Figure 4 (a-d). The AOD is low (593.324 in 2019) 
(508.243 in 2020) (795.5 in 2021) (791.5 in 2022) in the 
NE, S, and W and high in the N and central portions (68 
in 2019) (250.053 in 2020) (183.5 in 2021) (68 in 2022). 

The spatial distribution of carbon monoxide is given in 
Figure 5 (a-d). Except for S and some portions in the NE 
(0.0328049 in 2019) (0.0333505 in 2020) (0.0317095 in 
2021) (0.0310688) of the study area, most of the region 
exhibited high levels (0.0378867 in 2019) (0.0384048 in 
2020) (0.0368594 in 2021) (0.0362371) of CO (mol/m2). 
The spatial distribution of formaldehyde (HCHO) is given 
in Figure 6 (a-d). The HCHO (mol/m2) concentration is 
higher in the NE portions (0.00018135 in 2019) 
(0.000181125 in 2020) (0.000175397 in 2021) 
(0.000180444 in 2022) and low in the S and E portions 
(0.00011805 in 2019) (0.000107572 in 2020) 
(0.00010903 in 2021) (0.00010737) of the study area. 
The spatial distribution of nitrogen dioxide NO2 
(mol/m2) is given in Figure 7 (a-d). The N and NE corners 
exhibited high NO2 concentrations (2.68345e-005 in 
2019) (2.31525 e-005 in 2020) (2.62399 e-005 in 2021) 
(2.62361 e-005 in 2022) than other regions (2.08934 e-005 
in 2019) (1.43907 e-005 in 2020) (1.68165 e-005 in 2021) 
(1.71763 e-005 in 2022) of the study area. The spatial 
distribution of sulphur dioxide (SO2) (mol/m2) is given in 
Figure 8 (a-d). The SO2 concentration was high in the NE 
(0.000151513 in 2019) (0.00134435 in 2020) 
(0.000171003 in 2021) (0.000177544 in 2022), 
extending towards S and low in the central and E (-
3.01868e-005 in 2019) (-6.71495 e-005 in 2020) (-4.07475e-

005 in 2021) (-1.24852e-005 in 2022) portions of the study 
area. The spatial distribution of land surface temperature 
(LST) (°C) is given in Figure 9 (a-d). The E and central 
portions (43.88 °C in 2019) (43.28 oC in 2020) (41.70 °C 
in 2021) (41.59 °C in 2022) exhibited high temperatures, 
and NE portions (25.87 °C in 2019) (25.60 °C in 2020) 
(25.02 °C in 2021) (25.05 °C in 2022) exhibited low LST 
in the study area. 

 

 
Figure 3. Absorbing Aerosol Index (AAI) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 
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Figure 4. Aerosol optical depth (AOD) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 

 

 
Figure 5. Carbon monoxide (CO) (mol/m2) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 
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Figure 6. Formaldehyde (HCHO) (mol/m2) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 

 

 
Figure 7. Nitrogen dioxide (NO2) (mol/m2) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 
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Figure 8. Sulfur dioxide (SO2) (mol/m2) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 

 

 
Figure 9. Land surface temperature (LST) (°C) (a) 2019, (b) 2020, (c) 2021), (d) 2022. 
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3.2. Machine learning 
 
The ROC curve of the Extra Trees classifier (Figure 

10a) shows AUC of 0.89 for both the ‘Hot’ and ‘Normal 
classes. 

The micro-average ROC curve reflects AUC of 0.91, 
and the macro-average curve shows 0.90. The AUC values 
show that the classifier predicted the classes well (0.89). 
The confusion matrix is given in Figure 10b. The training 
curve reached a high level at maximum depths of 6 to 10, 
whereas the cross-validation curve reached a high level 

at maximum depths of 4, 7, and 8. This shows that neither 
of the curves reached a high score quickly (relatively), 
and hence, through the validation curve given in Figure 
10c, it is apparent that model performance is 
appropriate. The classification report containing some of 
the essential metrics is given in the Figure 10d. The 
feature importance plot given in Figure 10e shows that 
AAI and AOD have more influence on LST prediction. The 
t-SNE manifold plot shows minimal clustering and some 
negligible overlaps and is given in Figure 10f.  

 

 
Figure 10. Extra Trees Classifier (ET) (a) ROC curve, (b) Confusion matrix, (c) Validation curve, (d) Classification 

report, (e) Feature importance plot, (f) t-SNE plot. 
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The ROC curve of the logistic regression classifier 
(Figure 11a) shows AUC of 0.96 for both the ‘Hot’ and 
‘Normal’ classes. The micro-average ROC curve reflects 
AUC of 0.96, and the macro-average curve shows 0.97. 
The AUC values obtained show that the classifier 
performed better (0.96) in predicting the classes. The 
confusion matrix is given in Figure 11b. The training 
curve and cross-validation curve travelled steadily all 
along. This shows that neither of the curves reached a 

high score quickly (relatively) nor reached a low score 
immediately (Figure 11c). It is apparent that model 
performance is appropriate. The classification report 
containing some of the essential metrics is given in 
Figure 11d. The feature importance plot in Figure 11e 
shows that AAI has more influence on LST prediction. 
The t-SNE manifold plot shows a minimal clustering and 
is given in Figure 11f.  

 
 

 
Figure 11. Logistic Regression (LR) (a) ROC curve, (b) Confusion matrix, (c) Validation curve, (d) Classification 

report, (e) Feature importance plot, (f) t-SNE plot. 
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The ROC curve of the Random Forest classifier 
(Figure 12a) shows AUC of 0.94 for both the ‘Hot’ and 
‘Normal’ classes. The micro-average ROC curve reflects 
AUC of 0.93, and the macro-average curve shows 0.94. 
The AUC values obtained show that the classifier 
performed appropriately (0.94) in predicting the classes. 
The confusion matrix is given in Figure 12b. The training 
curve reached a high level at a maximum depth of 5, 
whereas the cross-validation curve reached a high level 
at a maximum depth of 2. This shows that the cross-
validation curve reached a high score quickly (relatively) 
(Figure 12c). It is apparent that model complexity is 
present. This can be due to limited data available for 

analysis or other factors. The classification report 
containing some of the essential metrics is given in 
Figure 12d. The feature importance plot in Figure 12e 
shows that AAI and AOD have more influence on LST 
prediction. The t-SNE manifold plot shows minimal 
clustering and negligible overlaps and is given in Figure 
12f. The comparison of evaluation metrics for each model 
is given in Figure 13. The logistic regression classifier 
performed well when accuracy was considered. Even 
with other evaluation metrics taken into consideration, 
the logistic regression classifier performed well, i.e., AUC 
(0.9611), Recall (0.9444), Precision (0.08947), F1 score 
(0.9189), kappa (0.7614), and MCC score (0.7638). 

 

 
Figure 12. Random Forest Classifier (RF) (a) ROC curve, (b) Confusion matrix, (c) Validation curve, (d) 

Classification report, (e) Feature importance plot, (f) t-SNE plot. 
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Figure 13. Model comparison (ET, LR, RF). 

 
4. Discussion 
 

Machine learning tools can be used with ease, and 
this can be due to their reliability and cost-reducing 
functionalities [53, 54]. Artificial Intelligence includes 
machine learning tools that deal with structured and 
unstructured data and help researchers across various 
domains achieve appropriate results [55, 56]. This study 
used AI (ML) tools to predict land surface temperatures 
based on air quality parameters like CO, HCHO, NO2, SO2, 
AAI, and AOD. Prior to ML treatment, the data is derived 
from remote sensing and GIS platforms. It was observed 
that Machine learning tools could predict land surface 
temperatures effectively and within low-cost 
frameworks. The main limitations of this study are: 1. 
Limited availability of ground data, 2. Lack of air 
pollution sensors in the study area, 3. Excess reliance on 
satellite-based data, 4. Problems with cross-validation 
(satellite versus ground data). These problems might be 
solved by installing air pollution monitoring stations and 
training the personnel to use mobile monitoring stations. 

 

5. Conclusion  
 

This work aimed at the integration of geographic 
information systems (GIS) and Machine learning (ML) 
frameworks to predict land surface temperatures (LST) 
over the Annamayya district of India (Andhra Pradesh 
state). After systematic analysis and interpretation in 
this study, it is concluded that machine learning tools can 
easily predict land surface temperatures with reliable 
results. The prediction capabilities can be improved once 
more data across spatial and temporal scales is available. 
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