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Abstract 

The current study is about the solution of the Zoomeron equation, one of the important 

models of mathematics and physics. In this study, the rational Sine-Gordon expansion 

method (RSGEM) is used to obtain various analytical solutions of the model. Compared 

to other methods, this method is quite effective and the desired results were obtained. 

Although there are many analytical solutions to the model used in the literature, we 

present rational type solutions for the first time with this method.  We obtained rational 

hyperbolic function solutions, and also classified all soliton solutions (kink-like, kink, 

singular kink, anti-kink, dark, bright). In addition, geometric representations of the 

solutions in two-, and three-dimensional space and contour shape are made with the 

Mathematica software program. 

 

Keywords: RSGEM; Zoomeron equation; Analytical method 

 

 

Rasyonel sine-Gordon metodu ile (2+1) boyutlu Zoomeron 

denkleminin analitik çözümü 
 

 

Öz 

 

Mevcut çalışma, matematiğin ve fiziğin önemli modellerinden biri olan Zoomeron 

denkleminin çözümü ile ilgilidir. Bu çalışmada, modelin çeşitli analitik çözümlerini elde 

etmek için rasyonel Sinüs-Gordon açılım yöntemi (RSGEM) kullanılmıştır. Kullanılan 

modelin literatürde birçok analitik çözümü bulunmasına rağmen, bu yöntemle ilk kez 

rasyonel tip çözümler sunuyoruz.  Rasyonel hiperbolik fonksiyon çözümleri elde ettik ve 

ayrıca tüm soliton çözümlerini (kıvrımlı benzeri, kıvrımlı, tekil kıvrımlı, ters kıvrımlı, 
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koyu, parlak) sınıflandırdık. Ayrıca, Mathematica yazılım programı ile çözümlerin iki ve 

üç boyutlu uzayda ve kontur şeklinde geometrik gösterimleri yapılmıştır. 

 

Anahtar kelimeler: Rasyonel Sine-Gordon açılım metodu, Zoomeron denklemi, Analitik 

metot 

 

 

1. Introduction 

Differential equations are important mathematical models because they are used to 

represent problems in various fields such as science and engineering. The capacity of 

differential equations to model intricate systems is one of their most important 

advantages. It is frequently impossible to comprehend a system's behavior without the 

use of differential equations. Differential equations describe natural life problems; for 

instance, they are employed in fluid dynamics to simulate the movement of fluids through 

pipes and other structures. And they are also used to simulate how gases and other 

materials behave under various conditions.  

Non-linear partial differential equations have wave solutions such as soliton, compaction 

etc. and these solitons make it easier to create physical interpretations of problems.  

Solitons are strengthening their wave bundles that keep their structure as they travel at a 

constant velocity in various environments. Solitons appear when nonlinear and dispersive 

effects in the medium are removed. Dispersive effects are characteristics of some systems 

in which the frequency of a wave affects its speed. Solitons are also physical system 

solutions to several nonlinear dispersive PDEs. They have been observed in water waves, 

the study of solid-state, plasma physics, particle physics, biological systems, nonlinear 

optics, and etc.  [2,3,9,27].  

There are techniques for solving partial differential equations in addition to ordinary 

differential equations, although these techniques may not work for all equations. Finding 

an approach to solving the provided partial differential equation is crucial in this situation. 

This is particularly valid for non-linear equations. The numerical method can be applied 

in certain situations in which the analytical method is inapplicable. This method solves 

mathematical problems on a computer-aided level [4,5,11,12,14,16,17,20,22-31,34-36]. 

In this study, we use the RSGEM, which is an analytical method. The method considers 

the solutions of the nonlinear partial differential equation (NPDE) as polynomials of 

trigonometric functions. To facilitate the search for these polynomials in the next step, 

we use a transformation with the help of the sine-Gordon (SG) equation. The literature 

shows that this method is quite effective and leads to the desired results [8,15,19,32,33]. 

 

2. A brief introduction to the RSGEM method 

 

In order to proceed to the main part of this study, we must present some conclusions about 

the characteristics of the method we will use. These features have also been reported in 

the literature [8,15,19,32,33]. 

 

Considering the SG equation as 



BAUN Fen Bil. Enst. Dergisi, 26(2), 507-517, (2024) 

 

509 

 

2 sin( ),xx tt m  − =      (2.1) 

where ( , )x t = ,m is a constant number. By applying ( , ) ( ),x t  = = 

( )x ct = − transform to (2.1), we have 

( )
( )

2

2 2
sin ,

1

m

c
 = 

−
     (2.2) 

where ( ),  =   and c are physical parameters. Then, we can see easily 

 

( )

2

2
2

2 2
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2 21
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c

       = +   
−    

 

     (2.3) 

here C is an integration constant different from above c. By replacing ( )0,
2

C  


= =  

and 
( )

2
2

2 21

m
a

c
=

−
in (2.3)  gives, 

            ( )sin ,a  =        (2.4) 

taking 1a =  in Eq.(2.4), we have easily  

  ( )sin .  =       (2.5) 

If we apply the separation of variables, a classical method in the theory of differential 

equations, to (2.5), we easily obtain the following equations. 
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1
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p e
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1
cos( ) cos tan ( ).

1
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p e
h

p e


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   

=
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= = =

+
    (2.7) 

Now, we will consider a NPDE in general form as 

( ), , , , , , , ,... 0,x t xx tt xt xxx xxtP         =     (2.8) 

 

2

2
0

d d
N , , , .

d d 

  
 = 
 

      (2.9) 

The solution form for Equation (2.8) in SGEM is given below. 

( ) ( ) ( ) ( )1

0

1

tanh sec tanh .
N

i

i i

i

b h a a   −

=

 = + +                    (2.10) 

If we rewrite (2.9) with (2.6) and (2.7), we have 

( ) ( ) ( ) ( )1

0

1

cos sin cos .
N

i

i i

i

b a a   −

=

 = + +                   (2.11) 

It would be more appropriate to look for solutions rationally because mathematically 

rational functions are more general than polynomial functions. Consequently, the wave 

solutions we are searching for will have the shape that we want. Let us consider the 

following solution form [8,15,19,32,33], 
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which is also written as 
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0 0, , , , ,i i i ia b c d a b  are constants which will be obtained in next steps. It appears that not all 

constants are zero simultaneously. At this stage, we consider the balance principle 

between the nonlinear term with the highest power and the highest derivative in the 

NPDE. ThenM  and N  are specified. The next step consists of a set of algebraic 

equations for 
0 0, , , , ,i i i ia b c d a b . We solve this system and find the values using the 

software. Finally, we put them into (2.13) and get the new travelling wave solutions for 

(2.8). 

 

 

3. Application of RSGEM method 

 

The aim of this section is to present the solution of the Zoomeron equation, which has an 

important place in the class of NPDE, using the RSGEM method. Let us consider 

Zoomeron equation 

( )22 0
xy xy

xt
tt xx

U U
U

U U

   
− + =   

   
.       (3.1) 

A well-liked model for illustrating the new phenomena associated with boomerons and 

trappons, the Zoomeron equation is also frequently employed to explain the development 

of a single scalar field [1,10,13,18,21]. Historically, this equation has always attracted the 

attention of people working in the field of applied mathematics. The reason for this is that 

it provides the desired results by some methods and also represents a physical event as a 

model. However, in recent times, this type of equations has been defined and the desired 

solutions have been obtained [1,10,13,18,21]. Let us look briefly at the literature on this 

equation. In [1], author gave explicit traveling wave solutions the Zoomeron equation, by 

using the another method, in [18.32], it was shown that the solution of the Zoomeron 

equation was related to the dromion solutions of Davey-Stewartson-III equation. 

Assume that the wave transformation is in the form 

 

( , , ) ( ),U x y t u x y wt  = = + −         (3.2) 

       

where ,w  are constants and we obtain value of them later.  

By using (3.2), we obtain the partial derivative of U respect to x, y and t and accordingly 

inserting them in (3.1), we have an ordinary differential equation 
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2 2( 1) 2 ( ) 0
u

w w u
u


 

− − = 
 

      (3.3) 

Integrating (3.3) two times with respect to   and getting the integration constant to zero, 

then we obtain  
2 3( 1) 2 0w u ku wu − − − =     (3.4) 

Regarding the balance between the nonlinear term 𝑢3 and the highest order term 𝑢′′ in  

(3.3), we obtain easily that 1M =  and 1N = . Therefore, we can write the solutions of 

this equation as 
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In below, we get diagrams of the wave solutions for different cases in 2D and 3D. These 

graphs are very important to better understand the physical meaning of both the solution 

and the equation. It is possible to draw graphs when different constants are considered. 

 

CASE 1:  Regarding the coefficients' values, 

2 2 2 2
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22
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a a c b r w

w w
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= = = = = − − + . 

We determine the solution and the accompanying contour, 2-D, and 3-D graphs.         
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=
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      a      b 

Figure.1.  3-D,2-D and contour graphs for a; η=1.3, w=2.2,b1=0.7,d1=0.5 and for b; 

y=1, t=1. 

 

CASE 2 

Regarding the coefficients' values 

( )2 2 2 2 2
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We determine the solution and the accompanying contour, 2-D, and 3-D graphs.          
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      b 

  Fig.2. Graphs for a; r=0.3, w=2.2, b0=1.7, b1=0.7, d1=0.5 and for b; y=1,  t=1. 
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We determine the solution and the accompanying contour, 2-D, and 3-D graphs. 
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Figure.3. Graphs for a;  η=0.3, w=1.6, b0=0.7, b1=1.1, d1=1.5 and for b; y=1, t=1. 
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We determine the solution and the accompanying contour, 2-D, and 3-D graphs.  
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Figure.4. Graphs for a; w=0.5, b0=1.7, b1=0.8,d1=0.5, c1=0.9 and for b; y=1, t=1 . 
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CASE 5 
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We determine the solution and the accompanying contour, 2-D, and 3-D graphs.     
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Figure.5. Graphs for a; η=1.3; w=1.5; a1=1.3; c1=1.6 and for b; y=1; t=1. 
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Regarding the coefficients' values as, 
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We determine the solution and the accompanying contour, 2-D, and 3-D graphs 
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Figure.5. Graphs for a η=1.3, w=1.5,a1=0.3, c1=0.6 and for b y=1,t=1. 
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4. Conclusion 

 

In this study, we examine a few new soliton solutions to the zoomeron equation. We 

concluded that certain new solutions to the Zoomeron problem are obtained by applying 

the efficient RSGEM approach, which uses the Mathematica program. We illustrated 2D, 

3D, and contour simulations to more accurately depict the physical characteristics of the 

derived wave solution. Figure 1 represents kink-like soliton solution. For figure 2, the 

real part is dark soliton and the imaginary part is singular kink solitons. Figure 3 has an 

anti- kink wave soliton solution. Figure 4 represents singular kink soliton and bright 

soliton for the real part and the imaginary part of the solution, respectively. Figure 5 and 

6 show solitary wave solutions. We used Wolfram Mathematica-12 to verify each 

solution. This method is a powerful and easy to apply method that can produce a wide 

range of different types of solutions to such mathematical models. The RSGEM has 

unveiled novel soliton solutions with applications in engineering and mathematical 

physics. The obtained soliton solutions may be useful in providing an expanded 

comprehension of the nonlinear physical phenomena described by the governing 

equation. The concept employed in this work can be used to solve further partial 

differential equations and various fractional models, in mathematical physics. Moreover, 

multiple solitons, rogue waves, breathers, bifurcation analysis can be studied and 

explored. 
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