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Abstract 

The study aims to research the effect of an introductory programming course with math-based 

programming activities on computational thinking skills and self-efficacy. A static-groups pre-

test post-test quasi-experimental design was used. One hundred and seventy-six 6th-grade 

public school students participated in the study. Eighty-nine students were in the experimental 

group, and 87 were in the control group. While the students in the experimental group received 

introductory programming education with Math-supported activities, the students in the 

control group received programming education with traditional course activities. Equivalent 

programming activities were carried out in both groups. Data were collected via the 

Computational Thinking Test and Self-Efficacy Perception Scale for Computational Thinking 

Skills. After the study, post-test scores were analyzed using ANCOVA analysis by controlling 

pre-test scores. The findings indicated no difference between the two groups regarding 

computational thinking test performance. Similarly, no conclusion stated a difference between 

the groups' perceptions of self-efficacy of computational thinking. According to these results, 

evaluations regarding the positive and negative effects of using mathematics and 

programming together in an elementary programming education, which is thought to be 

related to Computational Thinking Skills, were reached at the skills of the study. 
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Matematik Destekli Programlamaya Giriş Eğitiminin Bilgi İşlemsel Düşünme 

Üzerindeki Etkisi 

Özet 

Bu çalışmanın amacı, matematik temelli programlama etkinlikleri ile temel programlama 

eğitiminin bilgi işlemsel düşünme becerileri ve öz yeterlilik üzerindeki etkisini araştırmaktır. 

Çalışmada statik gruplar ön-test son-test yarı deneysel desen kullanılmıştır. Çalışmaya bir 

devlet okulunda öğrenimine devam eden yüz yetmiş altı 6. sınıf öğrencisi katılmıştır. Bu 

öğrencilerin 89'u deney grubunda, 87'si ise kontrol grubunda yer almıştır. Deney grubundaki 

öğrenciler matematik destekli etkinliklerle programlamaya giriş eğitimi alırken, kontrol 

grubundaki öğrenciler geleneksel ders etkinlikleri ile programlama eğitimi almışlardır. Her iki 

grupta da eşdeğer programlama etkinlikleri gerçekleştirilmiştir. Veriler Bilgi İşlemsel 

Düşünme Testi ve Bilgi İşlemsel Düşünme Becerilerine Yönelik Öz Yeterlik Algısı Ölçeği 

aracılığıyla toplanmıştır. Çalışma sonunda, son test puanları ön test puanları kontrol edilerek 

ANCOVA ile analiz edilmiştir. Bulgular, iki grup arasında bilgi işlemsel düşünme performansı 

açısından bir fark olmadığını göstermiştir. Benzer şekilde, grupların bilgi işlemsel düşünme öz 

yeterlilik algıları arasında da bir fark olmadığı sonucuna varılmıştır. Bu sonuçlara göre, 

ilköğretim programlama eğitiminde matematik ve programlamanın birlikte kullanılmasının 

Bilgi İşlemsel Düşünme Becerileri ile ilişkili olabileceği düşünülen olumlu ve olumsuz 

etkilerine ilişkin değerlendirmelere ulaşılmıştır. 
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1. Introduction 

Technology continues to develop rapidly and occupies more space in all areas of life. 

Developed countries invest more in studies in the field of technology because economic growth 

is parallel to technological development. They integrate computer science subjects into their 

curricula, starting from primary education, to increase the pace of their technological 

development. Countries such as England, France, Finland, Poland, Denmark, and Türkiye have 

recently updated their curricula, including computational thinking (CT) skills, algorithms, and 

coding. In Turkey, the curriculum of some courses has been rearranged, and content has been 

produced in recent years to improve CT skills (Gülbahar & Kalelioğlu, 2018). As a result of the 

rapid development of computer science and technology, the development of students' 

competence in solving technological problems is considered an important issue in education 

systems. Problems that arise in many fields, such as education, health, trade, industry, 

transportation, and entertainment, are solved thanks to the developed hardware and software. 

According to Wing (2006), solutions developed to manage our daily lives, communicate, and 

interact with others should not be limited to only physical software and hardware products. 

The main point to focus on is ensuring students gain computational concepts. The International 

Society for Technology in Education (ISTE) aims to contribute to educational institutions' 

planned use of technology and be a guide. For this reason, it develops some standards for 

students, teachers, administrators, coaches, and computer educators. The standards developed 

by the institution for students (ISTE, 2016) include (i) Empowered Learner, (ii) Digital 

Citizenship, (iii) Knowledge Builder, (iv) Innovative Designer, (v) Computational Thinker, (vi) 

Creative Communicator, and (vii) Global Collaborator has defined its features. 

These standards also show that computational thinking is one of the essential skills individuals 

in the 21st century should acquire. The importance of computational thinking has raised 

questions such as "What is computational thinking?", "How is it taught?" and "How is it 

measured?" According to Wing (2008), computational thinking requires thinking like an 

engineer in addition to mathematical thinking when solving problems. Papert (1980) observed 

that his students' thinking abilities were significantly different when writing computer 

programs and that they developed their cognitive abilities. ISTE (2016) stated that 

computational thinking includes creative thinking, algorithmic thinking, problem-solving, and 

collaborative learning skills. These statements show that computational thinking is a skill 
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created by combining the gains of subjects such as mathematics, engineering, and computer 

programming. Many countries think in this direction and equip teaching programs with 

relevant topics to enable students to think like engineers and acquire these skills. In our country, 

we can also find examples of computer and non-computer coding and robotics studies starting 

from the primary level. For example, in the 5th and 6th grades of middle school, the example 

of the Algorithms and Basic Programming education in the Information Technologies and 

Software course can be given for the relevant situation. Scratch is generally preferred in these 

training carried out in block-based programming environments. In this regard, studies showing 

that Scratch is the primary tool and can be effective in computational thinking are available in 

the literature (Oluk et al., 2018; Şimşek, 2018)  

However, thinking that computational thinking can only be learned by programming reflects 

a limited perspective. Computational thinking does not only consist of writing code in a 

computer environment; it is gained during the process of understanding the problem, 

analyzing, abstracting, algorithmic thinking, and creating flow diagrams before writing the 

program. Disciplines that apply problem-solving steps have the potential to develop 

computational thinking. Studies show that subjects such as Biology, Physics, Mathematics, and 

English develop computational thinking skills (Lockwood & Mooney, 2017). 

From another perspective, the limitations of the underlying information processing device force 

computer scientists to think not only mathematically but also numerically (Wing, 2006). In other 

words, there is a mutually beneficial relationship between computational thinking and 

mathematics. A study by Sung and Black (2020) observed that when students worked on math 

problems thinking like a computer programmer, their task analysis, sequential thinking, 

procedural thinking, and coding skills improved. A similar result was obtained in a study 

conducted by Rodríguez-Martínez et al. (2020), and they showed that programming activities 

contributed relative to the adequacy of solving some math problems. In conclusion, it can be 

inferred that integrating mathematics gains with computer science concepts may impact 

computational thinking skills. 

This research investigates the effects of mathematics-supported introductory programming 

education in the Information Technologies and Software course on the computational thinking 

test performance and self-efficacy of 6th-grade students. By presenting the gains of information 
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technologies and mathematics courses that effectively teach computational thinking skills in 

the same activity, the role of mathematics-supported activities in developing computational 

thinking skills in Scratch-based basic programming education is focused. Another aim is to 

focus on the role of mathematics-supported programming education in developing students' 

computational thinking skills and making inferences about the direction of interdisciplinary 

studies. Additionally, this study aims to provide examples of research in the fields of 

programming, computational thinking, and mathematics in terms of content, method, 

duration, activities, and implementers. In this context, the following research questions have 

been attempted to be answered: 

(1) Does mathematics-supported basic programming education affect the computational 

thinking test performance of 6th-grade students? 

(2) Does mathematics-supported basic programming education affect the self-efficacy 

perception of computational thinking of 6th-grade students?  

 

2. Theoretical Framework 

 2.1. Computational Thinking 

Although computational thinking has become quite popular recently, the concept dates back a 

few decades. Studies on the logic behind computer functioning as a problem-solving method 

were first initiated by Alan Perlis in the 1960s (Özçınar, 2017). The term computational thinking 

was first used by Papert (1996) in 1996. However, much earlier, Papert (1980) observed that the 

thinking abilities of his students significantly differed when they wrote computer programs, 

and this situation also developed their cognitive abilities. He stated that children could develop 

computational thinking skills by learning the LOGO programming language. This idea 

emerged from recognizing the development of thinking skills that occurred during the process 

of students' programming. The concept of computational thinking was first included in 

Jeannette M. Wing's study in 2006. She stated that computer science is not limited to computer 

programming and that thinking like a computer scientist requires thinking at multiple 

abstraction levels. According to Wing (2008), computational thinking is a type of analytical 

thinking, and the general ways of solving a problem rely on mathematical, engineering, and 

scientific thinking skills. 
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The literature provides many definitions of computational thinking. For example, Wing (2006) 

expresses computational thinking as problem-solving, system design, and understanding 

human behavior using basic computer science concepts. According to Aho (2012), it contains 

thinking processes in which problem-solving solutions can be presented in steps and 

algorithms compatible with computer logic. Syslo and Kwiatkowska (2013) defined it as mental 

activity in formulating a problem. Korkmaz et al. (2015) expressed it as a method of problem-

solving, system design, drawing attention to the basic concepts of computer science, and 

understanding human behavior. Curzon (2015) attempted to explain computational thinking 

as a problem-solving ability for humans. According to Angeli et al. (2016), it is a thought process 

that uses the elements of abstraction. According to Şahiner and Kert (2016), it is a 

comprehensive skill that includes critical thinking, problem-solving, algorithmic thinking, and 

adapting the working style of the computer to daily life. In a joint statement by the International 

Society for Technology in Education (ISTE) and the Computer Science Teachers Association 

(CSTA), an operational definition is proposed for the ability to solve computational problems 

using computer assistance. The definition includes skills such as formulating, organizing, and 

presenting data, algorithmic thinking, transfer, and generalization. Therefore, reaching a clear 

definition of computational thinking in national and international literature may not be 

possible. However, definitions are expressed with problem-solving, algorithms, abstraction, 

and critical thinking concepts. 

2.2. Subcomponents of computational thinking 

The subcomponents of computational thinking are also characterized by varying opinions, just 

as its name and definition are. For example, Wing (2006) proposed that computational thinking 

includes problem-solving, abstraction, decomposition, intuitive thinking, and mathematical 

and engineering-based thinking. The BBC's education website in the UK includes a guide to 

computational thinking that includes decomposition, abstraction, pattern recognition, and 

algorithms. ISTE (2016) listed the subcomponents of computational thinking: data collection, 

data analysis, data presentation, decomposition, abstraction, algorithms, automation, testing, 

parallelism, and simulation. Tosik Gün and Güyer (2019) systematically reviewed the literature 

on computational thinking. The study stated that the most commonly accepted components in 

evaluating computational thinking are abstraction, algorithmic thinking, decomposition, 

testing and debugging, data literacy, sorting, and flow control structures. According to the 
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literature review conducted by Gulbahar and Kalelioglu (2015), the most frequently 

encountered subcomponents of computational thinking are understanding problem, 

decomposition, pattern finding/recognition, abstraction, algorithms, testing/debugging, 

automation, data collection/analysis, and modeling.  

The subcomponents of computational thinking have been influential in the measurement of 

this skill, and researchers have developed various tools to measure it (Dolmacı & Akhan, 2020; 

Gülbahar & Kalelioğlu, 2018; Korkmaz et al., 2015; Kukul & Karatas, 2019; Özmen, 2016). 

Similar dimensions are found in the scales developed for different participant groups (Tosik et 

al., 2019). Therefore, the most commonly seen subcomponents in the scales are abstraction, 

algorithmic thinking, decomposition, testing and debugging, and data literacy (Tosik et al., 

2019). 

2.3. Developing Computational Thinking and Scratch 

According to Weinberg (2013), there are four different approaches to developing computational 

thinking: CS Unplugged, programming tools, game or robot programming, and 

interdisciplinary applications. In addition to tools, some strategies are also used to develop 

computational thinking. Hsu et al. (2018) have summarized the strategies used to impart 

computational thinking skills to students. Some teaching approaches for computational 

thinking are problem-based, collaborative, project-based, game-based, scaffolding, storytelling, 

computational learning theory, aesthetic experience, concept-based learning, object-oriented 

learning, human-computer interaction-based learning instruction, and universal design for 

learning. When these tools and approaches are considered, the Scratch block-based 

programming environment has emerged in terms of availability and usability. One of the 

crucial reasons for its emergence is that it works with the drag and drop logic and allows even 

people without programming knowledge to use it (Resnick et al., 2009) easily, and thus 

addresses users from the lowest level to the highest level (Grover & Pea, 2013). In this 

perspective, several scratch-based programming environments and studies targeting 

computational have been conducted (Adsay et al., 2020; Ataman-Uslu et al., 2018; Oluk et al., 

2018; Vatansever, 2018; Yünkül et al., 2017). 
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2.4. The relationship among Math, Scratch, and computational thinking 

The standards ISTE (2016) put forth do not limit computational thinking to just computer 

science. In addition to computer science, computational thinking is associated with 

mathematics, science and technology, social studies, and language. Lockwood and Mooney 

(2017) mention that many studies show that computational thinking skills can be integrated 

into Biology, Physics, Math, and English courses. 

Mathematics and computational thinking are closely related to the analysis and interpretation 

of data and the communication of information. Mathematical methods, data collection and 

analysis tools, and visualizations provide an ease for students to work with large amounts of 

data. Furthermore, when students struggle to express findings in text or speech, they use 

mathematical representations, data visualizations, simulations, and graphic representations 

(Wilkerson & Fenwick, 2017). These sub-tools used in mathematics align with the sub-

components of computational thinking and show the connection between the two fields. 

Many studies in the literature have investigated the development of computational thinking 

skills through mathematical activities using Scratch. In their study, Sung et al. (2017) aimed to 

provide students with computational thinking skills through various levels of concretized 

activities, and the results showed that activities supported by computational thinking 

improved students' mathematical understanding and programming skills in Scratch Jr. 

Another study by Okuducu (2020) examined the effect of using Scratch on students' academic 

achievement and attitude towards algebra and found that Scratch-based lesson activities 

created a positive difference in their algebraic expression achievement and attitude. In another 

study, it was found that a majority of students' learning difficulties in mathematics were 

addressed with mathematical games designed with the Scratch programming tool (Çubukluöz, 

2019).  

Overall, research suggests that using Scratch programming or coding tools with Mathematics 

has an advantage. It has been concluded that when Mathematics is taught with Scratch, it is 

more successful than traditional methods (Çubukluöz, 2019; Okuducu, 2020). The fact that sub-

operations such as decomposition, abstraction, modeling, simulation, and pattern recognition 

used in programming lessons are also frequently used in mathematics lessons may facilitate 

the understanding of mathematical subjects. Based on the existing literature and various 
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experiences, it is thought that programming education with mathematical content has the 

potential to impact computational thinking. 

3. Method 

The study used a static group's pre-test, post-test week-experimental design. Since the initial 

states of the groups are crucial to understanding the effect of the manipulation of the 

independent variable on dependent variables, researchers included similar static groups in the 

study to ensure that the groups were close to each other before the experiment. However, since 

the groups could not be formed by the researcher, the study was continued with a weak 

experimental design (Fraenkel et al., 2012). In the data collection process, the students were first 

given a computational thinking test and a self-perception of computational thinking scale as 

pre-tests. Then, the experimental group was given four weeks of programming education with 

mathematical support, and the training was supported by various examples. The mathematical 

support examples include mathematics topics covered in the 6th grade Math course curriculum 

and taught in the first month of the first semester. During the same period, various in-class 

activities based on the Information Technologies and Software course were applied to the 

control group according to the teaching program. At the end of the process, the same 

measurement tools were applied as post-tests. 

3.1. Participants 

The convenience sampling method was used in the study. According to Cresswell (2012), 

convenience sampling enables the study with participants who are willing to participate and 

available for the study. After applying convenience sampling methods, the study group 

consisted of 200 students in the 6th grade at a middle school in Samsun in the 2021-2022 

academic year. The data of 176 of these students who had full pre-test and post-test data and 

students were used in the analyses. There were 89 students in the experimental group: 46 girls 

and 43 boys. In the control group, 87 students, 47 girls, and 40 boys participated in the study. 

Before participating in the study, the students had attended the Information Technologies and 

Software course in the 5th grade in a way consistent with the national instructional program 

during the first and second semesters online due to the pandemic conditions. In the second 

semester of the 5th grade, activities on introductory programming topics were carried out in 
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the code.org and Scratch environments. In this context, participant students have prior 

knowledge of programming. 

3.2. Instruments 

Computational Thinking Test (CTT) and Computational Thinking Self-Efficacy Scale (CTSES) 

were used as data collection tools. The tool used to measure the students' computational 

thinking skill levels before and after the application was developed by Román-González et al. 

(2017) and adapted to Turkish by Çetin et al. (2020). The other measurement tool is CTSES, 

which was developed by Gülbahar et al. (2019). 

CTT 

CTT is a 7-section, 28-item test developed by Román-González et al. (2017) that contains 

computer-based coding and visual coding tools. It is designed to determine computational 

thinking level in the context of programming and coding. The test measures the ability to solve 

problems and formulate equations using fundamental concepts such as loops, conditional 

structures, variables, arrays, and functions in programming languages. The original form of the 

test was developed for students in grades 7 and 8 (ages 12-14), but the developers have stated 

that it can also be used for students in grades 5-6 and 9-10. Table 3.2 shows the sections and 

number of questions in the test. When the scale is examined, it is seen that there are 28 questions 

in total, including basic sorting (4 questions), loops with a specific number of repetitions (4 

questions), loops until a condition is met (4 questions), simple conditional statements (4 

questions), complex conditional (if-else) statements (4 questions), loops that work only when a 

condition is true (4 questions), and simple functions (4 questions). 

CTSES 

Another measurement tool used in the study is CTSES, which was developed by Gülbahar et 

al. (2019). This scale consists of 5 factors and 36 items: algorithm design (9 items), problem-

solving (11 items), data processing (7 items), basic programming (6 items), and self-confidence 

(6 items). The reliability coefficients of the scale range from 0.76 to 0.93 for each dimension. 

These values provide sufficient evidence for the reliability of the scale. 
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3.3. Procedure 

The activities used in the experimental group in the study were prepared in collaboration with 

Mathematics teachers. Four activities were administered to the students in the experimental 

group. These activities were (i) operator precedence in natural numbers, (ii) calculating 

exponents, (iii) divisibility rules, and (iv) prime numbers. These activities were accompanied 

by the same programming topics in the control group, which included (i) a capital city game, 

(ii) an apple-picking game, (iii) an English word game, and (iv) a horoscope game. All activities 

were planned for 80 minutes and were carried out in the Scratch environment. The features of 

the program that would be produced and the rules it would have to meet were shared with the 

students before the activities, and necessary instructions were provided. 

In the "operator precedence in natural numbers" activity, a game design activity was carried 

out in the Scratch environment to order operations according to the operator precedence rule. 

The activity aimed for students to learn to create a new character, make their character speak 

and change their appearance, hide and show, use the send and receive commands, use 

variables, generate random numbers, and perform operations using loops and conditional 

structures. In the "calculating exponents" activity, students were asked to write a program in 

the Scratch environment that calculates the exponent of a number entered by the user as many 

times as the user enters and displays the result on the screen. The activity aimed to develop the 

students' algorithmic thinking, conditional statements, loops, variables, and mathematical 

operation skills. In the use of the "divisibility rules" activity, the students were asked to write a 

program that determines whether one of the entered numbers is exactly divisible by the other. 

This application prioritized the conditional structure, array concept, and the MOD command, 

a mathematical function. In addition, text concatenation was emphasized. The last activity of 

the experimental group was the "prime numbers" activity. In this activity, the students designed 

a program to determine whether a number is a prime number and display the result on the 

screen. The topics of variables, conditional structure, loop structure, "or" statement, MOD 

command, and text concatenation were discussed in the activity. The control group activities 

include the same programming topics in the same order as the activities in the experimental 

group. The only difference between the activity groups is that the programming concepts are 

presented in the experimental group by matching them with the contents of the mathematics 

course. 
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3.4. Data analysis 

In order to determine whether there is a difference between the groups in the sub-dimensions 

of each scale, analyses of variance (ANCOVA) were applied. Each ANCOVA was applied for 

each sub-dimension, and the pre-test results were included as a control variable in the analysis. 

In this way, the effect of the students' differences in the relevant dimension on the results at the 

beginning of the study was controlled. Before applying ANCOVA for each dimension, the 

assumptions required for this analysis were tested. These assumptions include the continuity 

of dependent, independent, and control, the groups being measured independently, the limited 

extreme values, and the residual values (residuals) normally distributed in each category 

context. When the relevant situations are examined, it is seen that all assumptions are met. In 

addition, the homogeneous distribution of variances, the linear correlation between the control 

variable and the dependent variable, the linearity of the regression lines, the homoscedasticity 

condition, and the normal distributions are also among the controlled assumptions. The 

assumption analysis of ANCOVA obtained in the study indicated that the collected data are 

appropriate for analysis.  

 

4. Result 

4.1. Computational Thinking Test 

In this section, the results of each sub-dimension of the CTT are presented. The pre-test and 

post-test responses of the experimental and control groups to the CTT were analyzed using 

ANCOVA. Based on the results obtained, whether there was development in BID skill was 

interpreted. 

Table 1.  

ANCOVA results for "Basic Sorting." 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
26.741a 2 13.37 19.05 .00 .18 

Intercept 77.466 1 77.47 110.38 .00 .39 

Pre-Test 25.950 1 25.95 36.97 .00 .18 

Group 2.387 1 2.39 3.40 .07 .02 

Error 121.418 173 .70    

Total 1626.000 176     

Corrected Total 148.159 175     
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Table 1 summarizes the ANCOVA results for the Basic Sorting dimension. In the ANCOVA 

analysis, where the post-test scores of the CTT-Basic Sorting dimension were the dependent 

variable, and the pre-test results were included as the control variable, no significant difference 

was found between the experimental and control groups. Although the difference is not 

significant (F(1.176)=19.05, p=.07), the participants in the experimental group (M=2.782) scored 

lower than the control group (M=3.017). 

  

Table 2.  

ANCOVA results for the dimension of “Loops” 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
61.629a 2 30.81 35.47 .00 .29 

Intercept 39.432 1 39.43 45.39 .00 .21 

Pre-Test 61.164 1 61.16 70.41 .00 .29 

Group .354 1 .35 .41 .52 .00 

Error 150.280 173 .87    

Total 1292.000 176     

Corrected Total 211.909 175     

Table 2 summarizes the results of ANCOVA in the dimension of "Loops ."ANCOVA did not 

show a significant difference between the experimental and control groups. Although 

participants in the experimental group (M=2.522) obtained higher scores than control group 

students (M=2.432) when controlling for pre-test results, this difference was not significant 

(F(1.176)=35.47, p=.52).  

Table 3.  

ANCOVA results for the "Loops Until Condition Is Met" 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
32.562a 2 16.28 16.38 .00 .16 

Intercept 47.866 1 47.87 48.15 .00 .22 

Pre-Test 31.477 1 31.48 31.67 .00 .15 

Group .466 1 .47 .47 .49 .00 

Error 171.984 173 .99    

Total 974.000 176     

Corrected Total 204.545 175     

Table 3 summarizes the ANCOVA results for the "Loops Until Condition Is Met" dimension. 

The ANCOVA analysis, in which the CTT "Loops Until Condition Is Met" test scores were the 
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dependent variable and pre-test scores were the control variable, did not find a significant 

difference between the experimental and control groups. Therefore, although participants in 

the experimental group (M=2.142) scored higher than students in the control group (M=2.039), 

this difference was not significant (F(1.176)=16.38, p=.49). 

Table 4.  

ANCOVA results for "Simple Conditional Statements” 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
14.258a 2 7.13 5.80 .00 .06 

Intercept 108.784 1 108.78 88.46 .00 .34 

Pre-Test 14.154 1 14.15 11.51 .00 .06 

Group .451 1 .45 .37 .55 .00 

Error 212.737 173 1.23    

Total 695.000 176     

Corrected Total 226.994 175     

Table 4 summarizes the ANCOVA results for the "Simple Conditional Statements" dimension. 

The ANCOVA analysis, in which the CTT "Simple Conditional Statements" post-test scores 

were the dependent variable and pre-test scores were the control variable, did not find a 

significant difference between the experimental and control groups. Therefore, participants in 

the experimental group (M=1.580) scored lower than students in the control group (M=1.682), 

but this difference was not significant (F(1.176)=5.80, p=.55). 

Table 5.  

ANCOVA results for the "Complex Conditional Statements” 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
22.761a 2 11.38 9.96 .00 .10 

Intercept 83.546 1 83.55 73.10 .00 .30 

Pre-Test 20.814 1 20.81 18.21 .00 .09 

Group 1.800 1 1.80 1.57 .21 .01 

Error 197.733 173 1.14    

Total 763.000 176     

Corrected Total 220.494 175     

Table 5 summarizes the ANCOVA results for the "Complex Conditional Statements" 

dimension. The ANCOVA analysis, in which the CTT "Complex Conditional Statements" post-

test scores were the dependent variable and pre-test scores were the control variable, did not 

find a significant difference between the experimental and control groups. Therefore, 
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participants in the experimental group (M=1.656) scored lower than students in the control 

group (M=1.858), but this difference was not significant (F(1.176)=9.96, p=.21). 

Table 6.  

ANCOVA results for the "Loops While Condition Is True” 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
11.018a 2 5.51 6.32 .00 .07 

Intercept 55.440 1 55.44 63.56 .00 .27 

Pre-Test 10.563 1 10.56 12.11 .00 .06 

Group .402 1 .40 .46 .50 .00 

Error 150.891 173 .87    

Total 546.000 176     

Corrected Total 161.909 175     

Table 6 summarizes the ANCOVA results for the "Loops While Condition Is True" dimension. 

The ANCOVA analysis, in which the "Loops While Condition Is True" post-test scores were the 

dependent variable and pre-test scores were the control variable, did not find a significant 

difference between the experimental and control groups. Therefore, participants in the 

experimental group had lower pre-test scores (M=1.430) than students in the control group 

(M=1,526), but this difference was not significant (F(1.176)=6.32, p=.50). 

Table 7.  

ANCOVA results for “Basic Functions” 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected Model 38.211a 2 19.10 13.77 .00 .13 

Intercept 53.394 1 53.39 38.49 .00 .18 

Pre-Test 38.211 1 38.21 27.55 .00 .14 

Group .002 1 .00 .00 .97 .00 

Error 239.970 173 1.39    

Total 860.000 176     

Corrected Total 278.182 175     

Table 7 summarizes the results of ANCOVA in terms of "Basic Functions". According to the 

ANCOVA analysis, in which the post-test scores of the Basic Functions were the dependent 

variable, and the pre-test results were the control variable, no significant difference was found 

between the experimental and control groups. According to this table, although the participants 

in the experimental group (M=1.815) scored lower than the students in the control group 

(M=1.821), this difference was not significant (F(1.176)=13.77, p=.97). 
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4.2. Computational Thinking Self-Efficacy  

Table 8.  

ANCOVA results in terms of Algorithm Design Self-Efficacy. 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
729.757a 2 364.88 18.59 .00 .18 

Intercept 2049.913 1 2049.91 104.42 .00 .38 

Pre-Test 687.004 1 687.00 34.99 .00 .17 

Group 13.823 1 13.82 .70 .40 .00 

Error 3396.237 173 19.63    

Total 68539.000 176     

Corrected Total 4125.994 175     

Table 8 summarizes the results of ANCOVA in terms of Algorithm Design Self-Efficacy. 

According to the ANCOVA analysis, in which the post-test scores of Algorithmic Design Self-

Efficacy were the dependent variable, and the pre-test results were the control variable, no 

significant difference was found between the experimental and control groups. Despite scoring 

higher than the students in the control group (M=18.846), the participants in the experimental 

group (M=19.409) did not have a significant difference (F(1.176)=18.59, p=.40). 

Table 9.  

ANCOVA results in terms of Problem-Solving Efficacy 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
573.810a 2 286.90 29.01 .00 .25 

Intercept 334.666 1 334.67 33.84 .00 .16 

Pre-Test 560.393 1 560.39 56.67 .00 .25 

Group 17.996 1 18.00 1.82 .18 .01 

Error 1710.826 173 9.89    

Total 106172.000 176     

Corrected Total 2284.636 175     

Table 9 summarizes the results of ANCOVA in terms of Problem-Solving Self Efficacy. 

According to the ANCOVA analysis, in which the post-test scores of Problem-Solving 

Competence were the dependent variable, and the pre-test results were the control variable, no 

significant difference was found between the experimental and control groups. When 

controlling for pre-test results, the participants in the experimental group (M=23.979) scored 

lower than the students in the control group (M=24.619), but this difference was not significant 

(F(1.176)=29.01, p=.18). 
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Table 10.  

ANCOVA results in terms of the Data Processing Efficacy 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
260.643a 2 130.32 11.95 .00 .12 

Intercept 1611.190 1 1611.19 147.75 .00 .46 

Pre-Test 247.865 1 247.86 22.73 .00 .12 

Group 12.545 1 12.54 1.15 .28 .01 

Error 1886.578 173 10.90    

Total 46027.000 176     

Corrected Total 2147.222 175     

Table 10 summarizes the results of the ANCOVA in terms of the dimension of Data Processing 

Efficacy. In the ANCOVA, the Data Processing efficacy final test scores constituted the 

dependent variable, and the pre-test results were the control variable. No significant difference 

was found between the experimental and control groups. Participants in the experimental 

group (M=16.054) scored higher on the pre-test than the control group (M=15.520), but this 

difference was not significant at a meaningful level (F(1.176)=11.95, p=.28). 

Table 11.  

ANCOVA results in terms of the Basic Programming Efficacy 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
171.025a 2 85.51 14.05 .00 .14 

Intercept 817.348 1 817.35 134.28 .00 .44 

Pre-Test 156.330 1 156.33 25.68 .00 .13 

Group 11.012 1 11.01 1.81 .18 .01 

Error 1053.015 173 6.09    

Total 22807.000 176     

Corrected Total 1224.040 175     

Table 11 summarizes the results of the ANCOVA in terms of the dimension of the Basic 

Programming Efficacy. The ANCOVA results showed no significant difference between the 

experimental and control groups; the Basic Programming Competence final test scores were 

the dependent variable, and the pre-test results were the control variable. According to this 

table, although participants in the experimental group (M=11.321) scored higher on the pre-test 

than the students in the control group (M=10.821), this difference was not significant at a 

meaningful level (F(1.176)=14.05, p=.18). 
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Table 12.  

ANCOVA results in terms of Self-Confidence 

Source 

Type III Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Corrected 

Model 
99.487a 2 49.74 11.51 .00 .12 

Intercept 487.262 1 487.26 112.70 .00 .39 

Pre-Test 92.962 1 92.96 21.50 .00 .11 

Grup 4.732 1 4.73 1.09 .30 .01 

Error 747.945 173 4.32    

Total 25952.000 176     

Corrected Total 847.432 175     

Table 12 summarizes the results of the ANCOVA in terms of the dimension of the Self-

Confidence ANCOVA in terms of the dimension of the Self-Confidence. No significant 

difference was found between the experimental and control groups with control in the pre-test 

scores. Participants in the experimental group (M=11.781) scored lower on the pre-test when 

the results of the control group (M=12.109) were controlled, but this difference was not 

significant at (F(1.176)=11.51, p=.30). 

5. Discussion and Conclusion 

Studies have been conducted to understand the role of information technology and 

mathematics lessons in acquiring computational thinking skills (Cui & Ng, 2021; Ng & Cui, 

2021; Sung & Black, 2020). This study examines the role of activities that present the gains from 

these two subjects together in developing Computational Thinking skills. Toward this end, 

activities designed for middle school 6th-grade students were implemented. Experimental 

group students applied supported activities on topics included in the teaching program of the 

first term mathematics lesson order of operations, negative numbers, division rules, and prime 

numbers) using the Scratch program, while the control group students carried out game design 

activities according to the information technology and software teaching program using the 

Scratch program. In the research in which the pre-test-post-test-control-group design was used, 

the students' mean scores obtained from CTT and CTSES were compared. 

5.1. Computational Thinking Skills 

In the CTT scope, there are seven sub-dimensions: basic sorting, loops that repeat a specific 

number of times, loops that run until a condition is met, simple conditional statements and 

complex conditional statements, loops that run as long as the condition is true and simple 
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functions. The experimental process result indicated no statistically significant difference 

between the experimental and control group students in any dimension. Since the basic sorting 

dimension consists of relatively easy questions that include coding (move forward, turn right, 

and turn left) operations at an introductory level,  it can be thought that both groups scored at 

similar levels. In addition, existing pedagogical and methodological might not provide a 

fundamental to merge math and introductory computer science education (Nordby et al., 2022).  

Students in both groups have carried out block-based coding activities in their 5th-grade 

Information Technology and Software classes and are experienced in this regard. Indeed, Çetin 

et al. (2020) showed that as the class level increases, Computational Thinking scores also 

increase accordingly. Therefore, taking information technology-oriented lessons and having 

content that can contribute to computational thinking in different lessons may have also 

positively affected students' natural cognitive development process. As in many points reached 

in the study, this situation may have caused no significant difference between the experimental 

and control groups in the basic sorting dimension. According to Durak and Saritepeci (2018, p. 

200), computational thinking is highly predicted by ways of thinking, maths class academic 

success, attitude against maths class, level of education, science class academic success, 

information technologies academic success, attitude against information technologies class, sex, 

IT usage experience, period of daily internet use and attitude against science class. This 

situation may have also reduced the effect of the experimental process.  

When the pre-test scores were controlled, there was no significant difference between the 

experimental and control group students in the section on loops that repeated a specific number 

of times. However, the students in the experimental group scored higher, although not at a 

significant level, than those in the control group. This dimension consists of questions that 

require a specific operation or operations to be repeated a specific number of times. These 

questions require the student to identify repeating patterns, determine the number of 

repetitions, and order the codes accordingly if any errors exist. Therefore, it can be thought that 

the activities with mathematics support in the experimental group positively affected the 

student's performance in this field. As in the basic sorting dimension, when the student's 

natural development is thought to affect the computational thinking skill, the possibility of 

obtaining a non-significant but higher difference in the loop dimension in a purified 

environment from these effects emerges. Therefore, using concepts such as pattern recognition 
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in computer science can contribute significantly to information processing thinking skills. In 

fact, within the scope of CT skills, students must recognize when algorithm steps are repeated, 

while at the same time, it is common in mathematics to repeat a primary step, such as adding a 

unit to achieve a broader goal or placing a length unit in order to perform a task. The 

relationship between these two disciplines is thought to be synergistic (Rich et al., 2019). 

The dimension of "loops with a specific number of repetitions" consists of repetitive operations 

that require proper ordering until a condition is met. When controlling for pre-test scores in 

this dimension, it was found that although the experimental group of students scored higher 

than the control group, the difference was insignificant. For example, in an activity related to 

prime numbers, the students in the experimental group used the concept of loops to determine 

whether a number is prime or not while adhering to certain conditions. In this context, it can 

be argued that such activities support students' development in this area. Indeed, it can be said 

that activities in the context of mathematics classes have the potential to be transferred to 

programming education in terms of being concrete, containing concepts encountered in daily 

life, and being frequently used, for example, when subtracting a large number from a small 

number, there is a back-repeating counting process and a stopping point (Cui & Ng, 2021). 

No significant difference between the experimental and control groups regarding simple and 

complex conditional statements was found. However, the students in the control group did 

score higher than the experimental group, albeit not significantly. In that dimension, simple 

conditional statements were asked but presented within repetitive loops until the condition 

was met. Similarly, in the questions of the complex conditional statements dimension, the 

questions were given again within repetitive loops until the condition was met. However, the 

condition structure was presented with multiple options: "If...then... Else...". It is possible that 

the activities the students in the control group applied had more conditional statements, which 

may have led to more support for these students in this area. Indeed, Cui and Ng (2021) pointed 

out that students' difficulties in learning a computational thinking environment and in the 

process that includes mathematical concepts and problem-solving applications are combined. 

Therefore, in mathematics-supported programming education, the experimental group 

students' effort to learn mathematical and programming concepts together may lead them to 

choose various ways in terms of prioritizing mathematics or programming. In this context, 

experimental group students might give priority to mathematical concepts. In addition, the 
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limited presence of essential mathematical topics and topics containing simple or complex 

conditional statements in the education process that students have received until 6th grade may 

have limited the potential difference to be in favor of the experimental group. Therefore, 

conditional statements in the created mathematical activities may have been limited. As 

mentioned above, the presence of game design-based activities in the control group and the 

need for many conditional structures from simple to complex in the nature of games may have 

led to the control group scoring higher, even if the result was not significant. 

5.2. Computational Thinking Self-Efficacy 

The Algorithm Design self-efficacy includes topics such as what an algorithm is, creating simple 

and conditional algorithms, predicting the algorithm's output, and debugging. It was observed 

that the views of the students in the experimental group on these topics were higher than those 

of the control group, even if the difference was not statistically significant. While solving 

mathematical problems, students naturally perform algorithm design stages, which may have 

led the experimental group students to see themselves as more competent in algorithms. 

Indeed, Lockwood et al. (2016) defined algorithmic thinking as a logical, organized way of 

breaking down a complex goal into a series of (sequential) steps using existing tools. It can be 

argued that mathematics-supported programming activities contain more concrete examples 

that support students' algorithmic thinking skills. 

When examining the pre-test results in the dimension of Problem-Solving self-efficacy, it is 

observed that the students in the experimental group scored lower than the control group 

students, but the difference is insignificant. This dimension includes topics related to problem-

solving skills. Mathematics is one of the most challenging subjects for students. The perception 

of mathematics as brutal may also have led to a decreased perception of problem-solving skills. 

The cognitive load of the primary programming education taught with mathematical activities 

may have increased for students, reducing their perception of problem-solving competency. 

Similarly, Psycharis and Kallia (2017) found that mathematics and programming education did 

not significantly affect students' problem-solving skills. Therefore, more research is needed to 

clarify the reasons for this situation. 

The questions in the Basic Programming self-efficacy include topics such as variables, 

conditional structures, loops, and arithmetic operators. The students in the experimental group 
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scored higher, albeit not at a statistically significant level, than the control group students. This 

could be attributed to the fact that the mathematical activities included in the experimental 

group also involved the use of arithmetic operators, which may have increased the students' 

confidence in their abilities related to basic programming skills. Opposite results were gained 

from the examination of the self-confidence dimension. The control group students' firmer 

belief in their programming abilities may be attributed to their exposure to more complex 

activities and more remarkable development in abstraction, decomposition, algorithmic 

thinking, and problem-solving while designing games. 

Despite the insignificant differences and reasons discussed in the self-efficacy, it should be 

noted that these differences are pretty slight and that a variety of factors, such as the 

environment in which the activity took place, different variables related to the students, and 

information learned in other classes may have contributed to the slight differences observed. 

Additionally, the differences that emerged may have been random and have the potential to 

evolve differently in repeated measurements. Therefore, it is recommended to approach the 

relevant results in the aforementioned situations with caution. Due to the commonalities in the 

nature of mathematics and programming, it is recommended that in-depth studies should be 

carried out. In this context, the relationship between mathematics and each dimension of 

computational thinking skills should be focused. In particular, the experimental investigation 

of cognitive skills such as algorithmic thinking and problem-solving and the investigation of 

the effect of programming activities will reveal essential findings in the field. 
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