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Abstract   

This study modelled the slump of concrete containing crushed glass and Bida Natural Gravel (BNG) based 
on deep learning algorithm using the MATLAB neural network toolbox. A total of 240 (150mm × 150mm × 
150mm) cubes were cast from 80 mixes generated randomly using Scheffe’s simplex lattice approach. 
Slump was measured for each of the experimental points of fresh concrete before filling in the moulds. The 
resulting batch for each mix was used as input data while the laboratory results for slump was used as 
output data for the ANN-model. Hence a shallow multilayer supervised Neural Network was developed to 
model these data. The developed model would be able to predict concrete slump containing 0% - 25% 
crushed glass as partial replacement for fine aggregate, water- cement ratio ranging from 0.45 – 0.78 and 
concrete grade M15 – M25. The architecture of the network contained 6 input parameters: water to cement 
ratio, water, cement, sand, crushed glass and BNG, 20 neurons in the hidden layer and slump in the outer 
layer. The adequacy of the developed model was measured using Mean Square Error (MSE) and Correlation 
Coefficient (R). Results showed that 6:20:1 model architecture for slump model had an MSE values for 
training, validation and testing as: 1.84e-2, 5.81e-3, 3.64e-3, 1.73e-3 respectively. Regression values for 
training, validation and testing are: 79%, 94%, 96% and 79%. The study concluded that a shallow multilayer 
Neural Network architecture with 20 neurons in the hidden layer is sufficient for predicting concrete slump. 
 
Keywords: BP-ANN; Bida Natural Gravel (BNG); Crushed glass; Mean Square Error (MSE), Regression; 
Slump 

1. Introduction 
 

Concrete workability is an important parameter in concrete technology and construction. 
It is the ease by which fresh concrete can be mixed, transported, placed and compacted. 
Rheological parameters such as: cement paste and friction between the particles of the 
aggregate influence the workability of concrete [1]. Because of the complexities of the 
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aforementioned associations, quantifying the workability of concrete has proven difficult. 
Slump test carried out in the laboratory or on the construction site, is most commonly used 
to determine the consistency of concrete. The slump test serves as a useful indicator of 
concrete workability as mixes vary from batch to batch even though it does not measure 
all factors that affect workability [2]. One of the elements that affects the mix design of 
concrete is the workability of the concrete. Concrete mix designs are created using 
empirical techniques or artificial intelligence (AI). For example, the American Concrete 
Institute (ACI) and the British Department of Environment (DoE) are models that were 
developed empirically. The most popular artificial intelligence techniques are ANN, Fuzzy 
analysis, and Genetic algorithms, which are computer-based techniques built on the idea 
of machine learning [3]. 

There exists a highly non-linear relationship between the several constituents of the glass 
concrete which affect the slump of the concrete. Artificial neural networks (ANNs) have 
exploded in popularity over the past two decades because of their capacity to learn from 
previous experiences and derive mathematical functions that are challenging to formulate 
using conventional computing techniques in order to establish relationship among 
variables. ANNs were inspired by how the human brain functions. The slump of high-
performance concrete has been successfully predicted using ANN by [1], [4] and that of 
high-strength concrete [5], as well as the consistency of concrete containing metakaolin 
and fly ash [6] and fly ash and slag [7]. 

For various environmental and sustainable reasons, by-product materials of various kinds 
are frequently used as admixtures or replacements in concrete. Over the years, waste glass 
in particular has become more well-known for its use as a partial replacement for some or 
all of the fine or coarse aggregate in concrete. Every year, the world produces tonnes of 
waste glass. Because glass is not biodegradable, it cannot be disposed of in landfills. The 
use of waste glass as a partial substitute for aggregate in concrete can pave the way for the 
creation of an infrastructure system that is environmentally friendly, energy-efficient, and 
cost-effective [8]. Slump is a common indicator of concrete's workability. Using the slump 
cone test or other rheology tests, slump can be experimentally measured. However, 
conducting experiments involves significant financial outlays and labour costs. The 
production, transportation, and construction processes in the concrete industry can all 
benefit from a slump prediction model's lower costs [9]. 

In light of the aforementioned difficulties, using waste glass in concrete can aid in the 
development of a construction that is both cost-effective and environmentally friendly. In 
their 2017 study, Sadiqul et al. [8] used glass powder as a partial cement replacement to 
examine the strength of concrete. Additionally, Zainab and Enas [10] conducted research 
on the use of recycled waste glass as a substitute for some of the fine aggregate in concrete. 
Shayan and Xu [11] discovered the possibility of replacing aggregate or cement with up to 
30% of glass powder without having a negative long-term impact. However, modelling 
approach was not used in these works. In the light of this, a computational model of slump 
of concrete containing crushed glass (0 – 25%) used as partial replacement for fine 
aggregate using back propagation ANN (BP-ANN) was developed in this study. 

 

2. An Overview of the Effect of Crushed Glass on Concrete Slump  

Glass is a solid inorganic substance which can be transparent or translucent, hard and 
brittle. Glass is 100% recyclable in theory and can be recycled indefinitely without losing 
any quality [12]. The recycling of waste glass and other industrial byproducts has advanced 
significantly in the construction sector. In addition to saving landfill space, recycling this 
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waste by turning it into aggregate also lessens the need to extract raw materials for 
construction work [13]. Numerous research studies have been conducted because these 
alternatives necessitate in-depth analysis of their impact on concrete's properties. 

No alkali-silica reaction was found with particle sizes up to 100 µm, according to 
Corinaldesi et al. [14], indicating the viability of using waste glass as fine aggregate 
component in concrete and mortar.  By late ages, there is a significant increase in the 
compressive strength of concrete containing waste E-glass, but as the glass content 
increases, workability is observed to decline, according to Chen et al. [15]. According to 
Metwally [16], adding finely milled waste glass to concrete mixtures had a negative impact 
on workability but significantly improved the mechanical properties of concrete over time. 
Zainab and Enas [10] substituted crushed glass for the sand at 10%, 15% and 20%. They 
reported that slumps of waste glass concrete specimens decreased with increases in the 
waste glass content. They posited that this was influenced by the waste glass grain shapes. 
In spite of the reduction in slump, they observed that the concrete mixtures had 
considerably good workability.  

3. Materials and Method 
 
3.1 Materials 
 

Materials used for this research work are; sand, cement, Bida gravel (maximum 20 mm 
size), water and waste glass (passing through British Standard sieve of size 2.0 mm). 
Ordinary Portland Cement grade 42.5N (Normal hardening and 28-day compressive 
strength of 42.5 N/mm2) was used for this research. Fine aggregate was sourced from 
Minna area of Niger state. Bida gravel was gotten from Bida area in Niger state. The gravel 
was washed in 5 mm British Standard sieve [22] to remove sand content. In addition, 
“washing and sieving is the preferred method for aggregates which may contain clay or 
other materials likely to cause agglomeration of particles” [22]. The washed gravel was 
oven-dried at 105oC until constant mass was achieved [22]. Portable water was gotten 
from the civil engineering laboratory. In accordance to requirements of BS EN 1008:2002, 
water used for mixing was free from impurities, odourless and colourless. Waste glass was 
sourced from the mechanical engineering central workshop at the Federal University of 
Technology, Minna.  

 
Table 1 Physical properties of the aggregates                                                                                

Physical Properties Sand  CG BNG 

Fineness Modulus 2.7 2.5 6.4 

Absorption (%) 2.68 2.60 2.37 

Specific gravity 2.6 2.51 2.68 

Density (kg/m3) 1515 1453 1663 

AIV (%) - - 16.56 

Note: CG – Crushed glass; BNG – Bida Natural Gravel; AIV: Aggregate Impact Value 
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    Fig. 1 Partcicle Gradation Curve of Sand    Fig. 2 Particle Gradation Curve of Bida Gravel 

3.2 MATLAB neural network toolbox 

The MATLAB software includes a toolbox called Neural Network (NN). It is a technical 
computing language with high performance. The tool box encompasses visualization, 
computation and programming in an environment that is simple to utilize while using 
common mathematical notations to express issues and solutions. In order to implement a 
back propagation neural network algorithm for the study, MATLAB software (version 
R2022b) was used.  

3.3 Methods 

3.3.1 Concrete mix 

A total of 80 mixes generated randomly using Scheffe’s simplex lattice approach. Slump 
was measured for each of the experimental points of fresh concrete in accordance with 
specifications in [23]. For training, 80% of the data was used while 15% and 5% were used 
for validation and testing, respectively. A simplex lattice approach developed by Scheffe 
[17] was deployed to generate 80 experimental mix combinations. Following that, the 
contents of water, cement, sand, and BNG in kg/m3 were determined using the absolute 
volume method. Concrete slump was modelled using the water-cement ratio (w/c), 
cement, sand, crushed glass, and BNG content as input data and the slump for the 80 
experimental points as output data. 
 
 
3.3.2 Developing the feed forward neural network 

The following parameters were used as input data when creating the neural network for 
slump: the weight of cement (C), the weight of water (W), the weight of sand (S), the weight 
of crushed glass (CG), the weight of BNG and the water-cement ratio (W/C). To find out 
their impact on the slump of the resulting concrete, different material quantities were 
used. Other parameters required for the model development, such as the number of hidden 
layers, number of neurons in hidden layers, and learning rate, were determined as the 
model was simulated. 
 
3.3.3 Developing the neural based model 

Creating a database of examples and training a neural network on the results of a series of 
experiments on a material is the fundamental approach for creating a neural-based model 
of material behaviour. The trained neural network would have enough knowledge of the 
material behaviour to qualify as a material model if the experimental results contain the 
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pertinent information about the material behaviour. Such a trained neural network should 
be able to approximate the results of other experiments in addition to being able to 
replicate the experimental results it was trained on [18]. Back-propagation networks 
(BPN) are the foundation of the majority of studies that used ANN to simulate material 
behaviour. According to Pala et al. [19], the back propagation algorithm is a gradient 
descent technique which minimizes error for a specific training pattern by adjusting the 
weights by a small amount at a time. It is one of the well-known training algorithms for the 
multi-layer perceptron (MLP). The BPN learns by calculating the error and propagating the 
result back through the network after comparing the target output of each input pattern 
with the output it generates from each input pattern.  After the network has been trained, 
the project's input parameters are given to it so it can run. The weight values and 
thresholds that were set during training are then used by the network to compute the node 
outputs. The coefficient of determination R2 is used to evaluate the trained network's 
accuracy. The coefficient, which indicates the strength of the linear association between x 
and y, is a measure of how well the independent variables took into account the measured 
dependent variable. The strength of the prediction relationship increases with R2 value. It 
is helpful because it shows how much of one variable's variance (fluctuation) can be 
predicted from another. 
 
 

 
Fig. 3 Back propagation and forward propagation [20] 

 

4. Results and discussion 
 

4.1 Slump and compacting factor 
 
These parameters are indicators of the workability of a concrete mix. Concrete slump 
between 0 and 25mm indicates very low degree of workability. For a value between 25 and 
50mm slump, it indicates a mix of low workability. Medium workability is between 50 and 
100mm slump and concrete mix with high workability ranges from 100 to 175mm slump. 
The slump and compacting factor for the 80 mixes are presented in Appendix 1. These 
values are the features from which the ANN model for slump was developed. According to 
B.S 1881-103 [21], the normal range of compacting factor for fresh concrete lies between 
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0.8 and 0.92. It is normally useful for mixes with low workability where the slump test is 
not satisfactory. Water to cement ratio, water, cement, sand, crushed glass and BNG 
content were used as input for the feed-forward network while slump was the output.  

4.2 ANN model 
 
The model for slump was trained with a shallow neural network in the MATLAB neural 
network toolbox. A shallow network is a multi-layer supervised learning network with one 
hidden layer. In supervised learning, the weights associated with each neuron in each layer 
are initialized and activated with an activation function before it is fed to another neuron 
in the next layer. This is called the feed forward network. At the output layer, the error 
associated with the feed-forward network is calculated. To minimize this error and 
improve on the accuracy of the network, the weights are adjusted using techniques such 
as: stochastic gradient descent, batch method and the mini-batch method. This process is 
referred to as backward propagation. In this study, the stochastic gradient descent 
technique was adopted. The network architecture was made of 80 observations, 6 features 
in the input layer 1, 20 neurons in the hidden layers and 1 feature in the output layer of the 
network. The parameters used in training the models are presented in Table 2. 
 
 
Table 2 Training parameters for the ANN model 

Parameter Configuration 

Input Data w/c, water, cement, sand, crushed glass and BNG 

Output Data Slump 

Maximum number of Epochs 1000 

Validation Checks 6 

Target Gradient 1 × 10-7 

Training Algorithm Levenberg-Marquardt 

Activation Function Hidden layer – Sigmoid; Output layer – Linear 

ANN Architecture 
Performance Check 

6 : 20 : 1 
Mean Square Error (MSE) and Regression 

 
Fig. 4 shows the network architecture of the models. Six (6) input data: water to cement 
ratio, water, cement, sand, crushed glass and BNG content were passed to the network as 
input and the slump was the response for the output layer. A total of 80 observation points 
were used to train the network. 80% of the data were used to train the network, 15% were 
used for validation and 5% were used for testing. Additional 50 secondary data 
synthesized from the laboratory results were used to further test the network. 
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Fig. 4 Network architecture of the shallow neural network model 
 
Table 3 Training result based on Mean Square Error (MSE) and Regression (R) 

  Observation MSE R 

Training 64 1.84e-2 0.79 

Validation 12 5.81e-3 0.94 

Test 4 3.64e-3 0.96 

Additional Test 50 1.73e-3 0.79 

 
The performance of the model based on MSE and Regression is presented in Table 3. The 
MSE values for training, validation and testing are: 1.84e-2, 5.81e-3, 3.64e-3 and 1.73e-3 
respectively. Regression values for training, validation and testing are: 79%, 94%, 96% 
and 79%. The regression values imply that the model is quite satisfactory. Regression plots 
based on the training, validation and testing of data are presented in Appendix 2. 
 

 
 
 
5. Conclusion 
 

The following are the conclusions of this study:                    
 

1. To accurately predict the slump of concrete, a shallow multilayer neural network 
architecture with 20 neurons in the hidden layer is sufficient. 

2. The experimental values and the model values for slump have a correlation based 
on the regression MSE and regression values. 

3. ANN is a more potent predictor than models based on linear regression. 
4. Future studies should explore the optimization of hyper-parameters to further 

enhance the predictive accuracy of ANN models for concrete slump. 
 

Appendices 
 
Appendix 1 Slump and compacting factor of fresh concrete 

S/N W/C Water 
(kg) 

Cement 
(kg) 

Sand 
(kg) 

Crushed 
Glass 
(kg) 

BNG 
(kg) 

Slump 
(mm) 

Compacting 
Factor 

1 0.45 1.61 3.58 7.32 0.39 16.41 12 0.87 

2 0.50 2.84 5.68 5.5 0.61 13.02 190 0.90 
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3 0.78 3.35 4.27 5.87 1.04 14.69 214 0.99 

4 0.60 2.06 3.43 5.9 1.48 15.7 142 0.96 

5 0.65 2.68 4.13 5.55 1.11 14.18 186 0.94 

6 0.66 2.9 4.39 6.62 0.47 15.1 190 0.97 

7 0.52 2.56 4.88 5.71 0.85 13.97 158 0.97 

8 0.58 2.19 3.8 5.89 1.28 15.25 40 0.95 

9 0.63 2.34 3.74 5.74 1.31 15.01 44 0.99 

10 0.55 2.11 3.83 6.5 0.72 15.38 28 0.92 

11 0.50 1.95 3.9 6.66 0.68 15.63 16 0.91 

12 0.58 2.75 4.78 5.53 0.9 13.69 170 0.97 

13 0.55 2.35 4.27 5.75 1.15 14.69 118 0.98 

14 0.53 1.84 3.5 6.6 0.94 16.05 10 0.90 

15 0.60 2.52 4.2 5.71 1.07 14.43 158 0.96 

16 0.51 2.1 4.09 6.56 0.61 15.25 18 0.94 

17 0.50 2.31 4.62 6.19 0.65 14.57 76 0.96 

18 0.59 2.23 3.79 6.12 1.02 15.19 28 0.93 

19 0.55 2.35 4.27 5.81 1.09 14.69 56 0.97 

20 0.60 2.26 3.77 5.81 1.29 15.19 50 0.92 

21 0.52 2.4 4.58 6.1 0.68 14.43 76 0.94 

22 0.49 2.01 4.13 6.64 0.58 15.38 28 0.93 

23 0.51 2.22 4.33 6.18 0.82 14.89 35 0.97 

24 0.50 1.95 3.9 6.61 0.73 15.63 15 0.90 

25 0.56 2.39 4.26 6.07 0.8 14.63 10 0.87 

26 0.54 1.97 3.66 6.55 0.84 15.73 5 0.94 

27 0.57 2.3 4.01 6.12 0.89 14.93 38 0.94 

28 0.55 2.66 4.83 5.62 0.88 13.83 160 0.97 

29 0.54 2.45 4.56 5.73 1.01 14.36 150 0.97 

30 0.56 2.54 4.51 5.71 0.97 14.22 144 0.94 

31 0.54 2.07 3.85 6.27 0.98 15.44 28 0.94 

32 0.56 2.26 4.03 5.82 1.22 14.99 30 0.88 

33 0.59 2.35 3.99 5.8 1.18 14.86 56 0.96 

34 0.61 2.42 3.96 5.73 1.2 14.74 170 0.96 

35 0.57 2.08 3.62 6.18 1.12 15.55 20 0.96 

36 0.54 2.31 4.29 6.15 0.78 14.76 40 0.99 

37 0.56 2.15 3.82 6.19 1 15.32 48 0.97 

38 0.55 2.22 4.04 6.15 0.92 15.05 148 0.99 

39 0.58 2.44 4.24 5.73 1.11 14.56 148 0.97 

40 0.52 2.14 4.08 6.23 0.91 15.18 62 0.93 

41 0.59 2.32 3.91 5.79 1.23 14.95 148 0.94 
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42 0.54 2.33 4.28 5.8 1.11 14.72 176 0.94 

43 0.56 2.07 3.69 6.3 0.99 15.52 108 0.99 

44 0.53 2.27 4.31 6.26 0.7 14.81 146 0.97 

45 0.50 2.16 4.36 6.38 0.66 14.99 50 0.97 

46 0.53 1.97 3.73 6.4 0.97 15.68 16 0.92 

47 0.58 2.44 4.23 5.69 1.14 14.55 156 0.99 

48 0.55 2.17 3.98 6.32 0.82 15.19 154 0.96 

49 0.51 2.06 4.02 6.35 0.87 15.36 142 0.97 

50 0.56 2.59 4.61 5.66 0.95 14.08 154 0.97 

51 0.65 2.20 3.38 6.91 0.36 15.48 200 0.93 

52 0.55 3.05 5.55 5.37 0.60 12.71 58 0.93 

53 0.60 2.52 4.20 5.76 1.02 14.43 160 0.91 

54 0.45 1.61 3.58 6.17 1.54 16.41 10 0.86 

55 0.50 2.18 4.35 5.86 1.17 14.96 17 0.84 

56 0.60 2.52 4.20 6.33 0.45 14.43 150 0.94 

57 0.63 2.34 3.74 6.40 0.65 15.01 68 0.91 

58 0.55 1.91 3.48 6.55 0.94 15.93 24 0.88 

59 0.58 2.19 3.80 6.45 0.72 15.25 36 0.88 

60 0.58 2.75 4.78 5.60 0.84 13.69 160 0.97 

61 0.50 2.18 4.35 5.86 1.17 14.96 25 0.84 

62 0.525 2.56 4.88 5.64 0.92 13.97 158 0.94 

63 0.53 2.03 3.87 5.98 1.30 15.50 85 0.96 

64 0.55 2.35 4.27 5.81 1.09 14.69 10 0.80 

65 0.48 1.87 3.93 6.03 1.37 15.76 15 0.88 

66 0.56 2.04 3.63 6.50 0.83 15.61 46 0.92 

67 0.55 2.35 4.27 6.10 0.81 14.69 149 0.94 

68 0.51 2.10 4.09 5.92 1.24 15.25 44 0.95 

69 0.527 2.03 3.87 6.24 1.04 15.50 58 0.94 

70 0.54 2.18 4.06 5.90 1.20 15.12 106 0.96 

71 0.59 2.50 4.21 6.15 0.64 14.46 170 0.98 

72 0.56 2.07 3.69 6.33 0.96 15.52 58 0.97 

73 0.545 2.17 3.98 6.28 0.86 15.19 60 0.92 

74 0.53 2.27 4.31 5.84 1.12 14.81 14 0.83 

75 0.58 2.27 3.93 6.25 0.81 15.03 74 0.95 

76 0.56 2.26 4.03 6.15 0.89 14.99 102 0.96 

77 0.526 2.26 4.31 5.83 1.13 14.83 172 0.97 

78 0.55 2.11 3.83 6.22 1.01 15.38 16 0.94 

79 0.54 2.18 4.06 6.17 0.93 15.12 10 0.89 

80 0.58 2.44 4.24 6.07 0.77 14.56 126 0.96 
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Appendix 2 Regression analysis for training, validation and testing of slump model 
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