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I. INTRODUCTION 

Square hollow sections (SHSs) have been receiving a great deal of attention for use as load-carrying components 

in a broad range of application fields, including construction and automotive, due to their many promising 

mechanical advantages over solid sections, such as a higher strength-to-weight ratio [1–6]. This important 

mechanical quality offered by SHSs makes them very ideal for use in specific applications where high strength 

with low weight is required [7]. As with other hollow section members possessing different section shapes 

including rectangular and circular, understanding their failure mechanism under loads is highly imperative for 

reliable design. The robust design of SHSs is generally achieved by considering both adequate- strength and 

local stability requirements in a balanced way [8–11]. Taking into account the adequate-strength criterion alone 

can lead the SHS to suffer local buckling prior to reaching its maximum load-carrying capacity, which brings 

additional material cost [8, 12]. In other words, a critical elastic local buckling load of the SHS needs to be 

considered its collapse load since the SHS cannot sustain any additional load after undergoing local elastic 

buckling [13–15].    
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 The aim of this rigorous parametric study is to explore the influence of perforations on the local buckling 
behavior of square hollow sections (SHSs) possessing non-uniform wall thickness. A finite element 
procedure followed in the current study has been first validated against existing test results documented for 
the local buckling behavior of the perforated SHS with uniform web and flange segment thickness under 
axial compression. The linear elastic eigenvalue buckling and elastoplastic buckling analyses have been 
implemented using the Abaqus engineering finite element code. The verification of the numerical procedure 
has been achieved by favorably comparing the finite element results with the existing test results in terms of 
the first local buckling mode shape and load-end shortening curves of the perforated SHS with uniform wall 
thickness. . The verified numerical procedure has been applied to the problem of finding the perforation 
effect on the local buckling response of the SHS with non-uniform thickness. Finite element analyses have 
been performed for four various web width-to-perforation diameter ratios ranging from 0.3 to 0.9.  Finite 
element analysis results have revealed that the presence of perforations does not influence the local buckling 
mode shape of the SHS but considerably affects the critical local buckling loads. The results have put forth 
that increasing perforation diameter leads to a more pronounced and drastic decrease in the critical local 
buckling load. The outcomes of the study have also shown that the critical post-buckling load of the SHS 
with non-uniform wall thickness is less susceptible to perforations compared to the SHS with uniform wall 
thickness. The results obtained in the context of this parametric study have been made available to practical 
engineering for use in actual design of the perforated SHSs. 
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The use of cold-formed steel SHSs as primary load-carrying components in numerous application fields has been 

increasing steeply due to their high strength and high stiffness -to- weight ratios compared to hot-formed SHSs 

[3, 16–19]. The key point of the local stability-based design of cold-formed steel SHSs is to first understand the 

influence of the cold-forming process on material attributes and then to reproduce their non-linear stress-strain 

curves by using a suitable material model [1, 3, 20, 21]. In general, cold-forming leads to a considerable increase 

in the yield and ultimate strengths of the steel but a significant decrease in its ductility [3, 5, 22–24]. Especially, 

the corner segments of SHSs undergo extremely large plastic deformations due to their constricted corner radius 

during the cold-forming process. This larger plastic deformation results in higher yield and ultimate strengths 

with less ductility in comparison in the corner coupons in comparison with the flat coupons of SHSs [3, 5, 25, 

26]. Up to the present time, a considerable number of material models have been developed to describe the non-

linear stress-strain behaviors of cold-formed steels [3, 27–29]. Among them, a constitutive expression developed 

by Ramberg and Osgood [27] is considered the most notable material model to specify the mechanical 

characteristics of cold-formed steels. 

 As reported by a significant number of researchers, thin-walled cold-formed SHSs are susceptible to global and 

local elastic buckling as well as post-buckling [30–32]. This is mainly due to the inherent weakness of the thin-

walled SHS [30]. Beyond this inherent weakness, their sophisticated local buckling failure modes induced by 

different loading configurations, like axial compression, bending, and combined axial compression and bending 

make their satisfactory prediction of the local buckling and post-buckling behaviors very difficult [30]. American 

Iron and Steel Institute’s Direct Strength Method (DSM) and Finite Strip Model (FSM) are the two common 

approaches that take into account the local elastic buckling properties for the specification of the local stability 

limit of the thin-walled structural members [14, 32–35]. In order to calculate the critical local elastic buckling 

stress of the box sections with uniform wall thickness, analytical expressions defining the local buckling 

coefficients have been developed and reported for the different cross-section dimensions (width-to-height ratio) 

and different loading configurations including axial compression, bending, biaxial bending and combined axial 

compression and bending [14, 15, 35]. One of the most notable studies has also documented the local buckling 

mode shapes of the box sections for various types of loads [14]. Note that the local buckling coefficients and 

local buckling mode shapes reported are valid for the box sections possessing uniform thickness. Interestingly, 

the lack of analytical expression that describes the local buckling coefficients of SHS with non-uniform wall 

segment thickness for specific loading configurations such as major axis bending, minor axis bending, and bi-

axial bending makes finite element analyses a powerful tool to deal with these types of unique local stability 

problems. For the axial compression loading case, only one exploratory study has reported the local buckling 

coefficients of SHS possessing different web and flange thicknesses [36]. Apart from the inexistence of an 

analytical solution for the calculation of local buckling coefficients of SHSs with unequal wall thickness, 

perforations can sometimes be placed on SHSs for connection or aesthetic purposes, which makes their local 

stability analysis more difficult in terms of theoretical aspects [26, 32, 37]. In other words, none of the 

aforementioned models (DSM and FSM) can explicitly handle the imperfections or discontinuities induced by 

perforations [37]. In this case, finite element analyses need to be applied to the problem of solving the local 

buckling behaviors of the perforated SHSs [26, 32, 37]. A finite element analysis is very useful for local 

buckling studies involving geometric imperfections caused by holes. 
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Considerable attention has been paid to comprehending the impact of imperfections generated by cut-out holes, 

cracks, damage, and delamination on the mechanical behaviors of various types of materials such as metal, 

composites, and functionally graded materials (FGMs) [38–42]. From those studies, it has been deduced that the 

numerical modeling of the formations of geometric imperfections in composites and FGMs is a harder task than 

the metallic materials due to their non-symmetrical property variations [39, 41] and this research topic still 

attracts great attention.           

In essence, a deep understanding of the local buckling and post-buckling behavior of SHSs as well as 

comprehending the perforations effect on their local stability is of great importance to the industry in terms of 

material savings. In order to gain a deep insight into the circular perforation effect on the local buckling behavior 

of rectangular plates from which SHS are constituted, a considerable number of exploratory studies have been 

dedicated so far [43–47]. Those studies have reported that the local stability of the rectangular plates is adversely 

influenced by the presence of circular perforations, and this unfavorable effect becomes more evident with 

increasing circular perforation diameter. Parametric studies carried out on the perforated plates have concluded 

that a decrease observed in the critical local buckling load is mainly due to the weakened cross-section of the 

plates resulting from the circular openings [48–50].One of the most noteworthy outcomes has also been reported 

that the critical local buckling stress might enhance with increasing the circular opening diameter beyond a 

certain limit as a result of the redistribution of stresses in the plates [48–50]. Furthermore, a notable finite 

element study has put forth that the plate with a circular perforation offers a higher critical local buckling load 

than the plate with a square perforation [51]. Aside from the perforated plates, the effects of perforations 

possessing different shapes (circular, square, or rectangular) on the local buckling behavior of thin-walled 

structures with different shapes (circular, rectangular, and square) have been examined [52–57]. A notable 

parametric study has focused on investigating the effects of cut-outs with different shapes, including square, 

rectangular, and circular on the local buckling behavior of an axially-loaded circular tube [53]. In addition to the 

mentioned perforation shapes, the location of the holes and the number of holes have been assessed employing 

finite element analyses [53]. This study has shown that the local buckling failure mode of the circular tube is 

independent of the shape perforation. It has also been concluded that the cylindrical thin-walled tube with a 

circular perforation of a diameter identical to the width of the square cut-out sustains a similar buckling load 

before collapse [53].The study has also revealed that the critical local buckling load of the circular thin-walled 

tube decreases with increasing perforations size and the number of perforations but is not affected pronouncedly 

by the location of perforations in the structure [53]. Similar results related to the effect of perforation location 

have also been reported by a comprehensive parametric study carried out on cold-formed SHS with equal wall 

segment thickness under axial compression [26]. Albeit a higher local buckling strength offered by the hot-

formed SHS under axial compression, paying the larger price for the hot-formed SHS compared to its equivalent 

cold-formed SHS negates the advantage of the hot-formed SHS in terms of local buckling resistance [58]. 

Opposite to the parametric studies [26, 53], a parametric study centered on examining the impact of a single 

circular opening on the local buckling behavior of the circular tube, made of a lean duplex stainless steel, has 

shown that the location of the opening has a considerable influence on the local buckling load and a maximum 

decrease in the local buckling load of the circular tube takes place when the single circular opening is located at 

mid-height of the structure [57]. Nevertheless, in contrast to the circular thin-walled tube, a square cut-out 

impairs the local buckling load capacity of SHS more severely than the hexagon and circular perforations of the 
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same size [26]. The effect of the presence of perforations on the local buckling behavior of the lipped channel 

section on the local has been studied by performing parametric studies [55].   

The literature review documented above clearly indicates that the parametric studies primarily focused on 

examining the local buckling behavior of perforated plates and circular thin-walled tubes. A few parametric 

studies have attempted to provide a better understanding of the effect of circular perforations on the local 

buckling parameters of the cold-formed SHS subject to axial compression, including the critical local buckling 

load and local buckling failure mode. Nevertheless, the parametric studies carried out on the cold-formed SHS 

are limited to the SHSs with equal wall segment thickness. In the literature, there is a lack of parametric studies 

addressing the effect of circular perforations on the local buckling behavior of SHSs with unequal wall segment 

thicknesses. 

In order to fill the above deficiency noticed in the literature, this parametric study has been thereby devoted to 

endeavoring the circular perforation effect on the local buckling behavior of cold-formed SHS with unequal wall 

thickness subject to axial compression through finite element analyses. To this end, finite element analyses have 

been implemented using the Abaqus engineering finite element software. Two various finite element analyses 

including linear elastic eigenvalue and post-buckling have been performed on the perforated SHS. Local 

buckling failure modes extracted from the linear elastic eigenvalue buckling simulations have been successfully 

introduced to the finite element model of the post-buckling. Results obtained from the numerical analysis have 

been clearly presented and well-documented. In essence, this study actually has explored the perforation effects 

on the local stability performance of the SHS with non-uniform wall thickness for the first time. 

                  

II. THEORETICAL BACKGROUND 

In the case of the square hollow section (SHS) illustrated in Fig.1, an associated local buckling mode is obtained 

without displacements of the adjacent of the web and flange segments [14, 15]. In other words, the influence of 

rotational constraints provided by the adjacent walls is not taken into account in calculating the local buckling 

stress. This actually signifies that each wall segment can suffer from buckling independently.  The calculation of 

the critical stress for local instability involves the geometric dimensions of SHS, material properties, and local 

buckling coefficients. 

In terms of geometric dimensions, elastic material properties, and local buckling coefficient, the critical stress for 

local instability can be described as follows [14, 15]: 

 

𝜎𝜎𝑐𝑐𝑐𝑐=𝑘𝑘𝜎𝜎 𝜋𝜋2 𝐸𝐸
12(1−𝑣𝑣)2

 (𝑡𝑡
𝑏𝑏

)2 (1) 

 

where 𝜎𝜎𝑐𝑐𝑐𝑐  is the critical local buckling stress. E and v represents the elastic modulus and Poisson’s ratio, 

respectively. t and b are the associated flange or web thickness and its thickness, respectively.  

Assuming that the critical buckling stress at the mid-points of the web and flange adjacent is equal, the 

expression given in Eq. (1) can be rearranged as given below.  
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𝜎𝜎𝑐𝑐𝑐𝑐=𝑘𝑘𝑤𝑤 𝜋𝜋2 𝐸𝐸
12(1−𝑣𝑣)2

 (𝑡𝑡𝑤𝑤
ℎ𝑤𝑤

)2=𝑘𝑘𝑓𝑓 𝜋𝜋2 𝐸𝐸
12(1−𝑣𝑣)2

 (𝑡𝑡𝑓𝑓
𝑏𝑏𝑓𝑓

)2 (2) 

 

 

Figure 1. Cross-section of SHS with uniform flange and web thickness 

 

Herein, 𝑘𝑘𝑤𝑤 and 𝑘𝑘𝑓𝑓 denote the local buckling coefficient for the web and flange, respectively. Note that these 

local buckling coefficients vary significantly based on the geometric dimensions of SHS as well as a loading 

configuration.  

The thickness of flange and web segments is represented by 𝑡𝑡𝑤𝑤 and  𝑡𝑡𝑓𝑓, respectively. The parameters of  ℎ𝑤𝑤 and 

𝑏𝑏𝑓𝑓 can be computed using the following expressions.  

 

ℎ𝑤𝑤=H-𝑡𝑡𝑓𝑓 
(3) 

 
 

𝑏𝑏𝑓𝑓=B-𝑡𝑡𝑤𝑤 (4) 

 

where 𝑡𝑡𝑤𝑤 and 𝑡𝑡𝑓𝑓 are the web and flange thickness, respectively. H and B denote the web width and flange width, 

respectively.  

When the web thickness is equal to the flange thickness (𝑡𝑡𝑓𝑓 = 𝑡𝑡𝑤𝑤), the relation between 𝑘𝑘𝑤𝑤 and 𝑘𝑘𝑓𝑓 can readily be 

extracted from Eq. (1) as given below. 
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𝑘𝑘𝑓𝑓 = 𝑘𝑘𝑤𝑤(𝑏𝑏𝑓𝑓
ℎ𝑤𝑤

)2 (5) 

 

In the case of SHS with a uniform thickness, it is known that 𝑏𝑏𝑓𝑓  is equal to  ℎ𝑤𝑤 (𝑏𝑏𝑓𝑓 = ℎ𝑤𝑤),  leading to  

𝑘𝑘𝑓𝑓 = 𝑘𝑘𝑤𝑤  (6) 

 

The expression presented in Eq.(6) signifies that the local buckling coefficient of  web is equal to the local 

buckling coefficient of flange in the case of SHS possessing uniform wall thickness. However, it is important to 

underline that the local buckling coefficient differ from a loading configuration to a loading configuration [14, 

15, 35]. For the axial compression loading configuration, it is very well known that both  𝑘𝑘𝑤𝑤 and 𝑘𝑘𝑓𝑓  are equal to 

4 [14, 35].  

If the SHS does not possess the identical wall thickness, Eq. (5) can be rewritten accordingly as given below. 

 

𝑘𝑘𝑓𝑓 =
𝑘𝑘𝑤𝑤

(
𝑡𝑡𝑓𝑓
𝑡𝑡𝑤𝑤

)2
 

(7) 

 

It is worth emphasizing that the local buckling coefficients for SHS with non-uniform wall thickness have never 

been reported for the bending loading configuration but they have been made available by the study for use in 

design applications for the axial compression loading [36].The buckling mode of SHS possessing uniform wall 

thickness has been reported for the axial compression case as depicted in Fig.2 but the buckling mode of SHS 

with non-uniform thickness has never been presented for any loading configuration to date.   

  

 

 

Figure 2. Buckling mode of SHS with uniform wall thickness under axial compression [14] 

SHS Buckled SHS 
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III. PROBLEM DESCRIPTION  

The local buckling problem of the perforated SHS under axial compression addressed to validate the finite 

element procedure followed in this study is clearly depicted in Fig.3. The local buckling performance of the 

perforated SHS made of cold-formed YST-310 steel has been explored by conducting axial compression tests. 

During the mechanical tests, one end of the SHS was fixed and the other end was allowed to move in the loading 

direction. A detailed description of the experimental setup can be found in the relevant study [26]. The axial 

compression tests have been conducted of the perforated SHS for three various web width-to-perforation 

diameter ratios (d/w) ranging from 0.5 to 0.9. During the mechanical tests, load and corresponding end-

shortening curves were successfully measured and well documented in the associated study [26]. The complete 

geometrical specifications of the perforated SHS is tabulated in Table 1. 

 
Table 1. The complete geometrical specifications of the perforated SHS [26, 59] 

Cross-Section B 
(mm) 

tw=tf 
(mm) 

L 
(mm) 

ri 
(mm) 

ro 
(mm) 

w 
(mm) 

d 
(mm) d/w 

50x50x2.9d/w0.5 50 2.9 200 2.9 5.8 38.4 19.2 0.5 

50x50x2.9d/w0.7 50 2.9 200 2.9 5.8 38.4 26.9 0.7 

50x50x2.9d/w0.9 50 2.9 200 2.9 5.8 38.4 34.6 0.9 

 

 

 

 

Figure 3.  The local buckling problem of the perforated SHS addressed for validation [26] 
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IV. VALIDATION OF THE FINITE ELEMENT PROCEDURE AND RESULTS 

A finite element method has been applied to the problem of predicting the local buckling behavior of the 

perforated and unperforated SHSs subject to axial compression. Finite element analyses have been implemented 

using the Abaqus finite element engineering software. Two distinct finite element analyses including linear 

elastic eigenvalue and elastoplastic, have been performed on the SHS. The first local buckling mode shape 

extracted from the linear elastic eigenvalue buckling analysis has been introduced as a geometric imperfection to 

the finite element model of the elastoplastic buckling analysis.  The finite element model of the local buckling 

problem shown in Fig.3 is illustrated in Fig.4. The grid geometry of the SHS has been meshed using the 3-

dimensional continuous eight-node element with reduced integration designated C3D8R in Abaqus [60]. The 

capability of this element type to predict the local buckling behavior of structures has been reported by many 

studies [61–64]. After studying mesh convergence, an average number of 33600 C3D8R elements have been 

decided to use in numerical simulations. 

As depicted in Fig.4, two reference points have been defined at the geometric centers of both ends and these 

reference points have been linked to the SHS through kinematic couplings [8, 26, 65]. Boundary conditions and 

axial load transferred to the SHS by means of the defined kinematic couplings have been imposed on the 

reference points. While one end of the SHS has been fixed in all directions, the other end has been allowed to 

move in the loading direction as shown in Fig.4. In order to improve the computational accuracy, the region of 

the SHS near perforations has been meshed finer than its remaining region. 

 

 

Figure 4.  The finite element model of the perforated SHS 
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In accordance with the studies presented in the relevant literature [5, 8, 26, 65–67], non-linear buckling analyses 

have been performed using the RIKS method offered by Abaqus. The geometric imperfections obtained from the 

linear eigenvalue elastic buckling analysis have been successfully incorporated into the finite element model of 

the non-linear buckling analysis (RIKS). During the non-linear buckling analysis, the axial load has been 

increased gradually. It is worth stating that the lowest local buckling mode shape has been achieved using the 

Lanczos eigensolver available in Abaqus. In a consistent manner, the amplitude of local imperfection has been 

set to t/100 in the non-linear buckling analysis [26]. 

As mentioned earlier, a cold-forming process plays a significant role in the material properties of steel. For the 

corner coupon and flat coupon of the SHS made of cold-formed YSt-310 steel, the material properties taken 

from the associated study are tabulated in Table 2. 

 

Table 2. Material properties of the flat and corner coupons of the SHS made of YSt-310 [5, 26] 
Region E 

(MPa) 
𝝈𝝈𝒚𝒚 

(MPa) 
𝝈𝝈𝒖𝒖 

(MPa) 
𝜺𝜺𝒇𝒇 

(%) 
n 

Flat Coupon 190024 370 446.48 22.56 4.2 
Corner Coupon 176191 506 571.53 7.69 2.7 

 

In Table 2, E represents the Young’s modulus. 𝜎𝜎𝑦𝑦 and 𝜎𝜎𝑢𝑢 denote the yield strength and ultimate strength, 

respectively. 𝜀𝜀𝑓𝑓 and n are the fracture strain and a strain hardening exponent, respectively. Note that 𝜎𝜎𝑦𝑦 is 

determined by using the 0.2% offset method. 

To describe the mechanical behaviors of the flat and corner coupons of the SHS in the numerical simulations, 

their engineering stress-strain curves have been regenerated using the following expressions developed by 

Ramberg-Osgood[27]. 

 

𝜀𝜀 =
𝜎𝜎
𝐸𝐸

+ 0.002(
𝜎𝜎
𝜎𝜎𝑦𝑦

)𝑛𝑛   ,                                                                                                     0 < 𝜎𝜎 ≤ 𝜎𝜎𝑦𝑦  (8) 

 

𝜀𝜀 =
𝜎𝜎 − 𝜎𝜎𝑦𝑦
𝐸𝐸0,2

+ �𝜀𝜀𝑢𝑢 − 𝜀𝜀0,2 −
𝜎𝜎𝑢𝑢 − 𝜎𝜎𝑦𝑦
𝐸𝐸0,2

��(
𝜎𝜎 − 𝜎𝜎𝑦𝑦
𝜎𝜎𝑢𝑢 − 𝜎𝜎𝑦𝑦

)𝑚𝑚�   ,                                           𝜎𝜎 > 𝜎𝜎𝑦𝑦  (9) 

 

 where 𝐸𝐸0,2
 is known as the tangent modulus and can be computed using the following expression [3]. 

   

 𝐸𝐸0,2 =
𝐸𝐸

1 + 0.002𝑛𝑛(𝐸𝐸𝜎𝜎𝑦𝑦
)
                                                                                                 (10) 

 

Furthermore, m is the second strain hardening exponent that can be defined for the current case as follows: 
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𝑚𝑚 = 1 + 2.8(
𝜎𝜎𝑦𝑦
𝜎𝜎𝑢𝑢

)                                                                                            (11) 

 

Finally, the ultimate strain 𝜀𝜀𝑢𝑢 can be defined as given below[3]. 

𝜀𝜀𝑢𝑢 = 0.6(1−
𝜎𝜎𝑦𝑦
𝜎𝜎𝑢𝑢

 )                                                                                         (12) 

 
Note that the expression given in Eq. (12) is only valid for the flat coupon. The ultimate strain of the corner 

coupon has been registered from the given engineering stress-strain curve [5].  

After reproducing the engineering stress-strain curves by using the above expressions, they have been converted 

into the true stress-strain curves by using the well-known relations below.   

𝜎𝜎𝑇𝑇 = 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒(1 + 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 )                                                                                           (13) 
 

𝜀𝜀𝑇𝑇 = 𝑙𝑙𝑙𝑙(1 + 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 )                                                                                           (14) 

 

Herein, 𝜎𝜎𝑇𝑇  is the true stress and 𝜀𝜀𝑇𝑇 is the corresponding true strain. In the same manner, 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒  is the engineering 

stress and 𝜀𝜀𝑒𝑒𝑒𝑒𝑒𝑒 is the corresponding engineering strain. 

In order to define the mechanical behaviors of the flat and corner coupons in the finite element analysis, a 

deformation plasticity model developed based on the Ramberg-Osgood model has been taken into account [68]. 

An entire stress-strain curve of the work material can be produced by the deformation plasticity model that is 

generally applicable to the fully plastic analysis of ductile metals. 

For the one dimensional case, the deformation plasticity theory is defined as given below. 

 

𝐸𝐸𝐸𝐸 = 𝜎𝜎 + 𝛼𝛼(
|𝜎𝜎|
𝜎𝜎𝑦𝑦

)(𝑛𝑛−1) .𝜎𝜎                                                                                       (15) 

 

where 𝜎𝜎 is the stress and n is the hardening exponent. 𝛼𝛼 represents the yield offset and can be described as 

follows: 

 

𝛼𝛼 =
𝐸𝐸𝐸𝐸
𝜎𝜎𝑦𝑦

− 1                                                                                    (16) 
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The deformation plasticity material model parameters calculated for the flat and corner sections of the SHS are 

documented in Table 3.  

 

Table 3. The deformation plasticity material model parameters calculated for the flat and corner sections 
Region E  

(MPa) 
𝝈𝝈𝒚𝒚 

(MPa) 
𝛼𝛼 n 

Flat Coupon 190024 370 1.025 13.84 
Corner Coupon 176191 506 0.68 8.4 

 

Using Eq. (15) as well as the defined parameters in Table 3, the true stress-strain curves of both coupons have 

been produced and compared to experimental results, as given in Fig.5 and Fig.6. In essence, the experimental 

true stress-strain curves of the flat and corner coupons have been reproduced very satisfactorily by the 

deformation plasticity model; therefore, the parameters documented in Table 3 have been used to determine the 

mechanical behaviors of both coupons in numerical simulations.   

 

 

 

 

 

 

 
Figure 5.  The true stress-strain curve of the flat coupon 
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Figure 6.  The true stress-strain curve of the corner coupon 

 

 

The first local buckling mode shape and corresponding critical buckling load of the unperforated SHS extracted 

from the linear elastic eigenvalue buckling analysis are illustrated in Fig.7. 

 

 

 

Figure 7.  The first local buckling mode shape of the unperforated SHS under axial compression 
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One important outcome deduced from the results in Fig.7 is that the predicted mode shape is consistent with the 

theoretically derived mode shape presented in Fig.2. For this case, the critical local buckling load has been 

predicted to be 1.224x106 N.  Since the SHS addressed, in this case, is unperforated, calculating its critical local 

buckling stress and therefore critical local buckling load by using Eq.(2) is possible. Nevertheless, only one 

Young's modulus appears in Eq. (2) but the flat coupon and corner coupon possess dissimilar Young's modulus 

as documented in Table 3. To eradicate this issue, an expression to compute an effective Young's modulus has 

been derived as follows:  

The total force, P, acting on the entire cross-section of the SHS can be defined as given below. 

 

𝑃𝑃 = 𝑃𝑃𝑓𝑓 +  𝑃𝑃𝑐𝑐                                                                                (17) 

 

where 𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑐𝑐 are the acting axial loads on the flat and corner coupons, respectively. 

In terms of stress, Eq. (17) can further be rearranged as given below. 

 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 .𝐴𝐴𝑔𝑔   = 𝜎𝜎𝑓𝑓 .𝐴𝐴𝑓𝑓 + 𝜎𝜎𝑐𝑐 .𝐴𝐴𝑐𝑐                                                                        (18) 

Herein, 𝐴𝐴𝑔𝑔 is the gross-sectional area of the SHS. 𝐴𝐴𝑓𝑓  and 𝐴𝐴𝑐𝑐 are the section area of the flat and corner coupons, 

respectively. 

Dividing both sides of the Eq.(18) with 𝐴𝐴𝑔𝑔 leads to the following relation. 

 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒   = 𝜎𝜎𝑓𝑓 .
𝐴𝐴𝑓𝑓
𝐴𝐴𝑔𝑔

+ 𝜎𝜎𝑐𝑐 .
𝐴𝐴𝑐𝑐
𝐴𝐴𝑔𝑔

                                                                       (19) 

 

The quantities of 
𝐴𝐴𝑓𝑓
𝐴𝐴𝑔𝑔

 and 𝐴𝐴𝑐𝑐
𝐴𝐴𝑔𝑔

 actually imply the flat coupon area fraction and corner coupon area fraction, 

respectively. 

 

Defining 𝑣𝑣𝑓𝑓 = 𝐴𝐴𝑓𝑓
𝐴𝐴𝑔𝑔

 and 𝑣𝑣𝑐𝑐 = 𝐴𝐴𝑐𝑐
𝐴𝐴𝑔𝑔

  yield the following expression. 

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒   = 𝜎𝜎𝑓𝑓 .𝑣𝑣𝑓𝑓 + 𝜎𝜎𝑐𝑐 .𝑣𝑣𝑐𝑐                                                                       (20) 
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Note that 𝑣𝑣𝑓𝑓 + 𝑣𝑣𝑐𝑐=1. 

Taking into account the well-known relation, the expression given in Eq. (20) can be rewritten as follows: 

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 . 𝜀𝜀  = 𝐸𝐸𝑓𝑓 . 𝑣𝑣𝑓𝑓 . 𝜀𝜀𝑓𝑓 + 𝐸𝐸𝑐𝑐 . 𝑣𝑣𝑐𝑐 . 𝜀𝜀𝑐𝑐                                                                       (21) 

 

where  𝜀𝜀 is the total strain. 𝜀𝜀𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀𝑐𝑐  are the strains sustained by flange coupon and corner coupon, respectively. 

Furthermore, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒  denotes the effective Young’s modulus and 𝐸𝐸𝑓𝑓  𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑐𝑐 are the Young’s modulus of flat 

coupon and corner coupon, respectively. Knowing that 𝜀𝜀  = 𝜀𝜀𝑓𝑓 = 𝜀𝜀𝑐𝑐 in the case of axial loading, the expression 

given in Eq. (21) reduces to 

 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒   = 𝐸𝐸𝑓𝑓 . 𝑣𝑣𝑓𝑓 + 𝐸𝐸𝑐𝑐 . 𝑣𝑣𝑐𝑐                                                                      (22) 

 

For the current case, 𝐴𝐴𝑔𝑔 = 524.7 𝑚𝑚𝑚𝑚2, 𝐴𝐴𝑓𝑓 = 445.44 𝑚𝑚𝑚𝑚2 and 𝐴𝐴𝑐𝑐 = 79.26 𝑚𝑚𝑚𝑚2 which leads to 𝑣𝑣𝑓𝑓 = 0.85 and 

𝑣𝑣𝑐𝑐 = 0.15. 

 

The effective modulus can readily be calculated as given below. 

𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒   = 190024𝑥𝑥0.85 + 176191𝑥𝑥0.1 = 187949 𝑀𝑀𝑀𝑀𝑀𝑀                                                                    (23) 

 

In terms of 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒, Eq.(2) can be rearranged as given below. 

𝜎𝜎𝑐𝑐𝑐𝑐=𝑘𝑘𝑤𝑤 𝜋𝜋
2 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

12(1−𝑣𝑣)2
 (𝑡𝑡𝑤𝑤
ℎ𝑤𝑤

)2=𝑘𝑘𝑓𝑓 𝜋𝜋
2 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

12(1−𝑣𝑣)2
 (𝑡𝑡𝑓𝑓
𝑏𝑏𝑓𝑓

)2 (24) 

 

As reported previously, 𝑘𝑘𝑤𝑤 = 𝑘𝑘𝑓𝑓 = 4,  𝑡𝑡𝑤𝑤 = 2.9 𝑚𝑚𝑚𝑚 (Table 1) and ℎ𝑤𝑤 = 47.1 𝑚𝑚𝑚𝑚. 

 

Substituting the above quantities into Eq.(24) leads to  𝜎𝜎𝑐𝑐𝑐𝑐 = 2573 𝑀𝑀𝑀𝑀𝑀𝑀. The critical local buckling load can be 

computed using the following expression. 
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𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜎𝜎𝑐𝑐𝑐𝑐𝑥𝑥 𝐴𝐴𝑔𝑔=2573x524.7=1.35x106 N (25) 

 

The critical local buckling load has been predicted to be 1.224x106 N by the finite element analysis. The error 

ratio between numerical and theoretical results has found to be 9.3%. This relatively high error ratio can be 

attributed to the neglect of the effect of round corners in the theoretical calculations. In essence, obtaining an 

acceptable error ratio in terms of the critical local buckling load as well as achieving a consistent failure mode 

shape are actually the confirmation of the linear elastic buckling simulations.  

The linear elastic eigenvalue analysis results obtained for the perforated SHS with different with-to-perforation 

diameter ratios are illustrated in Fig.8.  
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Figure 8.  The first local buckling mode shape of the perforated SHS for different d/w ratios, (a) d/w=0.5, (b) d/w=0.7, and (c) d/w=0.9 
 

 

As can be deduced from the results in Fig.8, the perforations for given various web width-to-perforation 

diameter ratios do not influence the first local buckling mode shape of the SHS. In other words, the perforated 

SHS displays the identical local buckling failure mode shape of the unperforated SHS. Nevertheless, the critical 

local buckling load is adversely influenced by the presence of perforations, as presented in Fig.9. 

As seen in Fig.9, the critical local buckling load decreases significantly with increasing perforation diameter. 

Especially, a very drastic drop in the critical local buckling load is taken place when the ratio (d/w) is larger than 

0.7.  

 

 

 

Figure 9.  The variation of critical local buckling load with d/w 
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To further validate the finite element procedure followed in this study, the results obtained from the elastoplastic 

buckling analysis have been compared to the actual test results in terms of failure mode shape and load-end 

shortening curves. 

 

 

 

 

 
 

Figure 10.  Comparison of the numerical results of the unperforated SHS with the experimental results in terms of local buckling mode 

shape [5] 

 

 

 

 

 
 

Figure 11.  Comparison of the numerical results of the perforated SHS with the experimental results in terms of local buckling mode shape, 

(d/w=0.5) [26] 
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The local buckling failure modes extracted from the elastoplastic numerical analyses have been favorably 

compared to the experimental results for the unperforated SHS and perforated SHS (d/w=0.5) as presented in 

Fig. 10 and Fig.11, respectively. In terms of the local buckling modes, a very good agreement has been achieved 

between numerical and experimental results. Due to the lack of experimental outcomes showing the local 

buckling failure shapes of the perforated SHS with other ratios (d/w=0.7 and d/w=0.9), only the finite element 

results have been presented for the mentioned ratios, as shown in Fig.12(a) and Fig.12(b), respectively. 

 

 
Figure 12.  The predicted local buckling mode shape results for different d/w ratios, (a) d/w=0.7 and (b) d/w=0.9 
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Figure 13.  Comparisons of the predicted and measure results for unperforated and perforated SHS with different d/w ratios [5, 26] 

 

As observed in the linear elastic eigenvalue buckling analysis results, the given d/w ratios also do not impact the 

local buckling mode shape of the SHS extracted from the elastoplastic buckling analyses, as shown in Fig.12 (a) 

and Fig.12 (b). However, the critical post-buckling load is negatively affected by the perforations. The adverse 

effect of the perforations becomes more pronounced while increasing perforation diameter as presented in 

Fig.13. In terms of the critical post-buckling load and corresponding end-shortening, the measurements have 

been compared to the predictions, as illustrated in Fig.13. As presented in Fig.13, the predicted results have been 

found to be in a very good agreement with the measurements. In essence, the results obtained from both linear 

elastic eigenvalue and elastoplastic local buckling analyses confirm the finite element procedure followed in the 

current study. According to the outcomes obtained in the context of this study, the deformation plasticity model 

developed based on Ramberg-Osgood [26] constitutive model can be recommended to describe the mechanical 

behavior of the cold-formed metals, especially for the ductile metals with small displacements. 

 

V. PARAMETRIC STUDY 

After validating the finite element procedure by achieving a good correlation between experimental and 

numerical results in terms of the local buckling mode shapes and the critical local buckling load-end-shortening 
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curves, the same simulations have been performed on the perforated SHS possessing non-uniform web and 

flange thicknesses. This parametric study is actually the first study that explores the effect of perforations on the 

local stability of the SHS with non-uniform wall thickness. The geometric specifications of the SHS addressed in 

the finite element analyses are tabulated in Table 4. 

Based on the experience gained from the benchmark study [26], the effects of circular web openings on the local 

buckling behavior of SHS with unequal wall segment thickness have been explored for four distinct circular 

perforation diameters including 11.5 mm, 19.2 mm, 26.9 mm, and 34.6 mm, as reported in Table 4. Here again, 

in accordance with the literature [26], the circular web openings have been assumed to be present at the 

geometric center of the two web segments which is the worst-location scenario for the susceptibility of the local 

stability of SHS subject to axial compression [26]. Local buckling evaluations have been made here based on the 

ratio of the circular web opening diameter (d) to web width (w), rather than circular perforation diameter (d) for 

simplicity. The complete geometrical specifications of the SHS taken into consideration in the present parametric 

study, including web and flange thicknesses, circular web opening diameters, length, and corner inner and outer 

radius are well-documented in Table 4.       

The finite element model of the perforated SHS with non-uniform wall thickness is depicted in Fig.14. The 

identical boundary and loading conditions imposed in the previous model have also been employed in the finite 

element model shown in Fig.14. Additionally, the material model parameters tabulated in Table 3 have been 

taken into account for the determination of the material behaviors of the flat and corner coupons. The 

elastoplastic local buckling simulations have been carried out for four various d/w ratios ranging from 0.3 to 0.9. 

Results extracted from the elastoplastic local buckling analyses have been clearly presented and well compared 

with each other in order to assess the effect of perforation on the local buckling performance of the SHS with 

non-uniform thickness.  

 

 

 

 

 

 

 

Table 4. The geometric specifications of the perforated SHS addressed in the finite element analysis 

Cross-Section B 
(mm) 

tw  
(mm) 

tf  
(mm) 

L 
(mm) 

ri 
(mm) 

ro 
(mm) 

w 
(mm) d (mm) d/w 

50x50x2.9-1.45 d/w 0.3 50 1.45 2.9 200 2.9 5.8 38.4 11.5 0.3 
50x50x2.9-1.45 d/w 0.5 50 1.45 2.9 200 2.9 5.8 38.4 19.2 0.5 
50x50x2.9-1.45 d/w 0.7 50 1.45 2.9 200 2.9 5.8 38.4 26.9 0.7 
50x50x2.9-1.45 d/w 0.9 50 1.45 2.9 200 2.9 5.8 38.4 34.6 0.9 
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Figure 14.  The finite element model of the perforated SHS with non-uniform thickness 

 

 

 

 

The local buckling modes of the unperforated and perforated SHSs with non-uniform wall thickness obtained 

from the elastoplastic buckling simulations are illustrated in Fig.15. As can be comprehended from the results in 

Fig.15, perforation diameter possesses an insignificant impact on the local buckling modes of the SHS.  

Nevertheless, similar to the post-buckling results of the perforated SHS with uniform thickness, the critical post-

buckling load decreases considerably with increasing perforation diameter as shown in Fig.15.  
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Figure 15.  The predicted local buckling modes of the SHS with non-uniform wall thickness for various d/w ratios, (a) d/w=0, (b) d/w=0.3, 
(c) d/w=0.5, (d) d/w=0.7 and (e) d/w=0.9 

 

 

As seen in Fig.16, the unperforated SHS sustains larger plastic deformation prior to reaching its critical post-

buckling load compared to the perforated SHS. This is mainly due to the stiffness reduction in the SHS caused 

by the perforations. Increasing the perforation diameter results in a more pronounced reduction in the stiffness of 

the SHS. 
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Figure 16. The post-buckling response of the perforated and unperforated SHSs for different d/w ratios under axial compression 

 

In order to gain a deep insight into the effect of perforation on the local buckling response of the SHS possessing 

uniform and non-uniform wall thicknesses, the local buckling behaviors of the perforated SHS with uniform 

segment thickness under axial compression are compared to the perforated SHS with non-uniform thickness, as 

illustrated in Fig.17. 

 

Figure 17. Comparison of the critical post-buckling load of SHS for uniform and non-uniform thickness 
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One interesting outcome deduced from the results in Fig.17 is that the post-buckling critical load of the SHS 

possessing uniform wall thickness is more vulnerable to the perforations compared to the SHS with non-uniform 

wall thickness. In other words, the presence of perforations leads to more reduction in the critical post-buckling 

load of the unperforated SHS with identical wall thickness.   

 

VI. CONCLUDING REMARKS 

Based on the findings of the present parametric study, the following conclusions can be drawn as: 

The finite element procedure followed in this parametric study was first validated against the post-buckling test 

results of the perforated cold-formed SHS with uniform wall thickness subject to axial compression and then the 

same finite element procedure was applied to the problem of finding the local stability behavior of the perforated 

SHS possessing non-uniform web and flange thicknesses. The linear elastic and non-linear elastoplastic 

simulations have been performed using the Abaqus engineering software. The first buckling mode shape of the 

unperforated SHS with uniform wall thickness has been obtained using the Lanczos eigensolver in Abaqus. The 

predicted first-mode shape of the SHS has been favorably compared to the local buckling mode shape reported in 

the literature. In addition to the linear elastic eigenvalue buckling analysis results, load-end shortening curves 

extracted from the elastoplastic simulations have also been compared to the test results available in the literature. 

A good correlation has been found between simulations and experiments in terms of the load-end shortening 

curves. The deformation plasticity model developed based on Ramberg-Osgood constitutive model has been 

used in defining the material behaviors of both flat and corner coupons of the SHS. The deformation plasticity 

material model parameters have been successfully determined and therefore the true stress-strain curves of both 

coupons have been reproduced by the model with high accuracy. Based on this, the utilization of this constitutive 

model to define the material behavior of cold-formed SHSs has been suggested for the determination of their 

post-buckling response under axial compression. 

The finite element analysis results have revealed that the presence of perforations plays a very significant role in 

the local buckling behaviors of the SHS with uniform wall thickness and SHS with non-uniform wall thickness. 
The critical local buckling stress and therefore the critical local buckling loads are adversely influenced by the 

existence of the perforations. Nevertheless, one important result obtained from the parametric study is that the 

critical local buckling load of the SHS with uniform wall thickness is more susceptible to perforations compared 

to the SHS with unequal wall thickness. In other words, the perforations result in a more drastic drop in the post-

buckling critical load of the SHS with identical wall thickness. It has been also observed that increasing 

perforation diameter leads to a more pronounced decrease in the critical local buckling of both structures. 

As seen in Fig.17, the critical local buckling load of the unperforated SHS with equal wall segment thickness is 

much higher than the critical local buckling load of the unperforated SHS with unequal wall segment thickness. 
This can be attributed to the thickness effect on the local buckling strength of SHS. While keeping the flange 

thickness constant, lowering the web thickness leads to a decrease in the local buckling strength. Additionally, 
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from the results presented in Fig.13 and Fig.16, it is drawn that both unperforated SHSs sustain larger 

deformation before reaching their maximum load-carrying capacity compared to the perforated SHSs.  

Nevertheless, the unperforated SHS with unequal wall segment thickness withstands less deformation prior to its 

critical local buckling load compared to the unperforated SHS with similar web and flange thickness. This 

finding signifies that a decrease in the web thickness leads to a reduction in the resistance of SHS to local 

buckling, in addition, this reduction is further increased by circular web openings. Increasing the circular 

perforation diameter results in more reduction in the local buckling resistance of the SHS. This is mainly due to 

the cross-section of the web segments weakened by both thickness reduction and perforations. Among the SHSs 

with the same circular perforation diameter, the SHS with the identical wall thickness shows always better 

performance in terms of local stability. Conversely, the results obtained demonstrate that the local buckling 

failure mode shapes are independent of the web thickness and perforation diameter.   

The above outcomes can be also assessed quantitatively to gain deep insight into the effects of circular 

perforations on the local buckling behaviors of both SHSs with equal and unequal wall segment thicknesses. For 

instance, the critical local buckling load of the unperforated SHS with equal wall thickness has been found equal 

to 254 kN while it has been registered to be 172 kN for the unperforated SHS with unequal wall segment 

thickness, as reported in Fig.17. This signifies that the critical local buckling load of the unperforated SHS with 

identical wall thickness is higher than the critical local buckling load of the unperforated SHS with unequal wall 

thickness by 47.7%. This finding directly reveals the significant effect of the web thickness reduction on the 

local buckling behavior of SHS while keeping the flange segment thickness in both SHSs constant. Furthermore, 

for the circular web opening diameter of 19.2 mm corresponding to d/w=0.5, the critical local buckling loads of 

SHSs with equal and unequal wall thicknesses have been predicted to be 208 kN and 159 kN, respectively. This 

outcome demonstrates that the critical local buckling load of the perforated SHS with equal wall thickness is 

30.8% higher than the SHS's with unequal wall segment thickness when the diameter of the circular web opening 

is equal to 19.2 mm. In the same manner, for the circular web opening diameter of 26.9 mm (d/w=0.7), the SHS 

with equal wall thickness begins to show a negative stiffness when the applied load reaches its critical value of 

187 kN while the SHS with unequal wall thickness undergoes local buckling with the critical load of 148 kN. 

This implies that the SHS with equal wall thickness sustains a 26.35% larger load prior to local buckling 

compared to the SHS with non-uniform wall segment thickness. Furthermore, the SHS with equal wall thickness 

offers a higher buckling load than the SHS with unequal wall thickness by 16% at the highest web opening 

diameter of 34.6 mm (d/w=0.9) taken into account in the present study. At this web opening diameter, the critical 

local buckling load of the SHS possessing the same wall thickness has been found to be 159 kN whereas it has 

been attained to be 137 kN. From the findings of the quantitative assessment, it has been drawn that the critical 

local buckling load of the SHS with unequal wall segment thickness is impaired less by the presence of circular 

web openings in comparison with the perforated SHS with equal wall segment thickness.              

As a conclusion, the finite element results presenting the effect of perforations on the local buckling behavior of 

the SHS with non-uniform thickness have been made available to practical engineering for use in actual design 

applications.    
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