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Abstract

This study is on the solutions of two fourth-order fuzzy problems with positive and
negative fuzzy number coefficients. The solutions are found using the fuzzy Laplace
transform method. Main results are given. Two examples are solved to illustrate the
problems. Graphics of the found solutions are drawn for alpha level sets. Also, the
graphics are interpreted and conclusions are given.
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Fuzzy katsayili iki dordiincii-mertebeden fuzzy problem iizerine
bir ¢calisma

Oz

Bu ¢alisma, pozitif ve negatif fuzzy sayi katsayili iki dordiincii-mertebeden fuzzy
problemin ¢oziimleri iizerinedir. Coziimler fuzzy Laplace doniigiim metodu kullanilarak
bulundu. Temel sonuglar verildi. Problemleri gostermek icin iki ornek ¢oziildii. Alfa
seviye setleri i¢in bulunan ¢oziimlerin grafikleri ¢izildi. Ayrica, grafikler yorumlandi ve
sonuclar verildi.

Anahtar kelimeler: Dordiincii-mertebe fuzzy problem, fuzzy fonksiyon, fuzzy Laplace
doniisiim metodu.
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1. Introduction

Fuzzy differential equation is useful for solving differential equations in the fields of
engineering, physical mathematics, mathematics. So, many resarchers study fuzzy
differential equation [1-15]. Fuzzy Laplace transform was introduced by Allahviranloo
and Ahmadi in 2010 [16]. They used the strongly generalized differentiability.
Allahviranloo et al. obtained a new method for solving fuzzy linear differential equations.
[17]. Fuzzy Laplace transform method is practically important method. So, fuzzy Laplace
transform method was used by many researchers to solve fuzzy differential equations [ 18-
23].

The aim of this study is to investigate the solutions of two fourth-order fuzzy problems
with fuzzy number coefficients and to present the comparison results of the solutions.

In this study, we find the solutions directly with the fuzzy Laplace transform method and
see the effect of the coefficients on the solutions.

In this work, we research the problems

u® () = [u]*u’ (¢), (1
u(0) = [p]% u'(0) = [¥]% u"(0) = [x]% u (0) = [w]® )
and

u® () = —[p]u" (v), 3)
u(0) = []% u'(0) = [Y]% u"(0) = [x]% u""(0) = [w]%, 4)

by the fuzzy Laplace transform method, where

1 = [uo B 101 = |00 7, | 101 = [0 B, | 0 =[x o] (0] = [, @]

are symmetric triangular fuzzy numbers, t > 0, u(t) is positive fuzzy function,
L(u(t)) = U(s) is the Laplace transform of fuzzy function u(t). Throughout the

work, u, u ’, u ”, u' are (i)-differentiable.

2. Preliminaries

Definition 1. [10] A fuzzy number is a mapping u: R — [0,1] verifying the following
properties:

u is normal, u is upper semi-continuous on R, u is convex fuzzy set and

cl{x € Rlu(x) > 0} is compact, where cl denotes the closure of a subset.

Definition 2. [10] Let u € R, where Ry is the space of fuzzy numbers.
[u]* = {x € Rlu(x) = a}, 0 < a < 1 is the a-level set of u.
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Definition 3. [12] A fuzzy number u is a pair [ga,ﬂa] 0 < a <1, which satisfy the
requirements:

U, 1s right-continuous at @ = 0 and bounded non-decreasing left-continuous in (0,1],
U, is right-continuous at ¢ = 0 and bounded non-increasing left-continuous in (0,1] and
Uy S U, 0 a < 1.

Definition 4. [10] The a-level set of symmetric triangular fuzzy number W is

w1 = | + (52w - (55%) o]

where [m W] is support of W.

Definition 5. [12] Let u,v € Rg. If u = v + w such that w € Rg, then w is the H-
difference of u and v. w is denoted as u © v.

Definition 6. [22] Let g: (a,b) — Ry and t, € (a, b). If there exists g'(ty) € Ry such
that for all h > 0 sufficiently small, there exist g(t, + h) © g(t,), g(ty) © g(ty — h)
and the limits

g(to +h) © g(to) ~ lim g(ty) © gty — h)

h—0 h h—0 h

g'(to),

g 1s said to be Hukuhara differentiable at .

Definition 7. [22] Let g: (a,b) — Ry and t, € (a, b). If there exists g'(t,) € Rg such
that for all h > 0 sufficiently small, there exist g(t, + h) © g(t,), g(ty) © g(ty — h)
and the limits

gto+h) © g(ty) g(to)@g(to—h)
m = lim

h—0 h h—0 h

g'(to),

g 1s (1)-differentiable at ¢t,.
If there exists g’ (t,) € Rp such that for all A > 0 sufficiently small, there exist g(t,) ©
gty + h), g(ty — h) © g(ty) and the limits

lim gt O glto+h) . glte—h) O g(ty) _
im = lim
h—0 —h h—0 h

9'(to),
g is (i1)-differentiable.

Theorem 1. [12] Let g: [a, b] = R be fuzzy function.

[g()]* = [ga(x).ﬁa(X)]. for each a € [0,1].
1.Ifg is (i) differentiable, g, g, are differentiable,

[9'@]" = [ga®).7, )],
2.Ifgis (11) differentiable, g, g, are differentiable,

[9'@]" = [7, (), ga@)].

Theorem 2. [12] Let g': [a, b] » Ry be fuzzy function.
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[9GO1* = |ga(x), G, (x)], for each a € [0,1],
g 1s (1)-differentiable or (ii)-differentiable.
1. If g, g'are (i)-differentiable, g{x, g; are differentiable,

[9" ()]% = | g4 (), 7, )],
2. If g’ is (ii)-differentiable and g is (i)-differentiable, g{x, g; are differentiable,
9" (1% = 7, (0, g4 ()]
3. If g' is (i)-differentiable and g is (ii)-differentiable, g, g(’x are differentiable,

9" (O1® = |7,(), ga ()],

!

4.1f g and g’ are (ii)-differentiable, goi, g; are differentiable,

[9" ()17 = | ge (), g, ()],

Definition 8. [24]
0o p
G(s)=L(g®) =f e St g(t)dt = llim f e St g(t)dt, lim J e‘“g(t)dtl

is the fuzzy Laplace transform of fuzzy function g, where

p

6(s,@) = LA = [1(g0(0). L (7,0)],

L (ga(t)) = ]0

L(9,®) =[5 e g, @0)dt = lim [e™*g, ().

(o]

p
e~ St ga(t)dt = plzxgoj et ga(t)dt,
0

Theorem 3. [25] Let g, g ..., g™ be continuous fuzzy-valued functions on [0, )
and of exponential order and let g™ be piecewise continuous fuzzy-valued function on
[0,00).1fg,g ..., g™V are (i)-differentiable,

L (g(”)(t)) = s"L(g()) © 5" 1g(0) ©s"2g (0) ©s" 39 (0)0..0¢ @ (0,
ifg,g,...,g™ 2 are (i)-differentiable and g™ is (ii)-differentiable,
L(g™®) =6 (g "y (0)) O (=sML(g(1) ©5"g(0) ©s" 29 (0) ©...

o Sn—(n—l)g (n-2) (0),

ifg,g,...,g™ 3 are (i)-differentiable and g™V, g2 are (ii)-differentiable,

(n-2) (n-1)

L(g™®) =6 (s"@Dg " 0) 09" (0 6 (—sL(g(1) © s"1g(0)
©5"2g'(0) ©..6 (s"2)g " (0).

Similarly, if g is (ii)-differentiable and g e 9@V are (i)-differentiable,
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L(g™®) =0 (s"'9(®) © (~sM)L(g(t) © 5" %3 '(0) ©...0 g " (0).
Continuing the process until we obtain 2" system of differential equations,
itg,g ,...,g™ " are (ii)-differentiable, the last equation is

L(g™®) =s"L(g(0) © 5" 1g(0) © 5" 29" (0) © 5"3g" (0)...—g " (0).

Theorem 4. [16] If g(t), h(t) are continuous fuzzy-valued functions and c; and c, are
constants, then

L(clg(t) + czh(t)) = clL(g(t)) + ch(h(t)).

3. Main Results
3.1. The problem (1)-(2)

From the equation (1), using the fuzzy Laplace transform method, we have the equations

5*Ua(5) = 5°11(0) = 5%14,(0) = 52/ (0) — g (0)
=t (*Lu(5) — 54(0) ~ (),

5T o () — 57T (0) — 52, (0) — sy (0) — Ty (0)
=, (525 = 57 0) ~ Te(0) ).
Using the initial conditions (2),

are obtained. From this, the solution is

Sinh< ,uat>

Xa w H

Ug(t) = Qg + Pt +=— <cosh< yat) - 1) =2 —Y 714
Ya ™ ¥, 1 /_ e

Fa Ha
- — sinh( ﬁat)
Ue(®) =9 +9 t+2(cosh( [mt)—1)+=2 —X 2
u,(t) =9, +, t+ i cos Kt 7 = ,
a a l’la
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[u(®]* = [ua (1), L (®)]-
Example 1. Consider the problem
u®(@© = [1%u" (@),

u(0)=[0]1*=[-1+4+a,1—a],
u'(0) =[1]* = [a,2 — a],
w0 =[2]*=[1+a3-al]

nr

u (0)=[3*=[2+a,4—al.

The solution is

1
u,(t)=—-1+a+at+ (E + 1) (cosh(a'/?t) — 1)

G-y “
() = (57— +1) (cosh(@ ~ )*/2t) ~ 1)

) (M) - - ©
[ = [1 (D), T (O] ™

According to Definition 3 and since u(t) is positive fuzzy function, u(t) is a valid fuzzy
function for t > 0.5051162150589951 in Figure 1.

3.2. The problem (3)-(4)

From the equation (3), the equations

nr

57U (S) — 5%ua (0) — 5%ug (0) — su, (0) —u, (0) = —s%1, Uy(s) — ST, U, (0)
—11,1,,(0),

51T o(5) = 57z (0) — 525 (0) — 5y (0) = Ty (0) = —5241 U (5) — St (0)
_Eaﬂo’z(o)-

are obtained. Using the initial conditions (4), we have the equations

_ = Xe | i BBy  Faby
szga(s)+yaUa(s)=5£a+£a+‘?+%—2—“T— o (8)

i — —_ Xo , @ HaPa  Ha¥a
$2Ua(s) + paUy(s) = 5@, + 1, + =+ S—;’ —— =

s s2

©)
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From the equations (8) and (9), U, (s) is obtained as

_ (Eaﬁafa - aaﬁa) :ua.u Pa — )_( .l—l a) — 2,u l/)
Uy(s) = $2 (54 _ Eaﬁa) += (S4 _ Ha ) ( _ llall )
+ (xe = 28B,)s s L P

(5~ seda) (5% = pal) (5% — iali)

From this, the lower solution is obtained as

1w, =200 @
U (t) = > —“—li“lp“ + 'u—“ — ﬂa (sinh (4/Eaﬁat> — sin <4’Eaﬁat>)
/gaua =7
1 /)_(a - zﬁaaa X{X \ 4 — 4 —_
+§ ————+—— @, || cosh| “[uqu,t|—cos| [uqu,t
—_ ‘ua —_ —_ —
WA “

+ % (sinh (i/ﬁt) + sin <4\@t>> + % <cosh <4\/ﬁt> + cos <4\@t>)
(ot 50) e+ ()

Similarly, we obtain the upper solution as

1| Wa =20 Vo w, —
U, (t) = 5 a——_aa E_“ Y, (sinh <4 Eaﬁg{t) — sin <4/Eal_‘at>)
/Ealla

1 Xa - 2&“@“ T

+ > = = -, cosh cos | |Halt,t
Halty

Ea . 4 _ . 4 _ aa 4 —_ 4 —_
+7 sinh Halyt | +sin| - Jpgu, t| |+ o cosh Ualyt )+ Cos| g, t
+ ﬁ_ ((ﬁaaa - Qﬂ)t + (ﬁaaa - X“))'

Consequently, the solution is
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[u®]* = [uq(®), 2 (O)]-

Example 2. Consider the problem

u® () = —[1]°u" (),

u(0) = [0]%,u'(0) = [1]*,u"(0) = [2]%u""(0) = [3]*.
The solution of the problem is

9a — 2a?* — 6 4 1/4
Ug(t) = _<(a(2 )1/2 - a+;— 1) <smh ((a(Z —a)) / )

" an((ete- ")

(Z ) (e ) stz )0

%( inh ((a(Z - )) ) + sin ((a(z _ ))1/4 )>

+ (a ; 1) <cosh ((a(Z - a)) ) + cos ((a(Z - ))1/4 ))

+=((a® +a— 4t +a? - 3), (10)

_ 1/4—a—2a? 2 1/4
ua(t)=z<\/% +2_aa+a—1><smh((a(2—a)) / )

— sin ((a(Z - a))1/4t)>

1/3+a—-2a?> 1+a 1/4
+§<w/a(z—a)+2—a+“_1><C°Sh((“(2‘“)) )

— cos ((a(Z — a))1/4t>>

+ (1 _ %) <sinh ((a(z - a)) ) + sin ((a(Z - a))1/4 ))

+ (1 ; a) <cosh ((a(Z - a)) ) + cos ((a(Z - a))1/4 ))
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1
+(E) ((@? - 5a +2)t + a® — 4a + 1), (11)

[u®]* = [uq(®), @ (O)]- (12)

According to Definition 3 and since u(t) is positive fuzzy function, u(t) is a valid fuzzy
function for t > 2.364610903068273 in Figure 2.

Figure 1. Graphic of solution (5)-(7) for @ = 0.5

10

-10

Figure 2. Graphic of solution (10)-(12) for & = 0.5
Red — u,(t), Green = u;(t) = uy(t), Blue = u,(t).

4. Conclusions

In this paper, we research two different fourth-order fuzzy problems. The fuzzy Laplace
transform method is used. Solutions are found directly by the fuzzy Laplace transform
method. Comparison results of the solutions are given. We give two examples. We draw
graphics of the found solutions for alpha level sets. It is seen that the solutions are valid
fuzzy functions in different intervals for each of a-level sets. Also, we see that the fuzzy

353



GULTEKIN CITIL H.

problem with positive fuzzy coefficient is a valid fuzzy function over a wider interval
than the fuzzy problem with negative fuzzy coefficient.
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