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COMPARATIVE ANALYSIS OF GENETIC AND GREEDY 
ALGORITHM FOR OPTIMAL DRONE FLIGHT ROUTE 

PLANNING IN AGRICULTURE

ABSTRACT

In this study, the performance of the Genetic Algorithm (GA) in optimizing the 
agricultural drone flight route was compared with the Greedy Algorithm, revealing 
that GA produce routes that are, on average, 17.44 % more efficient. This efficiency, 
measured over 500 generations in a static field model, suggests substantial potenti-
al for saving resources and time in agricultural operations. Despite the effectiveness 
of the GA, its computational intensity limits real-time field applications, but offers 
advantages in offline route planning for pre-mapped areas. A t-test between flight 
lengths which are created by the algorithms highlighted a significant difference, 
with a p-value of approximately 7.18×10−9, indicating the GA’s superior performan-
ce. Future research should aim to bridge the gap between the simplified binary field 
model used in simulations and the complexities of real-world agricultural landsca-
pes to improve the practical deployment of GAs in drone route optimization.

Keywords: Agricultural Drone, Drone Route Optimization, Offline Route 
Planning.



TARIMDA OPTIMAL DRONE UÇUŞ ROTASI PLANLAMASI 
IÇIN GENETIK VE AÇGÖZLÜ ALGORITMANIN 

KARŞILAŞTIRMALI ANALIZI

ÖZ

Bu çalışmada Genetik Algoritmanın (GA) tarımsal dronların uçuş rotasını 
optimize etmedeki performansı Açgözlü Algoritma ile karşılaştırılmıştır. GA’nın 
ortalama %17,44 daha kısa rotalar ürettiği görülmüştür. Statik olarak simüle edilen 
bir saha modelinde, genetik algoritmada 500 nesil üzerinden ölçülen bu verimlilik, 
tarımsal faaliyetlerde kaynak ve zaman tasarrufu açısından önemli bir potansiye-
le işaret etmektedir. GA’nın etkinliğine rağmen hesaplama yoğunluğu, gerçek za-
manlı saha uygulamalarını sınırlandırmaktadır, ancak önceden uygulama haritası 
hazırlanmış alanlar için çevrimdışı rota planlamada avantajlar sunmaktadır. Algo-
ritmaların rastgele olarak üretilen uçuş simülasyonlarında üretmiş oldukları rota 
uzunlukları arasında t-testi kullanılarak yapılan karşılaştırmada GA tarafından 
üretilen rotaların istatistiksel olarak anlamlı seviyede kısa olduğu görülmüştür 
(p=7.18×10−9). Gelecekteki araştırmalarda, GA’ların dron rota optimizasyonun-
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da pratik kullanımını geliştirmek için simülasyonda kullanılan basitleştirilmiş 
model ile gerçek dünya uygulamalarındaki karmaşıklık arasında bulunan farkla-
rı gidermek amaçlanacaktır.

Anahtar Kelimeler: Dron Rota Optimizasyonu, Çevrimdışı Rota Planlama, 
Tarımsal Dron.



1. INTRODUCTION

For agricultural purposes, optimizing the shortest flight route for drone flight is 
essential because it directly influences the efficiency and effectiveness of crop ma-
nagement and monitoring. Precision agriculture relies on drones to perform tasks 
such as spraying pesticides, fertilizing, seeding, and surveying crops (Banpurkar et 
al., 2021; Chen et al., 2021; Marzuki et al., 2021; Rachmawati et al., 2021; Hafeez, 
et al., 2022). By ensuring the shortest and most efficient routes, drones can cover 
more acreage with less battery usage and time, reducing operational costs and en-
vironmental impacts (Agrawal et al., 2021; Vazquez-Carmona et al., 2022). This 
optimization leads to more targeted application of agricultural inputs, minimizing 
waste, and maximizing crop yields. Essentially, the shortest flight route maximizes 
the benefits of drone technology in precision agriculture, leading to smarter and 
more sustainable farming practices (Srivastava et al., 2020).

Currently, various algorithms and technologies are employed to determine the 
optimal flight routes for tasks such as drone flight in agriculture. These include 
classical approaches such as Dijkstra’s and A* for static environments and more 
sophisticated methods such as genetic algorithms, ant colony optimization, and 
particle swarm optimization, which can handle dynamic and complex scenarios 
(Abdulsaheb and Kadhim, 2023; Sundarraj et al., 2023; Wu et al., 2023). Machi-
ne learning models, particularly reinforcement learning, are increasingly used to 
adapt to changing conditions and to learn from the environment (Qu et al., 2020; 
Yan et al., 2020). Additionally, real-time data processing with geographic informa-
tion system (GIS) and global positioning system (GPS) integration allows for the 
adjustment of flight paths based on immediate environmental feedback, such as 
weather changes or crop growth patterns (Manfreda and Eyal, 2023). These metho-
ds are complemented by advances in sensor technology and data analytics, enab-
ling more precise mapping and monitoring, which in turn leads to more efficient 
flight-route planning and resource use (Pepe et al., 2018; Yu and Zhang, 2015).

Genetic algorithms (GAs) offer a robust and flexible approach for searching 
for optimal routes, particularly in complex and multi-dimensional spaces where 
traditional algorithms might falter (Li et al., 2020; Zhai and Feng, 2022; Zou et al., 
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2023). Their evolutionary nature allows them to explore a vast search space and 
avoid being trapped in local optima, making them highly effective for problems 
such as route optimization, where the landscape of possible solutions is rugged and 
full of potential pitfalls. GAs can simultaneously evaluate many different routes, le-
arning, and improving over successive generations, which enables them to converge 
on a highly efficient solution, even in the face of constraints and varying conditions. 
This adaptability, coupled with their ability to incorporate real-world variables and 
heuristics into their fitness functions, makes genetic algorithms a powerful tool for 
finding optimal routes in dynamic environments, such as drone navigation in agri-
culture, where terrain, obstacles, and areas of interest can change over time.

The purpose of this study is to create an algorithmic solution that can find an 
efficient flight route for spraying a field with certain areas that require treatment. 
The field was represented as a grid, with some cells needing spraying (black) and 
others not (white). The algorithmic solution aims to determine the shortest possib-
le route that covers all areas that need spraying, which is analogous to the Traveling 
Salesman Problem (TSP) (Cheikhrouhou and Khoufi, 2021).

In this study, we used two algorithms to solve this optimization problem. The 
Genetic Algorithm (GA) uses evolutionary strategies to refine solutions across ge-
nerations, aiming to minimize flight routes and find the most efficient route in 
terms of length. Conversely, the Greedy Algorithm selects the closest next point at 
each step to build a solution, ensuring that all required points are visited.

The program compares these two approaches by plotting the flight routes and 
calculating the total distance length of each route. This comparison can help to 
understand the strengths and weaknesses of each algorithm.

2. MATERIAL AND METHODS

2.1. Simulation Grid Design and Probabilistic Data Generation

The study area was a simulated grid that reflected the variability of an actual 
field. The study was conducted over a 10x10 grid for simplicity to represent an 
agricultural field. Every grid has 1m by 1m side lengths. Data on areas requiring 
spraying were generated using a random binary distribution with a 70 % probabi-
lity for non-spray zones and 30 % probability for spray zones (Hussain et al., 2020; 
Leshkenov, 2023), simulating patches of crops requiring treatment.
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2.2. Algorithm Implementation

Two algorithms were implemented for route optimization: A Genetic Algo-
rithm (GA) and a Greedy Algorithm. The GA was developed using Distributed 
Evolutionary Algorithms in Python (DEAP) library (Fortin et al., 2012), which 
facilitated the creation of a population of potential routes, the definition of a fitness 
function based on the total route length and a penalty for inefficient moves, and 
the application of evolutionary operators such as crossover, mutation, and selec-
tion. The Greedy Algorithm is custom-coded to iteratively select the nearest un-
visited point. The GA’s implementation through the DEAP library showcases the 
use of evolutionary concepts to optimize the route, whereas the Greedy Algorithm 
provides a baseline for comparison with GA.

Figure 1. Greedy Algorithm

Figures 1 and 2 provide the visual workflows for the Greedy and Genetic al-
gorithms, respectively, applied to route optimization. Figure 1 outlines a straight-
forward Greedy Algorithm that selects the nearest unvisited node until all nodes 
are covered, and returns to the start upon completion. In contrast, Figure 2 pre-
sents a Genetic process, which begins by initializing a population of solutions and 
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iteratively evolves this population through a series of generations using genetic 
operations until the maximum number of generations is reached; subsequently, the 
best solution is selected.

Figure 2. Genetic Algorithm

2.3. Route Optimization Process

For the GA, a population of 10000 routes was evolved over 500 generations 
with a crossover probability of 0.8 and a mutation probability of 0.1. The Greedy 
Algorithm starts at a fixed point and sequentially adds the nearest unvisited point 
to the route. Both algorithms aimed to minimize the total distance traveled while 
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ensuring that all required points were visited. We conducted an objective evalua-
tion of both methods, focusing on the total flight length, which is a critical factor 
for operational efficiency.

2.4. Evaluation Metrics

The performance of the algorithms was assessed based on the total flight length 
of the final route. The GA fitness over generations was plotted to visualize the op-
timization process. The route length difference between the greedy algorithm and 
the GA was calculated using the following formula:

Vg: Flight route lenght of greedy algorithm

Vge: Flight route length of genetic algorithm

2.5. Visualization

The routes generated by both algorithms were visualized using Matplotlib 
(Hunter, 2007) to compare their efficiency and coverage. The visualization inclu-
des the sequence of points visited and the total distance covered by each algorithm. 
Visualization plays a key role in interpreting the results, offering an intuitive un-
derstanding of the performance of each algorithm.

3. RESULTS AND DISCUSSIONS

In the context of a Genetic Algorithm (GA) applied to optimize flight route 
planning, a population of 10000 possible routes was subjected to an evolutionary 
process spanning 500 generations. GA employs a fitness function designed to eva-
luate and minimize the total length of each flight route. Through iterative refine-
ment across generations, the algorithm seeks to progressively reduce the cumula-
tive travel length, thereby enhancing route efficiency. Figure 3-4(a) illustrates the 
progression of the fitness function over these generations, visually depicting the 
improvement in the route optimization. Subsequently, Figures 3-4(b) and 3-4(c) 
provide comparative visualizations of the flight routes as determined by the Ge-
netic Algorithm and the greedy algorithm, respectively. These figures show the 
outcomes of both algorithms in terms of route efficiency, with the Genetic Algo-
rithm typically outperforming the Greedy Algorithm by producing shorter and 
more efficient routes.

(1)
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Figure 3. Sample flight route generated by genetic and greedy algorithms

Figure 4. Sample flight route generated by genetic and greedy algorithms
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Figure 5. Comparison of total flight route length for greedy 
and genetic algorithms

The boxplot provides a visual comparison of the total flight route lengths calcu-
lated using greedy and genetic algorithms (Figure 5). The central line in each box 
represents the median of the data, which provides a sense of the central tendency 
for the flight length of each algorithm. The boxes themselves span from the first 
quartile (Q1) to the third quartile (Q3), representing the middle 50% of the data, 
providing insight into the distribution and spread. The “whiskers” extend from the 
boxes to show the range of the data, excluding outliers that are plotted as individual 
points beyond the whiskers. From this plot, we can discern that the Greedy Algo-
rithm tends to have longer flights than the Genetic Algorithm, as indicated by the 
position of the median and the spread of the data. The outliers in each algorithm 
suggest the presence of cases in which the total flight length is significantly diffe-
rent from typical ranges. We believe that this was due to the stochastic nature of the 
random simulation environment in each trial.

Upon a deeper analysis of the boxplot data, we found that the Greedy Algorit-
hm had a higher average total flight length at approximately 57.91 m compared to 
the Genetic Algorithm’s average of approximately 49.37 m. This indicates that on 
average, the Greedy Algorithm tends to produce longer flight routes.

The median value was slightly lower than the average for the Greedy Algorit-
hm at approximately 57.35 m, suggesting a slightly skewed distribution of data. In 
contrast, the median flight length for the Genetic Algorithm was almost equal to 
its average at approximately 49.65 m, which implies a more symmetric distribution 
of data points around the center.

The Greedy Algorithm also showed greater variability in its results, with a stan-
dard deviation of approximately 7.66 m, as opposed to the Genetic Algorithm’s 
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standard deviation of approximately 5.86 m. This greater spread is reflected in 
the broader interquartile range (IQR), which goes from approximately 53.81 m to 
61.71 m for the Greedy Algorithm, compared to the Genetic Algorithm’s IQR from 
approximately 45.58 m to 53.08 m. The minimum and maximum values indicate 
the range of the data, with the Greedy Algorithm ranging from 36.15 m to 74.3 m 
and the Genetic Algorithm ranging from 31.79 m to 61.11 m.

In summary, the Greedy Algorithm not only averaged higher total flight route 
lengths but also had a wider range of outcomes, suggesting less consistency in the 
flight route lengths it produced compared to the Genetic Algorithm.

Figure 6. Flight route length difference of greedy algorithm compared to 
genetic algorithm

The bar plot shows the percentage difference in flight route lengths between 
the Greedy and Genetic algorithms across a series of trials (Figure 6). Each bar 
corresponds to a single trial, and the height represents the percentage by which 
the flight length of the greedy algorithm is greater or less than that of the genetic 
algorithm for that trial. The average percentage difference across all trials was ap-
proximately 17.44 %, indicating that, on average, the flight distance of the greedy 
algorithm was approximately 17.44 % longer than that of the Genetic algorithm.

Overall, these statistics suggest that, although the Genetic Algorithm generally 
outperforms the Greedy Algorithm in finding shorter flight routes in every trial, 
the extent of this advantage can vary. In some cases, the Greedy Algorithm ap-
proached the efficiency of the Genetic Algorithm, there were instances where the 
greedy algorithm was much less efficient. This was because of the stochastic nature 
of the simulation environment.

After conducting a statistical analysis comparing the flight route lengths of the 
Greedy and Genetic algorithms, we first assessed the normality of the data. The 
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Shapiro-Wilk test returned p-values of 3.03x10-1 for the Greedy Algorithm and 
5.02x10-1 for the Genetic Algorithm, both well above the 0.05 threshold, suggesting 
that the data for both algorithms are normally distributed. Next, we evaluated the 
homogeneity of variances using Levene’s test, which yielded a p-value of 1.61x10-1, 
indicating no significant difference in variances between the two groups. Because 
the dataset satisfied the criteria of normal distribution and homogeneity of vari-
ance, we applied the t-test to check if there was a statistical difference between the 
flight routes created by both algorithms. An independent samples t-test was per-
formed, resulting in a p-value of approximately 7.18×10−9 and a t-statistic of 6.325, 
indicating a statistically significant difference in the flight distances generated by 
the two algorithms. The analysis implies that the Greedy Algorithm consistently 
produces longer flight distances than Genetic Algorithm, with a high degree of 
statistical significance. This improvement in path efficiency can translate into subs-
tantial cost savings and operational efficiency in a real-world agricultural context.

The GA’s ability to explore a diverse set of potential solutions and its use of 
evolutionary operators allows it to avoid local optima and discover more efficient 
routes (Niu et al., 2020). Over the course of 500 generations, the GA demonstra-
ted a clear convergence towards optimal solutions, as evidenced by the decreasing 
trend in the fitness values of the population.

The Greedy Algorithm, while faster in producing a solution, does not have me-
chanisms to escape local optima, leading to suboptimal paths (Li et al., 2022). The 
heuristic of choosing the nearest next point did not account for the overall route 
efficiency, which resulted in a longer total length when all points were visited.

The results underscore the effectiveness of GAs in solving complex optimizati-
on problems, such as route planning for drones in precision agriculture (Mukha-
mediev et al., 2023; Zou et al., 2023). The 17.44 % reduction in route length by GA 
can lead to reduced fuel or battery consumption, lower labor costs, and a decrease in 
the time required to complete the spraying operations (Basiri et al., 2022). These fa-
ctors are critical in large-scale farming operations where efficiency gains can lead to 
significant economic and environmental benefits (Edwards, 2020; Delay et al., 2022).

However, it is important to note that the GA requires a more substantial com-
putational effort than the Greedy Algorithm. The trade-off between the solution 
quality and computational resources is a key consideration in the practical appli-
cation of these algorithms. For time-sensitive applications, a hybrid approach can 
be considered, where the Greedy Algorithm provides a quick initial solution that 
the GA can further refine in more time. Alternatively, the method can be employed 
for offline route planning for agricultural drones, as demonstrated in scenarios in 
which a pre-existing application map is available.
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The study also opens up avenues for future research, such as the integration of 
real-time data to dynamically adapt the flight route to changing field conditions or 
the application of other metaheuristic algorithms that could offer a better balance 
between solution quality and computational time.

In conclusion, while the GA provided a more efficient solution in terms of route 
length, the choice of algorithm should be guided by the specific requirements of 
the agricultural operation, including the size of the field, urgency of the task, and 
available computational resources.

4. CONCLUSION

This study demonstrated the utility of Genetic Algorithms (GA) in optimizing 
drone flight routes for agricultural spraying, achieving a 17.44 % reduction in the 
average route length compared with the Greedy Algorithm. The robustness of the 
GA in finding near-optimal solutions highlights its potential for enhancing opera-
tional efficiency in precision agriculture, leading to reduced resource consumption 
and time savings.

Despite these promising results, this study has some limitations. The primary 
constraint lies in the computational demands of GA, which may limit its real-time 
application in the field. The simulation was conducted on a static field model, whi-
ch does not account for dynamic environmental factors, such as changing weather 
conditions, variable crop growth stages, or unexpected obstacles that could affect 
the drone’s flight route.

However, the computational intensity of genetic algorithms (GA) is less of a 
hindrance when applied to offline route planning for agricultural drones. With 
pre-mapped application fields, GA can be executed on powerful computers wit-
hout the urgency of real-time decision-making, allowing for detailed and extensive 
optimization processes. This offline planning enabled the algorithm to incorporate 
complex field data, historical patterns, and predictive models to devise highly effi-
cient flight paths. Consequently, drones can be deployed with pre-optimized routes 
that maximize coverage and efficiency, significantly benefiting resource manage-
ment while mitigating the risks associated with dynamic in-field variables. Anot-
her limitation is the reliance of the study on a binary representation of spray areas, 
which may oversimplify the complexity of actual agricultural landscapes.

Furthermore, this study did not consider the energy consumption of the drone 
during flight, which could be a significant factor in the practical implementation of 
flight paths. Future research could incorporate a more detailed energy model and 
test the algorithms in a dynamic and realistic setting.
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In conclusion, while the GA shows significant promise for improving the ef-
ficiency of agricultural drone operations, its practical application requires add-
ressing computational challenges and considering the complexities of real-world 
agricultural environments. Future studies should aim to refine the algorithms to 
handle dynamic and complex conditions better, potentially through the integrati-
on of real-time data and adaptive path planning capabilities.

Conflict of Interest

The authors declare that there is no conflict of interest.

Ethics

This study does not require ethics committee approval.

REFERENCES
Abdulsaheb, J.A., Kadhim, D.J., 2023. Classical and heuristic approaches for mobile robot path planning: A survey. 

Robotics, 12(4), 93. doi: 10.3390/robotics12040093.
Banpurkar, R., Raut, A.K., Ramteke, P.P., Prajapati, A.S., Sevaklal, A., Gautam, G.A.D., Bambole, A.S., 2021. Fertilizer 

Spraying UAV-A Review on Agriculture Drone.
Basiri, A., Mariani, V., Silano, G., Aatif, M., Iannelli, L., Glielmo, L., 2022. A survey on the application of path-planning 

algorithms for multi-rotor UAVs in precision agriculture. The Journal of Navigation, 75(2), 364-383. doi: 
10.1017/S0373463321000825.

Cheikhrouhou, O., Khoufi, I., 2021. A comprehensive survey on the Multiple Traveling Salesman Problem: Applica-
tions, approaches and taxonomy. Computer Science Review, 40, 100369. doi: 10.1016/j.cosrev.2021.100369.

Chen, C.J., Huang, Y.Y., Li, Y.S., Chen, Y.C., Chang, C.Y., Huang, Y.M., 2021. Identification of fruit tree pests with 
deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21986-
21997. doi: 10.1109/ACCESS.2021.3056082.

Delay, N.D., Thompson, N.M., Mintert, J.R., 2022. Precision agriculture technology adoption and technical efficien-
cy. Journal of Agricultural Economics, 73(1), 195-219. doi: 10.1111/1477-9552.12440.

Edwards, C.A., 2020. The importance of integration in sustainable agricultural systems. In Sustainable agricultu-
ral systems (pp. 249-264). CRC Press

Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C., 2012. DEAP: Evolutionary algorithms made 
easy. The Journal of Machine Learning Research, 13(1), 2171-2175.

Hafeez, A., Husain, M.A., Singh, S.P., Chauhan, A., Khan, M.T., Kumar, N., Chauhan, A., Soni, S.K., 2022. Implementation 
of drone technology for farm monitoring & pesticide spraying: A review. Information processing in Agri-
culture. doi: 10.1016/j.inpa.2022.02.002.

Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing in science & engineering, 9(03), 90-95.
Hussain, N., Farooque, A. A., Schumann, A. W., McKenzie-Gopsill, A., Esau, T., Abbas, F., Acharya, B. & Zaman, Q. (2020). 

Design and development of a smart variable rate sprayer using deep learning. Remote Sensing, 12(24), 4091.
Leshkenov, A., & Shuganov, V. (2023). Resource-Saving Spraying Method Using the “Agroprotector-Robot”. In In-

ternational Conference on Agriculture Digitalization and Organic Production (pp. 349-360). Singapore: 
Springer Nature Singapore.

Li, L., Gu, Q., Liu, L., 2020. Research on path planning algorithm for multi-UAV maritime targets search based 
on genetic algorithm. In 2020 IEEE International Conference on Information Technology, Big Data and 
Artificial Intelligence (ICIBA) (Vol. 1, pp. 840-843). IEEE.

Li, W., Xia, L., Huang, Y., Mahmoodi, S., 2022. An ant colony optimization algorithm with adaptive greedy strategy 
to optimize path problems. Journal of Ambient Intelligence and Humanized Computing, 1-15.

Manfreda, S., Eyal, B.D., 2023. Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environ-
ments. doi: 10.1016/C2020-0-02177-8.

Marzuki, O.F., Teo, E.Y.L., Rafie, A.S.M., 2021. The mechanism of drone seeding technology: a review. Malays. For, 84, 349-358.



141Eray ÖNLER

https://doi.org/10.7161/omuanajas.1394616

Md, A.Q., Agrawal, D., Mehta, M., Sivaraman, A.K., Tee, K.F., 2021. Time optimization of unmanned aerial vehicles 
using an augmented path. Future Internet, 13(12), 308. doi: 10.3390/fi13120308.

Mukhamediev, R.I., Yakunin, K., Aubakirov, M., Assanov, I., Kuchin, Y., Symagulov, A., Levashenko, V., Zaitseva, E., 
Sokolov, D., Amirgaliyev, Y., 2023. Coverage path planning optimization of heterogeneous UAVs group for 
precision agriculture. IEEE Access, 11, 5789-5803. Doi: 10.1109/ACCESS.2023.3235207.

Niu, H., Ji, Z., Savvaris, A., Tsourdos, A., 2020. Energy efficient path planning for unmanned surface vehicle in spati-
ally-temporally variant environment. Ocean Engineering, 196, 106766. doi: 10.1016/j.oceaneng.2019.106766.

Qu, C., Gai, W., Zhong, M., Zhang, J., 2020. A novel reinforcement learning based grey wolf optimizer algorithm for unman-
ned aerial vehicles (UAVs) path planning. Applied soft computing, 89, 106099. doi: 10.1016/j.asoc.2020.106099.

Pepe, M., Fregonese, L., & Scaioni, M. (2018). Planning airborne photogrammetry and remote-sensing missions 
with modern platforms and sensors. European Journal of Remote Sensing, 51(1), 412-436.

Rachmawati, S., Putra, A.S., Priyatama, A., Parulian, D., Katarina, D., Habibie, M.T., Siahaan, M., Ningrum, E. P., Me-
dikano, A., Valentino, V.H., 2021. Application of drone technology for mapping and monitoring of corn 
agricultural land. In 2021 International Conference on ICT for Smart Society (ICISS) (pp. 1-5). IEEE. doi: 
10.1109/ICISS53185.2021.9533231

Srivastava, K., Pandey, P.C., Sharma, J.K., 2020. An approach for route optimization in applications of precision 
agriculture using UAVs. Drones, 4(3), 58. doi: 10.3390/drones4030058.

Sundarraj, S., Reddy, R.V.K., Babu, B.M., Lokesh, G.H., Flammini, F., Natarajan, R., 2023. Route Planning for an Auto-
nomous Robotic Vehicle Employing a Weight-Controlled Particle Swarm-Optimized Dijkstra Algorithm. 
IEEE Access. doi: 10.1109/ACCESS.2023.3302698.

Vazquez-Carmona, E.V., Vasquez-Gomez, J.I., Herrera-Lozada, J.C., Antonio-Cruz, M., 2022. Coverage path planning 
for spraying drones. Computers & Industrial Engineering, 168, 108125. doi: 10.48550/arXiv.2105.08743.

Wu, L., Huang, X., Cui, J., Liu, C., Xiao, W., 2023. Modified adaptive ant colony optimization algorithm and its 
application for solving path planning of mobile robot. Expert Systems with Applications, 215, 119410. doi: 
10.1016/j.eswa.2022.119410.

Yan, C., Xiang, X., Wang, C., 2020. Towards real-time path planning through deep reinforcement learning for a UAV 
in dynamic environments. Journal of Intelligent & Robotic Systems, 98, 297-30

Yu, X., & Zhang, Y. (2015). Sense and avoid technologies with applications to unmanned aircraft systems: Review 
and prospects. Progress in Aerospace Sciences, 74, 152-166.

Zhai, L., Feng, S., 2022. A novel evacuation path planning method based on improved genetic algorithm. Journal 
of Intelligent & Fuzzy Systems, 42(3), 1813-1823. doi: 10.3233/JIFS-211214.

Zou, K., Wang, H., Zhang, F., Zhang, C., Kai, D., 2023. Precision route planning method based on UAV remote sen-
sing and genetic algorithm for weeding machine. Applied Intelligence, 53(9), 11203-11213.


