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buckling. Depending on the loading case, yield stress of the structural material and slenderness of the  
beam, which is related to section properties and length of the element, lateral torsional buckling may 
occur before the extreme fiber of the section reaches to yield stress. In this case, instead of first yield 
moment, lateral torsional buckling moment should be considered in design of the beam. In this paper, 
application of finite differences method for determining elastic critical lateral torsional buckling 
moment of cantilever I sections which are loaded from shear center is presented. The results are 
compared with ABAQUS software and it is seen that results obtained from the presented 1D model 
and ABAQUS software coincide. 
 

Keywords: Lateral torsional buckling, Finite differences method, Cantilever beam, I section, 
Stability 
 

 

1. INTRODUCTION 
 

Lateral torsional buckling is a serious 
stability loss in cantilever beams. When the load, 
which produces bending moment about strong  

 
axis of the beam, reaches to a critical value, the 
beam experiences non-uniform twisting and 
laterally buckles (Fig. 1.1). 

 

 
 
 

Figure 1.1. Lateral torsional buckling of a cantilever I beam 
 

The smallest load which causes lateral 
torsional buckling of the beam is called critical 
lateral torsional buckling load and form of the 
twisting angle function of the buckled beam is 
called critical lateral torsional buckling mode. If 
lateral torsional buckling occurs before the 
extreme fiber of the section reaches to yield 
stress, this case is called elastic lateral torsional 
buckling. If lateral torsional buckling occurs 
after the extreme fiber of the section reaches to 
yield stress this case is called inelastic lateral 
torsional buckling. However, some beams fail 

without experiencing lateral torsional buckling 
depending on the cantilever length, section 
properties, elasticity modulus and yield stress of 
the structural material. Lateral torsional buckling 
load is not considered in design of these beams. 

 
Many studies are conducted on lateral 

torsional buckling of beams. Andrade, Camotim 
and Providência e Costa included singly and 
doubly symmetric cantilever I sections with 
warping free or restrained on fixed end in the 
application field of 3-factor formula (C.E.N.,  
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1992), which is a commonly used method for 
determining lateral torsional buckling moment of 
steel beams (Andrade, et al., 2007). Zhang and 
Tong compared traditional theory (Timoshenko 
and Gere, 1961) and Lu’s theory (Lu, et al., 
1983), which are slightly different from each 
other, used for determining lateral torsional 
buckling loads of thin-walled elements (Zhang 
and Tong, 2008). Samanta and Kumar studied 
singly symmetric I sections, of which top and 
bottom flanges are laterally restrained, under 
different loading cases (Samanta and Kumar, 
2008). Qiao, Zou and Davalos conducted 
experimental and analytical studies on lateral 
torsional buckling of fiber-reinforced plastic 
cantilever I sections and presented simplified 
formulas (Qiao, et al., 2003). Eryiğit, Zor and 
Arman studied the effect of hole diameter and 
location to lateral torsional buckling strength of 
composite cantilever beams by experimental and 
analytical methods (Eryiğit, et al., 2009). 
 

It is possible to classify the methods for 
determining lateral torsional buckling load of 
beams into 3 main classes. First is finite element 
perturbation analysis. This method is more 
accurate compared to other alternative methods. 
Since calculation procedure is very complex, 
application of this method requires use of a finite 
element analysis software. 

 
Second is energy method. Energy method is 

based on the principle that critical lateral 
torsional buckling load of a system can be found 
by equalizing external work and internal work 
done at the limit state. To apply energy method, 
a twisting angle function which is in the form of 
critical lateral torsional buckling mode should be 
chosen. Also, selected function should satisfy 
the boundary conditions for the mentioned 
problem. However, for cantilever beams, form of 
the critical lateral torsional buckling mode 
changes due to loading case, cantilever length, 
torsional rigidity and warping rigidity of the 
section. Existence of a function which takes the 
form of critical lateral torsional buckling mode 
of any cantilever beam with loading case, 
cantilever length, torsional rigidity and warping 
rigidity parameters does not seem possible. Such 
function has not been encountered in literature as 
it is expected. 

 
The last is solution of differential equation 

of equilibrium, which is the main concern of this 
study and introduced in the next section for 
various loading cases. A closed form solution of 
the equilibrium equation for pure bending case  

 
(Timoshenko and Gere, 1961) is recalled in 
many studies. On the contrary, for other loading 
cases, general solutions for lateral torsional 
buckling of cantilever beams are not known by 
the author. Use of numerical methods are 
mentioned in existing studies, however 
presentation of a detailed application on lateral 
torsional buckling of cantilever I beams has not 
been encountered. 
 

In this paper, application of finite 
differences method for calculating lateral 
torsional buckling moment of cantilever I 
sections is presented for concentrated load at 
free end, uniformly distributed load, 
combination of concentrated load at free end and 
uniformly distributed load and constant moment 
cases. 
 
2. EQUATIONS OF EQUILIBRIUM 
 

Equation of equilibrium for lateral torsional 
buckling is a 4th order differential equation. For 
doubly symmetric sections, equation for 
concentrated load at free end acting from shear 
center is given below (Timoshenko and Gere, 
1961). 
 

݀ସ߶
ସݏ݀

െ
ܥ
ଵܥ

݀ଶ߶
ଶݏ݀

െ
ܲଶݏଶ

ଵܥఎܫܧ
߶ ൌ 0 (2.1) 

 
In Eq. 2.1, ߶ is twisting angle, ݏ is the 

distance from free end, ܥ is torsional rigidity 
calculated by multiplying shear modulus by 
torsional constant, ܥଵ is warping rigidity 
calculated by multiplying elasticity modulus by 
warping coefficient, ܧ is elasticity modulus, ܫఎ is 
moment of inertia about weak axis and ܲ is the 
magnitude of the concentrated load at free end. 
Equation for uniformly distributed load is given 
below (Özbaşaran, 2013). 

 

݀ସ߶
ସݏ݀

െ
ܥ
ଵܥ

݀ଶ߶
ଶݏ݀

െ
ସݏଶݍ

ଵܥఎܫܧ4
߶ ൌ 0 (2.2) 

 
In Eq. 2.2, ݍ is the magnitude of uniformly 

distributed load. Equation for combination of 
concentrated load at free end and uniformly 
distributed load is given below (Özbaşaran, 
2013). 
 

݀ସ߶
ସݏ݀

െ
ܥ
ଵܥ

݀ଶ߶
ଶݏ݀

െ
ܮߣଶሺ2ݏଶݍ ൅ ሻଶݏ

ଵܥఎܫܧ4
߶ ൌ 0 (2.3) 
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In Eq. 2.3, ߣ is the concentrated load 

multiplier. In Eq 2.3, in addition to uniformly 
distributed load ݍ, a concentrated load with a 
magnitude of ܮݍߣ at free end is acting to the 
system. Finally, equation for constant moment is 
given below (Özbaşaran, 2013). 

 

݀ସ߶
ସݏ݀

െ
ܥ
ଵܥ

݀ଶ߶
ଶݏ݀

െ
߶ଶܯ
ଵܥఎܫܧ

ൌ 0 (2.4) 

 
In Eq. 2.4, ܯ is the magnitude of bending 

moment. Equations 2.1, 2.2 and 2.3 are valid 
only if cantilever beam is loaded from its shear 
center. For singly symmetric sections, torsional 
rigidity ܥ should be reduced by ܯ௫ߚ௫. Here, ܯ௫ 
is the bending moment about strong axis. ߚ௫ is 
the Wagner’s coefficient, which can be 
calculated as follows (Galambos, 1998). 
 

௫ߚ ൌ
׬ ଶݔሺݕ ൅ ஺ܣଶሻ݀ݕ

௫ܫ
െ  ଴ (2.5)ݕ2

 
In Eq. 2.5, ܣ is area of the cross section, ݔ 

and ݕ are the coordinates of the infinitesimal 
area along strong and weak axes with respect to 
gravity center of the section, respectively. ݀ܣ is 
infinitesimal area, ܫ௫ is the moment of inertia 
about strong axis and ݕ଴ is the coordinate of 
shear center along weak axis with respect to 
gravity center of the section. 

 
Instead of searching for a closed form 

solution, it is easier to investigate the solutions 
of equations 2.1, 2.2, 2.3 and 2.4 by numerical 
methods. In this study, finite differences method 
is used. First, equilibrium equation of lateral 
torsional buckling is written by finite differences 
method for considered loading case. Then, 
boundary conditions are added to equation set. 
Smallest load value, which satisfies the obtained 
homogenous equation system, is assumed as 
elastic critical lateral torsional buckling load of 
the cantilever beam. 
 

3. APPLICATION OF FINITE 
DIFFERENCES METHOD 
 

The mentioned beam should be divided into 
finite elements to apply finite differences 
method. Accuracy of the results increase as the 
number of finite elements increases. Also, by 
increasing finite element number, the problem 
becomes harder to solve. Therefore, cantilever 
beam should be divided into optimum number of 
finite elements for easy calculation. In this study, 
cantilever beams are divided into 100 finite 
elements to determine elastic critical lateral 
torsional buckling loads precisely. Finite 
differences model of a cantilever I beam is given 
in Fig. 3.1. 

.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1. 1D model of a cantilever beam 
 
 

In Fig. 3.1, ܮ is cantilever length and ݏ߂ is 
finite element length. In Fig. 3.1, it is seen that 
cantilever beam is divided into 5 sub elements. 
As told above, this number is insufficient to 
determine elastic critical lateral torsional 
buckling moment of the element precisely. 
However, finite element number is chosen 5 to 
simplify the explanation of the method. In 

Equations 2.1, 2.2, 2.3 and 2.4, 2nd and 4th 
derivative of the ߶ angle at point ݅ can be written 
as given below (Özbaşaran, 2013). 
 
 
 
 

 ݕ

012345      -1      -2 6 7 

 ݖ
 

 ݏ߂

 ݏ
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݀ଶ߶
ଶݏ݀

ൌ
1
ଶݏ߂

ሺ߶௜ିଵ െ 2߶௜ ൅ ߶௜ାଵሻ (3.1) 

 

݀ସ߶
ସݏ݀

ൌ
1
ସݏ߂

ሺ߶௜ିଶ െ 4߶௜ିଵ ൅ 6߶௜ െ 4߶௜ାଵ ൅ ߶௜ାଶሻ (3.2) 

In this case, following equation should be satisfied on every ݅ point on cantilever beam. 
 

݇ଵሺ߶௜ିଶ െ 4߶௜ିଵ ൅ 6߶௜ െ 4߶௜ାଵ ൅ ߶௜ାଶሻ െ ݇ଶሺ߶௜ିଵ െ 2߶௜ ൅ ߶௜ାଵሻ െ ܼଵ߶௜ ൌ 0 (3.3) 

 
In Eq. 3,݇ଵ, ݇ଶand ܼଵparameters are used for simplifying the equation. These parameters are 

given in Table 3.1 for different loading cases. 
 

Table 3.1. ݇ଵ, ݇ଶand ܼଵ parameters 
 

Loading Case ࢆ૚ ࢑૚ ࢑૛ 

Concentrated load at free end 
ܲଶݏଶ

ଵܥఎܫܧ
 

1
ସݏ߂

 
ܥ

ଶݏ߂ଵܥ
 

Uniformly distributed load 
ସݏଶݍ

ଵܥఎܫܧ4
 

Combination of concentrated load at free end 
and uniformly distributed load 

ܮߣଶሺ2ݏଶݍ ൅ ሻଶݏ

ଵܥఎܫܧ4
 

Constant moment 
ଶܯ

ଵܥఎܫܧ
 

 
For the beam given in Fig. 3.1, equations given in Table 3.2 can be written. These equations 

indicate the equilibrium at every node on the beam 
 

Table 3.2. Equilibrium equations for nodes 
 

Node Equation 

0 ݇ଵሺ߶ିଶ െ 4߶ିଵ ൅ 6߶଴ െ 4߶ଵ ൅ ߶ଶሻ െ ݇ଶሺ߶ିଵ െ 2߶଴ ൅ ߶ଵሻ െ ܼଵ߶଴ ൌ 0	 (3.4) 

1 ݇ଵሺ߶ିଵ െ 4߶଴ ൅ 6߶ଵ െ 4߶ଶ ൅ ߶ଷሻ െ ݇ଶሺ߶଴ െ 2߶ଵ ൅ ߶ଶሻ െ ܼଵ߶ଵ ൌ 0	 (3.5) 

2 ݇ଵሺ߶଴ െ 4߶ଵ ൅ 6߶ଶ െ 4߶ଷ ൅ ߶ସሻ െ ݇ଶሺ߶ଵ െ 2߶ଶ ൅ ߶ଷሻ െ ܼଵ߶ଶ ൌ 0	 (3.6) 

3 ݇ଵሺ߶ଵ െ 4߶ଶ ൅ 6߶ଷ െ 4߶ସ ൅ ߶ହሻ െ ݇ଶሺ߶ଶ െ 2߶ଷ ൅ ߶ସሻ െ ܼଵ߶ଷ ൌ 0	 (3.7) 

4 ݇ଵሺ߶ଶ െ 4߶ଷ ൅ 6߶ସ െ 4߶ହ ൅ ߶଺ሻ െ ݇ଶሺ߶ଷ െ 2߶ସ ൅ ߶ହሻ െ ܼଵ߶ସ ൌ 0	 (3.8) 

5 ݇ଵሺ߶ଷ െ 4߶ସ ൅ 6߶ହ െ 4߶଺ ൅ ߶଻ሻ െ ݇ଶሺ߶ସ െ 2߶ହ ൅ ߶଺ሻ െ ܼଵ߶ହ ൌ 0	 (3.9) 
 

In Table 3.2, twisting angles for virtual 
nodes -2, -1, 6 and 7 can be seen in equations. 
These virtual nodes do not exist on the cantilever 
beam. However, these nodes should be 
implemented into the homogenous equation 
system for applying finite differences method. 
Equilibrium equation number is 6. On the 

contrary, unknown twisting angle number is 10. 
Other required 4 equations for the solution of 
this homogenous equation system are obtained 
by boundary conditions of the beam. 
Mathematical expressions of the boundary 
conditions of the system are given in Table 3.3. 
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Table 3.3. Boundary conditions 

 

Node Equation 

0 ݀ଶ߶଴
ଶݏ݀

ൌ 0 (3.10) 

ܥ 0
݀߶଴
ݏ݀

െ ଵܥ
݀ଷ߶଴
ଷݏ݀

ൌ 0 (3.11) 

5 
݀߶ହ
ݏ݀

ൌ 0 (3.12) 

5 ߶ହ ൌ 0 (3.13) 

 
 

In Table 3.3, it is mentioned that 
bending moment in flanges, which is 
produced by warping, is 0 at free end. 
Therefore, 2nd derivative of the twisting 
angle should be 0. Also, there is no torsion 
at free end. At fixed end, there is no 
deformation caused by warping, therefore, 
1st derivative of the twisting angle should be 
0. 

 
Obviously, twisting is restrained at fixed end 
(Deren, et al., 2003). First and third 
derivative of the twisting angle at node i  can 
be written by finite differences method as 
given below. 
 
 
 

 112

1
 


 iisds

d 
 (3.14) 

 

 211233

3

22
2

1
 


 iiiisds

d 
 (3.15) 

 
By substituting Equations 3.14 and 3.15 in the equations given in Table 3.3, boundary conditions 

can be written with finite differences method for the cantilever beam given in Fig. 3.1 (Table 3.4). 
 

Table 3.4. Finite differences expressions of boundary conditions 
 

Node Equation 

0   02 1011  j  (3.14) 

0     022 211231112    jCCj  (3.15) 

5   0642  j  (3.16) 

5 05   (3.17) 
 

In Table 3.4, 1j , 2j and 3j  parameters, which are given in Table 3.5, are independent from 
loading case. 
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Table 3.5.݆ଵ, ݆ଶand ݆ଷ parameters 
 

Parameter Value 

݆ଵ 
1
ଶݏ߂

 

݆ଶ 
1
ݏ߂2

 

݆ଷ 
1

ଷݏ߂2
 

 
 
 
 
With given equations in Table 3.2 and 3.4, a 

homogenous equation set with 10 unknown   
variables is obtained. Therefore, determining 
lateral torsional buckling load of the beam 
becomes an eigenvalue problem. Determinant of 
the coefficient matrix for the equations given in 
Table 3.2 and 3.4 should be 0 if the homogenous 
equation system has a solution other than 0 for 
every i  value. This eigenvalue problem can be 
easily solved by a mathematical software. 
 

 
 
 

4. COMPARISON OF RESULTS 
 
Finite element models of the compared 

sections are generated by ABAQUS software. 
S8R5 shell elements are used. This shell element 
has 8 nodes and 5 constraints in every node. 
Models are restrained from one end for 
displacement and rotation about all 3 axes. 
Loads are divided into 2 parts and applied to top 
flange and bottom flange of the section for 
preventing local perturbation problems. 
Dimensions of sections are given in Fig. 4.1, 
which are used for comparison of the results 
obtained by finite differences method and 
ABAQUS software. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1. Dimensions of selected sections in mm a) Section I, b) Section II, c) Section III 
 
 

In Fig. 4.1, ܩ௦ indicates the shear center of the section. ܩ௖ is center of gravity. Properties of these 
sections are given in Table 4.1. 
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Table 4.1. Section properties 
 

 Section I Section II Section III 

 ሻ 200000 200000 200000܉۾ۻሺ	ࡱ

 ሻ 76923 76923 76923܉۾ۻሺ	ࡳ

 ૝ሻ 68.16*104 38.40*104 38.40*104ܕܕሺ	ࣁࡵ

 ૝ሻ 28.20*103 22.66*103 22.66*103ܕܕሺ	࢚ࡵ

 ૟ሻ 395.89*107 87.98*107 87.98*107ܕܕሺ	࢝࡯

 ሻܕܕሺ	ࢉࡳ 80.00 94.15 65.85 

 ሻܕܕሺ	࢙ࡳ 80.00 139.34 20.66 

 ሻܕܕሺ	࢞ࢼ 0 -111.97 111.97 
 

In Table 4.1, ܩ is shear modulus and ܫ௧ is torsional constant. In Table 4.2, elastic critical lateral 
torsional buckling moments are given for different cantilever lengths of Section I. 
 

Table 4.2. Elastic critical lateral torsional buckling moments for Section I (kNm) 
 

 ࡼ ࡹ Method (m) ࡸ
ࢗ ൅  ࡼ
(λ=1.0) 

 ࢗ

1.5 

FDM 28.34 98.93 120.18 198.19 

ABQ 28.03 98.06 118.50 192.79 

FDM /ABQ 1.01 1.01 1.01 1.03 

2.0 

FDM 19.25 63.96 77.28 124.72 

ABQ 18.93 65.28 77.88 122.10 

FDM /ABQ 1.02 0.98 0.99 1.02 

3.0 

FDM 11.47 35.61 42.66 66.83 

ABQ 11.19 36.06 42.12 65.70 

FDM /ABQ 1.03 0.99 1.01 1.02 

4.0 

FDM 8.08 24.08 28.80 44.00 

ABQ 7.89 24.32 28.56 44.00 

FDM /ABQ 1.02 0.99 1.01 1.00 
FDM: Finite Differences Method 
ABQ: ABAQUS software 

 

In Table 4.2, ݍ ,ܲ ,ܯ ൅ ܲ (λ=1.0) and ݍ 
columns indicate constant moment, concentrated 
load at free end, combination of uniform 
distributed 

load and concentrated load at free end (λ=1.0) 
and uniform distributed load cases respectively. 
Elastic critical lateral torsional buckling 
moments are given for Section II in Table 4.3 

 
 
 

 
 
 
 
 
 



Bilim ve Teknoloji Dergisi - A - Uygulamalı Bilimler ve Mühendislik 14 (2) 
Journal of Science and Technology - A - Applied Sciences and Technology 14 (2) 

151 

 
Table 4.3. Elastic critical lateral torsional buckling moments for Section II (kNm) 

 

 ࡼ ࡹ Method (m) ࡸ
ࢗ ൅  ࡼ
(λ=1.0) 

 ࢗ

1.5 

FDM 10.79 27.75 32.23 45.73 

ABQ 10.57 27.63 32.06 45.05 

FDM /ABQ 1.02 1.00 1.00 1.02 

2.0 

FDM 8.31 20.72 23.94 33.42 

ABQ 8.03 20.76 24.00 33.34 

FDM /ABQ 1.04 1.00 1.00 1.00 

3.0 

FDM 5.67 13.89 16.07 22.01 

ABQ 5.57 13.89 16.07 22.01 

FDM /ABQ 1.02 1.00 1.00 1.00 

4.0 

FDM 4.31 10.56 12.24 16.56 

ABQ 4.18 10.52 12.24 16.56 

FDM /ABQ 1.03 1.00 1.00 1.00 

FDM: Finite Differences Method 
ABQ: ABAQUS software 

 
Finally, for Section III, elastic critical lateral torsional buckling moments are given in Table 4.4 

 

Table 4.4. Elastic critical lateral torsional buckling moments for Section III (kNm) 
 

 ࡼ ࡹ Method (m) ࡸ
ࢗ ൅  ࡼ
(λ=1.0) 

 ࢗ

1.5 

FDM 22.52 86.25 106.99 185.99 

ABQ 21.63 83.94 103.07 180.57 

FDM /ABQ 1.04 1.03 1.04 1.03 

2.0 

FDM 14.54 52.44 64.62 109.58 

ABQ 14.08 52.04 63.72 105.28 

FDM /ABQ 1.03 1.01 1.01 1.04 

3.0 

FDM 8.29 27.54 33.48 54.72 

ABQ 7.98 27.54 33.48 54.05 

FDM /ABQ 1.04 1.00 1.00 1.01 

4.0 

FDM 5.75 18.12 21.84 34.72 

ABQ 5.63 18.12 21.84 34.48 

FDM /ABQ 1.02 1.00 1.00 1.01 

FDM: Finite Differences Method 
ABQ: ABAQUS software 

 
As can be seen from Table 4.2, 4.3 and 4.4, 

results obtained by solution of differential 
equation of lateral torsional buckling and 

ABAQUS are nearly identical. As a result of the 
considered finite element number and ABAQUS 
mesh size, slight differences are seen some examples. 
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4.CONCLUSIONS 
 

In the study, application of finite differences 
method in solution of differential equation of 
lateral torsional buckling is summarized by a 1D 
cantilever I section beam model, which is 
divided into 5 finite elements. One doubly 
symmetric and two singly symmetric I sections 
are used for comparison of obtained results by 
finite differences solutions of differential 
equation of lateral torsional buckling with 
ABAQUS software. Length of the cantilever 
beams which are considered for comparison of 
results vary from 1.5 to 4.0 m. Elastic critical 
lateral torsional buckling moments of these 
cantilever beams are calculated for constant 
moment, concentrated load at free end, 
combination of uniformly distributed load and 
concentrated load at free end and uniformly 
distributed load cases. It is seen from the 
calculations that results obtained by finite 
differences method and ABAQUS software 
coincides for the examined loading cases. 

 
It is concluded that finite differences 

solution of differential equation of lateral 
torsional buckling is an efficient method for 
determining elastic critical lateral torsional 
buckling moment of cantilever beams. It should 
be noted that as in every numerical method, 
more accurate results can be obtained by 
dividing the beam into more parts, however, 
calculation time increases by increasing finite 
element number. 
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