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KONSOL I KESITLi KiRISLERIN ELASTIiK YANAL BURULMALI
BURKULMA MOMENTININ HESAPLANMASINDA SONLU FARKLAR
YAKLASIMI

0z

Celik yapilarda kirisler, yap1 malzemesinin ekonomik kullanilmasi amaci ile, genellikle kuvvetli
asal eksenlerine gore egilme etkisinde olacak sekilde yerlestirilirler. S6z edilen ¢elik kiriglerin
tasariminda iki ana problem vardir. Bunlardan ilki, kesitin en disindaki lifte akma gerilmesinin
asilmasidir. Herhangi bir yilikleme hali i¢in, celik kiriste akma gerilmesinin agilmasina yol acan dis
yik kolaylikla hesaplanabilir. Ikinci problem ise stabilite kaybidir. Kuvvetli asal eksenlerine gore
egilme etkisinde olacak sekilde yiiklenen kiriglerde, belirli bir yiik siddeti i¢in, elemanin buruldugu ve
zayif eksenine gore burkuldugu bir denge hali de miimkiindiir. Bu durum yanal burulmali burkulma
olarak adlandirilir. Yiikleme durumuna, yapi malzemesinin akma gerilmesine ve kirigin narinligine
(kesit oOzelliklerine ve kiris uzunluguna baghdir) bagh olarak, en distaki lif akma gerilmesine
ulasmadan yanal burulmali burkulma meydana gelebilir. Bu durumda kirigin tasariminda, ilk akma
momenti yerine yanal burulmali burkulma momenti gbz Oniinde bulundurulmalidir. Bu ¢alismada,
kayma merkezinden yiiklenmis konsol I kesitli kirislerin elastik kritik yanal burulmali burkulma
momentinin bulunmasinda sonlu farklar yontemi uygulamasi sunulmustur. Sonuglar ABAQUS
yazilimi ile karsilastirilmis ve sunulan 1 boyutlu model ile ABAQUS yazilimindan elde edilen
sonuclarin Ortlisgtiigli gdrilmistiir.

Anahtar Kelimeler: Yanal burulmali burkulma, Sonlu farklar yontemi, Konsol kiris, I kesit,
Stabilite

FINITE DIFFERENCES APPROACH FOR CALCULATING ELASTIC
LATERAL TORSIONAL BUCKLING MOMENT OF CANTILEVER I SECTIONS

ABSTRACT

In steel structures, beams are usually assembled so as to be under bending about their major
axis in order to use the structural material economically. Two major problems take place in design of
these steel beams. First problem is exceeding of yield stress at the extreme fiber of the section.
External force magnitude for any loading case which causes exceeding of yield stress on a steel beam
can be easily calculated. Second problem is loss of stability. In beams which are loaded so as to be
under bending about their major axis an equilibrium state is also possible for a certain load magnitude,
in which the beam is twisted and buckled about its weak axis. This case is called lateral torsional
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buckling. Depending on the loading case, yield stress of the structural material and slenderness of the

beam, which is related to section properties and length of the element, lateral torsional buckling may
occur before the extreme fiber of the section reaches to yield stress. In this case, instead of first yield
moment, lateral torsional buckling moment should be considered in design of the beam. In this paper,
application of finite differences method for determining elastic critical lateral torsional buckling
moment of cantilever I sections which are loaded from shear center is presented. The results are
compared with ABAQUS software and it is seen that results obtained from the presented 1D model

and ABAQUS software coincide.

Keywords: Lateral torsional buckling, Finite differences method, Cantilever beam, 1 section,

Stability

1. INTRODUCTION

Lateral torsional buckling is a serious
stability loss in cantilever beams. When the load,
which produces bending moment about strong

axis of the beam, reaches to a critical value, the
beam experiences non-uniform twisting and
laterally buckles (Fig. 1.1).

Figure 1.1. Lateral torsional buckling of a cantilever I beam

The smallest load which causes lateral
torsional buckling of the beam is called critical
lateral torsional buckling load and form of the
twisting angle function of the buckled beam is
called critical lateral torsional buckling mode. If
lateral torsional buckling occurs before the
extreme fiber of the section reaches to yield
stress, this case is called elastic lateral torsional
buckling. If lateral torsional buckling occurs
after the extreme fiber of the section reaches to
yield stress this case is called inelastic lateral
torsional buckling. However, some beams fail

without experiencing lateral torsional buckling
depending on the cantilever length, section
properties, elasticity modulus and yield stress of
the structural material. Lateral torsional buckling
load is not considered in design of these beams.

Many studies are conducted on lateral
torsional buckling of beams. Andrade, Camotim
and Providéncia e Costa included singly and
doubly symmetric cantilever I sections with
warping free or restrained on fixed end in the
application field of 3-factor formula (C.E.N.,

144



Bilim ve Teknoloji Dergisi - A - Uygulamali Bilimler ve Mihendislik 14 (2)

Journal of Science and Technology - A

- Applied Sciences and Technology 14 (2)

1992), which is a commonly used method for
determining lateral torsional buckling moment of
steel beams (Andrade, et al., 2007). Zhang and
Tong compared traditional theory (Timoshenko
and Gere, 1961) and Lu’s theory (Lu, et al.,
1983), which are slightly different from each
other, used for determining lateral torsional
buckling loads of thin-walled elements (Zhang
and Tong, 2008). Samanta and Kumar studied
singly symmetric | sections, of which top and
bottom flanges are laterally restrained, under
different loading cases (Samanta and Kumar,
2008). Qiao, Zou and Davalos conducted
experimental and analytical studies on lateral
torsional buckling of fiber-reinforced plastic
cantilever [ sections and presented simplified
formulas (Qiao, et al., 2003). Eryigit, Zor and
Arman studied the effect of hole diameter and
location to lateral torsional buckling strength of
composite cantilever beams by experimental and
analytical methods (Eryigit, et al., 2009).

It is possible to classify the methods for
determining lateral torsional buckling load of
beams into 3 main classes. First is finite element
perturbation analysis. This method is more
accurate compared to other alternative methods.
Since calculation procedure is very complex,
application of this method requires use of a finite
element analysis software.

Second is energy method. Energy method is
based on the principle that critical lateral
torsional buckling load of a system can be found
by equalizing external work and internal work
done at the limit state. To apply energy method,
a twisting angle function which is in the form of
critical lateral torsional buckling mode should be
chosen. Also, selected function should satisfy
the boundary conditions for the mentioned
problem. However, for cantilever beams, form of
the critical lateral torsional buckling mode
changes due to loading case, cantilever length,
torsional rigidity and warping rigidity of the
section. Existence of a function which takes the
form of critical lateral torsional buckling mode
of any cantilever beam with loading case,
cantilever length, torsional rigidity and warping
rigidity parameters does not seem possible. Such
function has not been encountered in literature as
it is expected.

The last is solution of differential equation
of equilibrium, which is the main concern of this
study and introduced in the next section for
various loading cases. A closed form solution of
the equilibrium equation for pure bending case

(Timoshenko and Gere, 1961) is recalled in
many studies. On the contrary, for other loading
cases, general solutions for lateral torsional
buckling of cantilever beams are not known by
the author. Use of numerical methods are
mentioned in existing studies, however
presentation of a detailed application on lateral
torsional buckling of cantilever I beams has not
been encountered.

In this paper, application of (finite
differences method for calculating lateral
torsional buckling moment of cantilever I
sections is presented for concentrated load at
free end, uniformly distributed load,
combination of concentrated load at free end and
uniformly distributed load and constant moment
cases.

2. EQUATIONS OF EQUILIBRIUM

Equation of equilibrium for lateral torsional
buckling is a 4™ order differential equation. For
doubly symmetric sections, equation for
concentrated load at free end acting from shear
center is given below (Timoshenko and Gere,
1961).

Cd’¢ P’

G ds? ELG

d*e

In Eq. 2.1, ¢ is twisting angle, s is the
distance from free end, C is torsional rigidity
calculated by multiplying shear modulus by
torsional constant, C; is warping rigidity
calculated by multiplying elasticity modulus by
warping coefficient, E is elasticity modulus, I, is
moment of inertia about weak axis and P is the
magnitude of the concentrated load at free end.
Equation for uniformly distributed load is given
below (Ozbasaran, 2013).

d4¢ Cdzd) qZS4
ds* Cyds?* 4ELC;

=0 2.2)

In Eq. 2.2, q is the magnitude of uniformly
distributed load. Equation for combination of
concentrated load at free end and uniformly
distributed load is given below (Ozbasaran,
2013).

d*¢ C d?¢ q%s?(2AL + s)?
ds* C; ds? 4EI,Cy

=0 (2.3)
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In Eq. 2.3, 1 is the concentrated load
multiplier. In Eq 2.3, in addition to uniformly
distributed load g, a concentrated load with a
magnitude of AqL at free end is acting to the
system. Finally, equation for constant moment is
given below (Ozbasaran, 2013).

d*¢ Cd?¢p M?¢

0 2.4)

In Eq. 2.4, M is the magnitude of bending
moment. Equations 2.1, 2.2 and 2.3 are valid
only if cantilever beam is loaded from its shear
center. For singly symmetric sections, torsional
rigidity C should be reduced by M,.8,. Here, M,
is the bending moment about strong axis. 8, is
the Wagner’s coefficient, which can be
calculated as follows (Galambos, 1998).

v+ y?)dA B
= a

2.5)

ﬁx ZYO

In Eq. 2.5, A is area of the cross section, x
and y are the coordinates of the infinitesimal
area along strong and weak axes with respect to
gravity center of the section, respectively. dA is
infinitesimal area, I, is the moment of inertia
about strong axis and y, is the coordinate of
shear center along weak axis with respect to
gravity center of the section.

Instead of searching for a closed form
solution, it is easier to investigate the solutions
of equations 2.1, 2.2, 2.3 and 2.4 by numerical
methods. In this study, finite differences method
is used. First, equilibrium equation of lateral
torsional buckling is written by finite differences
method for considered loading case. Then,
boundary conditions are added to equation set.
Smallest load value, which satisfies the obtained
homogenous equation system, is assumed as
elastic critical lateral torsional buckling load of
the cantilever beam.

3. APPLICATION OF FINITE
DIFFERENCES METHOD

The mentioned beam should be divided into
finite elements to apply finite differences
method. Accuracy of the results increase as the
number of finite elements increases. Also, by
increasing finite element number, the problem
becomes harder to solve. Therefore, cantilever
beam should be divided into optimum number of
finite elements for easy calculation. In this study,
cantilever beams are divided into 100 finite
elements to determine elastic critical lateral
torsional buckling loads precisely. Finite
differences model of a cantilever I beam is given
in Fig. 3.1.
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Figure 3.1. 1D model of a cantilever beam

In Fig. 3.1, L is cantilever length and 4s is
finite element length. In Fig. 3.1, it is seen that
cantilever beam is divided into 5 sub elements.
As told above, this number is insufficient to
determine elastic critical lateral torsional
buckling moment of the element precisely.
However, finite element number is chosen 5 to
simplify the explanation of the method. In

Equations 2.1, 2.2, 2.3 and 2.4, 2™ and 4"
derivative of the ¢ angle at point i can be written
as given below (Ozbasaran, 2013).

146



Bilim ve Teknoloji Dergisi - A - Uygulamali Bilimler ve Mihendislik 14 (2)
Journal of Science and Technology - A - Applied Sciences and Technology 14 (2)

d?¢ 1
252 = 752 Pi-1 20 + bira) (3.1
d*¢ 1 39
dot = 75t (i—z —4¢i—1 +6¢; — 4Pir1 + Giy2) (3-2)
In this case, following equation should be satisfied on every i point on cantilever beam.
ki(@i—z —4¢pi1 +6¢; — 4Pir1 + Piv2) — ko (Pi1 — 2 + Giy1) —Z1; =0 (3.3)

In Eq. 3,k;, ky,and Z;parameters are used for simplifying the equation. These parameters are
given in Table 3.1 for different loading cases.

Table 3.1. kq, k,and Z; parameters

Loading Case Z, k4 k-
P252
C trated load at fi d
oncentrated load at free en EIL G,
q%s*
Uniformly distributed load 4ET, G, 1 c
Combination of concentrated load at free end CIZS Z(2AL + 5)? As* | C14s?
and uniformly distributed load 4EL,Cy
MZ
C tant t
onstant momen £, G

For the beam given in Fig. 3.1, equations given in Table 3.2 can be written. These equations
indicate the equilibrium at every node on the beam

Table 3.2. Equilibrium equations for nodes

Node Equation
0 ki(p_y —4d_1+ 60y —4d, + ¢y) — k(-1 — 2¢g + 1) — Z1pg =0 3.4)
1 ki(p_q — 4o+ 6y — 4P, + ¢3) —ky(po — 2 + @) —Z1p, =0 (3.5)
2 ki(po —4dy + 6, — 43 + Py) — ky(py — 20, + ¢P3) —Z1¢p, =0 (3.6)
3 ki(Pp1 — 4y + 6¢3 — 4y + ¢5) — ka(o — 2¢3 + ¢4) — Z1¢3 =0 (3.7)
4 ki(¢2 = 4ps + 6¢y — 4ds + ) — ko(P3 — 24 + P5) — Z1¢, =0 (3.8)
5 ki(ps — 4y + 65 — 4pg + D7) — k(P — 2¢p5 + D) — Z1p5 =0 (3.9)

In Table 3.2, twisting angles for virtual
nodes -2, -1, 6 and 7 can be seen in equations.
These virtual nodes do not exist on the cantilever
beam. However, these nodes should be
implemented into the homogenous equation
system for applying finite differences method.
Equilibrium equation number is 6. On the

contrary, unknown twisting angle number is 10.
Other required 4 equations for the solution of
this homogenous equation system are obtained
by boundary conditions of the beam.
Mathematical expressions of the boundary
conditions of the system are given in Table 3.3.
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Table 3.3. Boundary conditions

Node Equation
0 dd¢ 0 (3.10)
R I REATD
5 %= 0 (3.12)
5 |¢s=0 (3.13)

In Table 3.3, 'it is mentioned thgt Obviously, twisting is restrained at fixed end
bending 'moment in flanges, which is (Deren, et al, 2003). First and third

produced by warping, is 0 at free end. derivative of the twisting angle at node i can

Therefore, 2™ derivative of the twisting b . by finite diff hod
angle should be 0. Also, there is no torsion ¢ written by finite differences method as

at free end. At fixed end, there is no given below.
deformation caused by warping, therefore,
1** derivative of the twisting angle should be

0.
d 1
df = JAs (_ ¢i—1 + ¢i+1) (3.14)
d’ 1
E? = IAS (_ ¢i—2 + 2¢i—1 _2¢i+1 + i+2) (3.15)

By substituting Equations 3.14 and 3.15 in the equations given in Table 3.3, boundary conditions
can be written with finite differences method for the cantilever beam given in Fig. 3.1 (Table 3.4).

Table 3.4. Finite differences expressions of boundary conditions

Node Equation
0 i\ (8, —24,+8)=0 (3.14)
0 | Ciy(-4,+4)-Cii(~¢,+2¢,-24,+4,)=0 (3.15)
5 (=, +4,)=0 (3.16)
5 ¢ =0 (3.17)

In Table 3.4, Jj, Jpand j3 parameters, which are given in Table 3.5, are independent from
loading case.
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Table 3.5.j;, joand j; parameters

Parameter

Value

J1

1
As?

Ja

1
24s

Js

1
24s3

With given equations in Table 3.2 and 3.4, a
homogenous equation set with 10 unknown ¢
variables is obtained. Therefore, determining
lateral torsional buckling load of the beam
becomes an eigenvalue problem. Determinant of
the coefficient matrix for the equations given in
Table 3.2 and 3.4 should be 0 if the homogenous
equation system has a solution other than 0 for
every ¢I value. This eigenvalue problem can be

easily solved by a mathematical software.

160

139.34

4. COMPARISON OF RESULTS

Finite element models of the compared
sections are generated by ABAQUS software.
S8R5 shell elements are used. This shell element
has 8 nodes and 5 constraints in every node.
Models are restrained from one end for
displacement and rotation about all 3 axes.
Loads are divided into 2 parts and applied to top
flange and bottom flange of the section for
preventing  local  perturbation  problems.
Dimensions of sections are given in Fig. 4.1,
which are used for comparison of the results
obtained by finite differences method and
ABAQUS software.

160

(b) (©)

Fig. 4.1. Dimensions of selected sections in mm a) Section I, b) Section II, ¢) Section 111

In Fig. 4.1, G, indicates the shear center of the section. G, is center of gravity. Properties of these

sections are given in Table 4.1.
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Table 4.1. Section properties

Section I Section 11 Section 111

E (MPa) 200000 200000 200000

G (MPa) 76923 76923 76923

I,, (mm*) 68.16*10* 38.40*10* 38.40*10*

I, (mm*) 28.20%10° 22.66%10° 22.66*10°
C,, (mm®) 395.89%10’ 87.98*10’ 87.98*10’

G, (mm) 80.00 94.15 65.85

G; (mm) 80.00 139.34 20.66

B (mm) 0 -111.97 111.97

In Table 4.1, G is shear modulus and I; is torsional constant. In Table 4.2, elastic critical lateral
torsional buckling moments are given for different cantilever lengths of Section I.

Table 4.2. Elastic critical lateral torsional buckling moments for Section I (kNm)

L(m) | Method M P (3’:;.’(;) q
FDM 2834 | 98.93 | 120.18 | 198.19
15 ABQ 2803 | 98.06 | 11850 | 192.79
FDM/ABQ | 1.01 | 1.01 | 1.01 | 1.03
FDM 1925 | 63.96 | 77.28 | 124.72
2.0 ABQ 1893 | 6528 | 77.88 | 122.10
FDM/ABQ | 1.02 | 098 | 099 | 1.02
FDM 1147 | 3561 | 4266 | 66.83
3.0 ABQ 11.19 | 36.06 | 4212 | 65.70
FDM/ABQ | 1.03 | 099 | 1.01 | 1.02
FDM 808 | 2408 | 28.80 | 44.00
4.0 ABQ 789 | 2432 | 2856 | 44.00
FDM/ABQ | 1.02 | 099 | 1.01 | 1.00

FDM: Finite Differences Method
ABQ: ABAQUS software

In Table 4.2, M, P, q+ P (A=1.0) and q
columns indicate constant moment, concentrated
load at free end, combination of uniform
distributed

load and concentrated load at free end (A=1.0)
and uniform distributed load cases respectively.
Elastic critical lateral torsional buckling
moments are given for Section II in Table 4.3
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Table 4.3. Elastic critical lateral torsional buckling moments for Section II (kNm)

L(m) | Method M P (3=J;.f))) q

FDM 1079 | 2775 | 3223 | 45.73

15 ABQ 1057 | 27.63 | 32.06 | 45.05
FDM /ABQ | 1.02 1.00 1.00 1.02

FDM 831 | 2072 | 2394 | 33.42

2.0 ABQ 803 | 2076 | 2400 | 3334
FDM /ABQ | 1.04 1.00 1.00 1.00

FDM 567 | 1389 | 1607 | 2201

3.0 ABQ 557 | 1389 | 1607 | 2201
FDM /ABQ | 1.02 1.00 1.00 1.00

FDM 431 1056 | 1224 | 16.56

4.0 ABQ 418 | 1052 | 1224 | 16.56
FDM /ABQ | 1.03 1.00 1.00 1.00

FDM: Finite Differences Method
ABQ: ABAQUS software

Finally, for Section III, elastic critical lateral torsional buckling moments are given in Table 4.4

Table 4.4. Elastic critical lateral torsional buckling moments for Section III (kNm)

L(m) | Method M P (3:; .g) q
FDM 2252 | 8625 | 10699 | 185.99
15 ABQ 2163 | 8394 | 103.07 | 18057
FDM /ABQ | 1.04 1.03 1.04 1.03
FDM 1454 | 5244 | 6462 | 109.58
2.0 ABQ 1408 | 5204 | 6372 | 105.28
FDM /ABQ | 1.03 1.01 1.01 1.04
FDM 829 | 2754 | 3348 | 5472
3.0 ABQ 798 | 2754 | 3348 | 54.05
FDM /ABQ | 1.04 1.00 1.00 1.01
FDM 5.75 1812 | 2184 | 3472
4.0 ABQ 5.63 18.12 | 21.84 | 3448
FDM /ABQ | 1.02 1.00 1.00 1.01

FDM: Finite Differences Method
ABQ: ABAQUS software

As can be seen from Table 4.2, 4.3 and 4.4, ABAQUS are nearly identical. As a result of the
results obtained by solution of differential considered finite element number and ABAQUS
equation of lateral torsional buckling and  mesh size, slight differences are seen some examples.
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4.CONCLUSIONS

In the study, application of finite differences
method in solution of differential equation of
lateral torsional buckling is summarized by a 1D
cantilever I section beam model, which is
divided into 5 finite elements. One doubly
symmetric and two singly symmetric I sections
are used for comparison of obtained results by
finite differences solutions of differential
equation of lateral torsional buckling with
ABAQUS software. Length of the cantilever
beams which are considered for comparison of
results vary from 1.5 to 4.0 m. Elastic critical
lateral torsional buckling moments of these
cantilever beams are calculated for constant
moment, concentrated load at free end,
combination of uniformly distributed load and
concentrated load at free end and uniformly
distributed load cases. It is seen from the
calculations that results obtained by finite
differences method and ABAQUS software
coincides for the examined loading cases.

It is concluded that finite differences
solution of differential equation of lateral
torsional buckling is an efficient method for
determining elastic critical lateral torsional
buckling moment of cantilever beams. It should
be noted that as in every numerical method,
more accurate results can be obtained by
dividing the beam into more parts, however,
calculation time increases by increasing finite
element number.
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