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Abstract 

 

 

            Contact mechanics must be analyzed to determine the dynamic characteristics of polymer hybrid bearings. Since the 

polymer bearings have contact surfaces of polymer-polymer, polymer-glass, or polymer-steel, the Hertz contact theory used to 

examine the contact mechanics of conventional bearings cannot be directly used. Due to the elastoplastic structure of polymer 

materials, elastoplastic contact mechanics is used in examining contact mechanics. In this study, the contact mechanics of the 

polymer bearing were analyzed as elastoplastic contact and were included in the shaft-bearing system model. An algorithm was 

developed in the MATLAB environment using the geometry of the 6203 bearings, and its dynamic characteristics were examined 

through simulations. The equations of motion are simulated at different shaft speeds with an elastic region assumption to 

determine the dynamic characteristics of polymer hybrid bearings. The results are discussed in the time-frequency domain. 
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Polimer Hibrid Rulmanların Dinamik Davranışının İncelenmesi 

 

Özet 

            Polimer hibrid rulmanların dinamik özelliklerini belirlemek için temas mekaniğinin analiz edilmesi gerekmektedir. 

Polimer rulmanlar polimer-polimer, polimer-cam veya polimer-çelik temas yüzeylerine sahip olduğundan, geleneksel rulmanların 

temas mekaniğini incelemek için kullanılan Hertz temas teorisi doğrudan kullanılamamaktadır. Polimer malzemelerin 

elastoplastik yapısından dolayı temas mekaniğinin incelenmesinde elastoplastik temas mekaniği kullanılmaktadır. Bu çalışmada, 

polimer hibrid rulmanın temas mekaniği elastoplastik temas olarak analiz edilmiş ve şaft-rulman sistemi modeline dahil 

edilmiştir. 6203 rulmanın geometrisi kullanılarak MATLAB ortamında bir algoritma geliştirilmiş ve simülasyonlar aracılığıyla 

dinamik özellikleri incelenmiştir. Polimer hibrid rulmanların dinamik özelliklerini belirlemek için hareket denklemleri rulmanın 

elastik bölgede olduğu kabul edilerek farklı mil hızlarında simüle edilmiştir. Sonuçlar zaman-frekans alanında tartışılmıştır. 

 

Anahtar Kelimeler: Elasto-Plastik Temas, Polimer Hibrid Rulman, Titreşim 
 

1. INTRODUCTION 
 

         Polymer bearings, unlike steel bearings, have recently become more common in industry because they provide 

more advantages in places where the load-carrying capacity is not essential, hygiene is required, chemicals are used, 

and a quiet working environment is required. Polymer hybrid bearings are generally made of polymer inner race, 

outer race, and cage, and rolling elements (balls) could be polymer, glass, or steel balls, depending on the 

application. Figure 1 shows the unassembled view of the polymer hybrid deep groove ball bearing used in the 

simulations. 

 

https://dergipark.org.tr/tr/pub/@karacay
https://orcid.org/0000-0002-6014-5610
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Figure 1. The distributed view of polymer hybrid deep groove ball bearing 

The long lifespan of bearings is essential in terms of economy and continuity of production. For this reason, 

bearings are operated within the limits of the elastic region. Hertz contact is used to analyze the contact mechanics 

of conventional steel bearings. However, the polymer ball bearings' structure differs from steel bearings because the 

balls and races consist of different materials. So, Hertz's contact theory cannot be directly used to examine the 

contact in polymer bearings. When examining the contact mechanics of polymer bearings, elastoplastic contact is 

used instead of Hertz contact theory. Elasto-plastic contact examines elastic, elasto-plastic, and fully plastic regions 

in three parts and two kinds of model: the indentation model and the flattening model. The critical deformation rate 

must be known to classify the contact area formed in elasto-plastic contact, which is explained in detail in Section 2. 

In elasto-plastic contact, the critical deformation rate, first proposed by Kogut and Etsion and later by Jackson 

and Green, to which the von Mises yield criterion of the material was added, is used to determine in which region 

the contact occurs. Kogut and Etsion determined frictionless elasto-plastic contact between the deformable sphere 

and the rigid surface. They indicated when contact    ⁄    there is a fully elastic region, and it is compatible with 

Hertzian contact when      ⁄    a plastic zone has started under the sphere surface, but the whole contact area 

is elastic; when      ⁄     there is elastic-plastic contact, and when       ⁄  the contact area is in the fully 

plastic region [2]. Later, unlike the model created by Kogut and Etsion, Jackson and Green added geometry and 

material effects to the model and created a model using the finite element method, accepting the Von Mises yield 

strength criterion as the yield point of the material and accepting it as    ⁄      the elastic region. This model can 

use the material's yield point with the two deformable surfaces' weaker and lower yield points [3, 4]. Brake 

developed a new formulation for the elasto-plastic contact of two circular objects in the normal direction, taking into 

account the contact geometry and material properties [5]. Jamari and Schipper created a theoretical model for the 

elasto-plastic contact of ellipsoid bodies [6]. Zhao et al. modeled three regions between two flat surfaces: elastic, 

elasto-plastic, and plastic regions, and used the hardness of the material to determine the critical contact point [7]. Li 

et al. examined the rigid and elastoplastic spheres by modifying the theoretical model created by Johnson [8]. 

Jackson and Sharma investigated the cylindrical elasto-plastic contact between a solid flat surface and a cylinder 

modeled as a deformable quarter circle using the finite element method [9]. Yau et al. used elasto-plastic models to 

determine the stress distribution on the bearing in the elastic and elasto-plastic regions [10,11]. Komvopoulos and 

Song examined the deformation of elasto-plastic half-space and rigid cylindrical contact in four different 

deformation forms: linear elastic-plastic, nonlinear elastic-plastic, transition to full plastic and the steady-state part 

of plastic deformation using the finite element method [12].  

Elasto-plastic contact is examined with two models: the indentation model and the flattening model. Some 

researchers have examined various contact surfaces using only the indentation and flattening contact model. 

Ghaednia et al. investigated the frictionless contact between an elasto-plastic surface and a sphere. They achieved 

this by developing a novel model that connects the flattening and indentation models, allowing for elasto-plastic 

deformation of both surfaces. [1]. Ogar et al. analyzed the flattening model with a sphere, considering the material's 

hardness with the finite element method [13]. Deng et al. investigated the similarities and differences between the 

elasto-plastic flattening and indentation contact model with the finite element method using five different materials 

whose yield strengths cover a typical range of steel materials used in engineering [14]. Ogar et al. investigated 

indentation and flattening in the contact between a rigid, rough surface and an elasto-plastic half-space, as well as 

between a rigid, smooth surface and a rough surface  [15]. Jackson and Kogut examined the indentation and 

flattening contact model comparatively using the finite element method [16]. Mesarovic and Fleck examined the 

indentation contact between a rigid sphere and an elasto-plastic deformable surface with and without considering 

friction [17]. Sara et al. used slip-line theory to investigate the yield force and average pressure of the indentation 
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contact between the rigid sphere and the frictionless deformable surface, and they compared their findings with 

those obtained using the finite element method. [18]. 
 

Bearings have complex dynamics, unlike their simple structures. Bearings produce vibration even when they 

are healthy. When the vibration of healthy bearings is examined, high amplitude signals are seen at the frequency 

values known as Ball Pass Frequency. Gustafsson and Tallian first determined the Ball Pass Frequency (BPF) with a 

mathematical model [19,20]. Meyer et al. decided that Ball Pass Frequency (BPF)  and its harmonics are seen even 

if the bearing is healthy after Gustafsson and Tallian's study [21,20].  

This study models the shaft-bearing system mathematically to predict how bearings behave dynamically. The 

contact mechanics between the ball and races are also investigated and introduced to the shaft-bearing model. The 

dynamic behaviors of healthy and faulty bearings were compared with simulations at different shaft speeds and 

under various loading conditions [22,23,24,25]. The mathematical model of the 6203 series deep groove ball bearing 

with steel balls has two degrees of freedom along lateral and vertical, and simulations are run under elastic contact 

assumption. 

 

2. ELASTO-PLASTIC CONTACT MODEL 

 

a) Indentation Model 
 

The indentation model was modeled to determine the contact between the sphere and the flat surface. 

According to this model, the hardness of the contacting surfaces is different from each other. Of the contacting 

surfaces, the sphere is more rigid, and the material used for the flat surface is softer than the material used for the 

sphere. Since the surface is more delicate, it is accepted that deformation occurs on the contact surface [1]. Figure 2 

shows the schematic view of the indentation model. 

 

 

 
 

Figure 2. Indentation model [1] 

 

b) Flattening Model 

 

The flattening model is the other model of the elastoplastic model. In contrast to the indentation model, it is 

modeled to establish the contact model of the soft sphere, and the more rigid flat surface sphere is constructed of 

softer material in this model. Deformation is assumed to occur on the sphere using the contact model. Figure 3 

shows the schematic view of the flattening model. 

 

 
 

Figure 3. Flattening model [1] 
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To determine the contact area in elasto-plastic contact, the deformation ratio to the critical deformation amount 

is mathematically calculated using the contact properties of the contacting surfaces. 

 

Critic Deformation 

 

Critical deformation is an important criterion used to determine where the contact area occurs and is calculated 

by considering the material properties and geometries of the contacting surfaces. The mathematical formulation for 

the critical deformation amount is given in Eq. 1 [1,4]. 
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E' indicates the equivalent elasticity modulus and is calculated using the formulation in Eq. 2 [1,4]. The 

elasticity modulus values of the materials from which the contacting objects are used in Eq. 1 are manufactured and 

calculated using the formulation given in Eq. 2. C is a constant specified by the mathematical formula shown in Eq. 

3 [1,4]. R represents the radius of the sphere. This study calculates R by taking the resultant of the ball radius and 

the distances between the inner and outer race curvature radii. Sy is the yield stress value of the first deformed 

material. The coefficient νs seen in Eq. 3, used when calculating the constant C, represents the Poisson ratio of the 

first deformed material. 

 

 

3. CONTACT MECHANICS 

 

3.1. Total Deflection of Ball Bearing 

 

Bearings transmit forces by deflection on the ball. The amount of deflection resulting from ball-inner race 

contact and ball-outer race contact is expressed as total deflection. The total deflection formulation is given in Eq. 4 

[27].    indicates inner race-ball deflection, appears δ2 in Figure 4, and      indicates outer race-ball deflection δ1 

appears in Figure 4, δ the sum of the deformations on the ball as seen in Figure 4. 

 

 

 
 

Figure 4. Total deflection of bearing [26] 

 

 

 

                                                                                                                                                 (4) 

 



MAUN Mühendislik-Mimarlık Fakültesi Dergisi,4(2),40-49,2023/ MAUN Journal of the Faculty of Engineering and Architecture, 4(2),40-49,2023

    Araştırma Makalesi/Research Article 

  
 

2

2 2 3
* 1 2

1 2

1 13

2 2

F

E E

  
 



    
                                                                                                           (5) 

 

 

The total deformation occurring on the bearing depends on the properties of the material used in the production 

of the parts forming the bearing and the geometric properties of the bearing. Eq. 5 indicates the mathematical 

representation of the amount of deformation calculated using the bearing's geometric properties and material 

properties [27]. The contact between the ball and the races has a point contact due to the structure of the balls and 

races. However, the point contact between the ball and the race turns into an elliptical area after loading. Primary 

and secondary elliptic integrals compute the parameters (a*,b*, and ₺*) needed to determine the contact area and 

deformation amount since the produced contact is elliptical. The dimensions of the elliptical area occurring in Hertz 

elastic contact and the deformation quantity can be roughly approximated when a*, b*, ₺* and dimensionless 

parameters are calculated. 

 

 

3.2. Shaft-bearing system of polymer bearing  

 

The shaft bearing system produces vibration even when the bearing on the system is healthy [21, 4]. This 

vibration is equal to the product of the cage frequency and the number of balls in the bearing and is called the Ball 

Pass Frequency (BPF). The equation used to determine the Ball Pass Frequency is given in Eq. 6. For this 

formulation, m represents the number of balls, and ₺c represents the angular velocity of the cage. The mathematical 

formulation seen in Eq. 7 calculates the angular velocity of the cage, and γ seen in Eq. 7 indicates the angle between 

the ball-bearing balls. Since the bearing used in this study is a deep groove ball bearing, α it is taken as zero, as seen 

in Eq. 8. 
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The force on the bearing is calculated by the total deflection and stiffness, as seen in Eq. 9. F indicates the total 

force on the bearing, K denotes the bearing stiffness, and ₺ indicates the total deformation amount on the balls. 

  

      ⁄                                                                                                                                                 (9) 

 

 

There is a nonlinear relationship between deflection and load, as seen in Eq. 9. To determine the nonlinear 

shaft-bearing system's dynamic behavior, the system's time solution at different loads and speeds must be obtained. 

For the theoretical part of this study, some assumptions were made, and the equations of motion were obtained. 

 

The assumptions made are stated below; 

 

 The shaft is assumed to have two degrees of freedom, x, and y, in the radial direction. 

 The balls are placed at equal intervals around the inner and outer races. The outer race does not rotate. 

 Balls are assumed to be massless. 

 Races are rigid, and only local deformations occur. 

 The shaft is assumed to be rigid. 

 

The schematic view of the shaft-bearing system is given in Figure 5; 
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Figure 5. The schematic view of the shaft-bearing system 

 

 

According to these assumptions, the equations of motion of the system model with two degrees of freedom are 

Eq. 11 and Eq. 12, which are stated below; 
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The equations of motion were solved using the fourth-order Runge-Kutta method and iterative methods. The 

system was solved with only the initial conditions to determine the system's natural frequency. Px is the force in the 

x-axis direction and indicates the force on the bearing calculated by considering gravity's effect. Py indicates the 

force acting on the bearing in the y-axis direction. 

 

 

4. RESULTS AND DISCUSSION 

 

The geometry of the bearings, the quantity of rolling elements, rotational speeds, and system operating factors 

all affect how dynamically a bearing behaves. The bearings' geometric and material characteristics were included in 

a mathematical model. MATLAB is used to develop a code that simulates the mathematical model with differential 

equation solutions. The code is run for different shaft speeds, and vibration spectra are obtained for these speeds. In 

order to analyze dynamic characteristics in the time-frequency domain, waterfall diagrams are plotted for the 

simulated 6203 series polymer hybrid ball bearing in good and faulty condition. The 6203 deep groove ball bearing 

properties used for simulations are given in Table 1, and the x-axis direction waterfall graph and y-axis waterfall 

graph are shown in Figure 6 and Figure 7, respectively. 

 

Table 1. Properties of  6203 ball bearing 

 

The diameter of the inner race Di 0,017 m 

The diameter of the inner raceway di 0,02358 m 

Outer raceway diameter do 0,02841 m 

Outer race diameter Do 0,04 m 

Bearing width w 0,012 m 
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Balls Diameter db 0,00426 m 

Radius of inner race groove ri 0,002480 m 

Outer race groove radius ro 0,003340 m 

   Number of balls   m 10 

   Contact angle   ⍺ 0 

 

 

In Figure 6, the resonance of the shaft-bearing system is clearly visible when the Ball Pass Frequency 

coincides with the shaft's natural frequency (critical speed) along the x-axis at 3050 rpm. The natural frequency of 

the shaft along the x-axis is determined as 212,40 Hz. 

 

 

 

 
 

Figure 6.  6203 bearing elastic region shaft vibrations in the x-axis 

 

 

The behavior of the shaft along the y-axis is similar to the x-axis, but the natural frequency of the shaft along 

the y-axis is 179.95 Hz. So, the shaft resonance along the y-axis occurs at 2500 rpm, as seen in Fig. 7. It should be 

noted that the superharmonics of the BPF are also visible in Fig. 6 and Fig. 7. However, their amplitudes, when 

coinciding with the natural frequencies, are lower than the BPF's. 

 

The natural frequency along the x-axis (212.40 Hz) is higher than the natural frequency along the y-axis 

(179.95 Hz). The system is modeled as gravity along the x-axis. Due to the nonlinear contact between the ball and 

the races, the loading alon x-axis and y-axis are different. The more loaded contact along the x-axis causes a larger 

contact area, so the more stiffness along this axis leads to a higher natural frequency. 
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Figure 7. 6203 bearing elastic region shaft vibrations in the y-axis 

 

5. CONCLUSION 

 

Using the indentation contact model, a mathematical model was created to determine the dynamic 

characteristics of the 6203 polymer hybrid bearing. Since the system is modeled with 2 degrees of freedom, the 

shaft-bearing system has two natural frequencies along each axis. Gravitational force affects the x-axis, so the 

natural frequency along this axis is higher than the other axis due to the nonlinear contact between the ball and the 

races. As can be seen from the waterfall diagrams, resonance occurs when the Ball Pass Frequency (BPF) coincides 

with one of the system's natural frequencies. Since the resonance zone has a destructive effect, these kinds of 

systems should not be operated at this shaft speed, or the system's design must be altered to avoid these working 

conditions. 
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APPENDİX - Ball elasticity subroutine 
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