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Abstract
Diabetes, a persistent pathological condition characterized by disruptions in insulin hormone reg-
ulation, has exhibited a noteworthy escalation in its prevalence over recent decades. The surge in
incidence is notably associated with the proliferation of endocrine-disrupting chemicals (EDCs), which
have emerged as primary contributors to the manifestation of insulin resistance and the consequent
disruption of beta cell function, ultimately culminating in the onset of diabetes. Consequently, this
study endeavors to introduce a model for diabetes that aims to elucidate the ramifications of expo-
sure to EDCs within the diabetic population. In the pursuit of mitigating the deleterious effects of
EDC-induced diabetes, we propose a framework for optimal control strategies. The utilization of
Pontryagin’s maximum principle serves to explicate the principles governing the optimal control
mechanisms within the proposed model. Our findings underscore that heightened concentrations
of EDCs play a pivotal role in exacerbating the prevalence of diabetes. To substantiate our model,
we employ parameter estimation techniques utilizing a diabetes dataset specific to the demographic
context of India. This research contributes valuable insights into the imperative need for proactive
measures to regulate and diminish EDC exposure, thereby mitigating the escalating diabetes epidemic.
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1 Introduction

Disease has always been a part of human life. Malaria, tuberculosis, plague, and other infectious
diseases have decimated human life. The researcher is beginning to predict how the disease will
progress and understand how interventions will affect its spread. The mechanisms and kinds
of interaction terms vary depending on the disease. Diabetes (a chronic disease) has become
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a significant burden for individuals, leading to a variety of health problems in recent years [1].
Diabetes and its consequences have increased globally, likely because of the increasing diabetes
risk factors, particularly population aging and obesity. It is a disorder characterized by insulin
hormone problems, according to the World Health Organisation (WHO) [2]. According to the
American Diabetes Association (ADA) [3], it is a group of metabolic disorders characterized by
hyperglycemia secondary to diabetes. Factors that increase one’s likelihood of developing diabetes
include getting older, leading an unhealthy life, not getting enough exercise, eating a high-calorie
diet, having stress, being overweight, and so on [4].
Despite incredible advances in biomedical sciences, diabetes remains an irreversible lifetime
disease. Over the past 30 years, the number of people with diabetes has risen quickly in all age and
gender groups, as well as in developing and developed countries. According to the International
Diabetes Federation (IDF) [5], the prevalence of diabetes has risen even more by over 40 million
people over the past quarter century. More than 540 million people had diabetes in 2021. If the
current growth rate continues, this number will reach 780 million by 2045. According to the
WHO [2], 1.6 million people died of diabetes in 2016, making it the seventh leading cause of
death. In 2015, the Malaysian National Health Movement Survey (NHMS) found that 17.5% of
adults over the age of 18 had diabetes [6]. Following that, the Malaysian province predicted a
10-year diabetes prevalence project and estimated that the diabetic population will increase by
31.3 percent by 2025 [7]. In 2021, diabetes caused the deaths of 6.7 million people worldwide
[5]. It is associated with a 75 percent increase in adult mortality [8]. Hyperglycemia can lead to
complications. Retinopathy, nephropathy, neuropathy, and an increased incidence of heart disease
and stroke are other complications [9].
During this time of rising diabetes rates, humanity has witnessed large production and release
of Endocrine-disrupting chemicals. Endocrine-disrupting chemicals (EDCs) can be either man-
made or natural. Because their structure is nearly identical to steroid hormones, they could
perhaps interact with hormones, androgen, and progesterone receptors, interfering with any aspect
of endogenous hormone function, including biosynthesis, metabolism, transport, elimination,
or receptor binding of endogenous hormones, increasing the risk of endocrine and metabolic
diseases in humans and animals [10]. An endocrine disruptor is any chemical or chemical
mixture from the outside that can interfere with hormones work [11]. According to the European
Union, 147 of the 564 chemicals proposed by various organizations as potential EDC in scientific
research or reports remain in the ecosystem or are produced in large quantities [12]. Plasticizers
(Phthalates and Bisphenol A (BPA) or its derivative bisphenol S (BPS)) and pesticides such as
dichlorodiphenyltrichloroethane (DDT), etc. are the most dangerous hazards to human health [13].
Prolonged repeated exposure to EDC compounds with concentrations even lower than the human
body’s established tolerance threshold for individual substances will also significantly increase
the risk of hormonal and metabolic diseases such as diabetes both in men and women [14].
In addition, the development of modern civilization and the growing demand for new chemicals
have raised our vulnerability to EDC. The release of these chemicals from everyday objects like
food packaging, plastic water bottles, makeup, cash register receipts, clothing, food, contact
lenses and dental sealants increases exposure [15]. Some EDCs may be more common in babies
and young children than adults due to increased consumption of specific foods and water [16].
Researchers discovered that higher plasma concentrations of perfluorooctanesulfonic acid (PFOS)
and perfluorooctanoic acid (PFOA) were associated with an increased risk of Type 2 diabetes (T2D)
after controlling for common T2D risk factors such as BMI, family history and physical activity [17].
Prolonged repeated exposure to EDC compounds with concentrations even lower than the human
body’s established tolerance threshold for individual substances will also significantly increase
the risk of hormonal and metabolic diseases such as diabetes both in men and women [14].
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Researchers discovered that exposure to any pesticide was associated with a 61% increased risk
of T2D in a meta-analysis of 21 prior studies involving over 66,000 people, with some pesticides
appearing riskier than others [18].
In many models, authors have tried to describe how diabetes increases among people. Boutayeb
et al. [19, 20] introduced a diabetic model, demonstrating the incidence of diabetes and its compli-
cations. Derouich et al. [21] proposed an optimal control approach to model the progression of
diabetes from prediabetes, with or without control. Widyaningsih et al. [22] analyzed a mathemat-
ical model of diabetes with lifestyle and genetic factors. Bassey [23] analyzed the optimal control
model for dual treatment of delayed type-II diabetes. Jajarmi et al. [24] created a new and efficient
numerical method for the fractional modeling of diabetes and tuberculosis co-existence. Akinsola
et al. [25] executed a mathematical analysis with numerical solutions of the diabetes mellitus
model with optimal control. Ndii et al. [26] have tried to control the effect of hard water. Anusha
et al. [27] studied mathematical modelling co-existence of diabetes and COVID-19 in deterministic
and stochastic Approaches. Özköse et al. [28] investigated the interaction between COVID-19 and
diabetes using real data. Agwu et al. [29] also analyzed the diabetes and tuberculosis co-existence
model. Mollah et al. [30] studied the Optimal control for the diabetes model with an awareness
program and treatment. Singh et al. [31] investigated the calcium distribution in the alpha-cell.
Balakrishnan et al. [32] created a fractional-order control model for diabetes. A growing body
of evidence suggests that environmental chemicals are linked to the rising prevalence of T2D.
Therefore, We used the basic diabetes model [19, 21] to develop the model. Our primary goal in
this paper is to reduce EDC exposure to reduce diabetes prevalence. The novelty of the proposed
model is outlined by the following points:

• A new model was developed to determine the impact of EDC exposure on the diabetes popula-
tion.

• A food population which gives a more realistic insist for the prevalence of diabetes.
• An optimal control problem is introduced with Possible control variables to reduce the effect of

EDC and the prevalence of diabetes.
• The results for simulating different compartments of the model for the parameters b and r

describe the effect of EDC Exposure.
• The proposed model provides some new ideas about the dynamic behavior of diabetes.

In Section 2, the model’s formulation is built and briefly discussed. In Section 3, an optimal control
problem is proposed. Furthermore, we established some results for the existence and characteriza-
tion of optimal control. The numerical simulation is performed to validate the theoretical results
discussed in Section 4.

2 Model formulation

We construct a diabetes model predicting the growing diabetic population, which suggests that
higher EDC concentration levels in our daily routine (food, water, etc.) may be linked to the
prevalence of diabetes. The impact of EDC usage is a chief concern since a growing body of
evidence from studies has also shown a link between early EDC exposure and the prevalence
of T2D late in life. Thus, we have developed a class F to describe the level of EDC present in
the usual diet and lifestyle. The concentration of EDC intake increases at rate b and is limited by
carrying capacity K, which equals the maximum solubility of each compound in food, air, soil,
water and so on. When consuming EDC-exposed products at a rate of βH

F
F+K , people become

exposed. βH represents the rate at which healthy individuals consume EDC daily. The probability
of individuals exposed to EDC is determined by the equation F

F+K , where K is the maximum
concentration of EDC in a food product. The maximum chance of developing diabetes is set at 0.5.
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Therefore, the maximum EDC concentration in a food product was equal to its carrying capacity
K. It is also feasible to transition back to a normal lifestyle at a rate of α3, provided that one is
cognizant of EDC and adopts a health-conscious way of living. The variables and parameters of
our model are outlined in Table 1 and Table 2.

Table 1. Model variables and their descriptions

Variables Description
P Healthy popoulation
S Pre-diabetes population
D Diabetes population
C Diabetes population with complication
E Exposed population
F Food exposed with EDC

Table 2. Model parameters, their descriptions and values

Parameters Description Values Source

Λ Recruitment rate
106

365
[33]

βH , β1 Rate of ingesting of EDC 0.2 Assumed

µ Natural death rate
1

365 ∗ 65
[33]

α1 Rate of healthy persons to become pre-diabetic 0.1 [34]
α2 Rate at which a pre-diabetic person becomes healthy 0.02 [34]
α3 Rate at which a exposed person becomes healthy 0.05 Assumed
ϵ Probability of people to have complication 0.3 Assumed
γ1 Probability of a pre-diabetic to become diabetic 0.1 [35]
γ2 Probability of a diabetic developing a complications 0.1 [35]
γ3 Probability of a pre-diabetic developing a complication 0.1 [35]
θ1 Probability of a Exposed to become diabetic 0.05 Assumed
θ2 Probability of a Exposed developing a complication 0.033 Assumed
b Rate at which concentration of EDC increase 0.3 Assumed
r Rate at which concentration of EDC decrease by control 0.1 Assumed

δ Disease induced death rate
1

365 ∗ 40
[33]

By taking into account the model parameters description and flow diagram given in Figure 1, the
system of equations is provided as follows:

dP
dt

= Λ − (α1 + βH
F

F + K
+ µ)P + α2S + α3E,

dS
dt

= α1P − (γ1 + γ3 + α2 + β1
F

F + K
+ µ)S,

dD
dt

=

(
γ1 + (1 − ϵ)β1

F
F + K

)
S − (γ2 + µ)D + θ1E, (1)

dC
dt

=

(
γ3 + ϵβ1

F
F + K

)
S + γ2D + θ2E − (µ + δ)C,

dE
dt

= βH
F

F + K
P − (θ1 + θ2 + α3 + µ)E,

dF
dt

= bF
(
(1 −

F
K

)
− rF,
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Figure 1. A flow diagram for diabetes model with the effects of EDC

with initial conditions

P(0) ≥ 0, S(0) ≥ 0, D(0) ≥ 0, C(0) ≥ 0, E(0) ≥ 0, and F(0) ≥ 0. (2)

For the diabetes model (1), it is needed to show that its state variables are non-negative for all time
t > 0 and that the feasible region is bounded is studied in the following theorems:

Theorem 1 Suppose that the initial condition (2) of system (1) be non-negative, then the solution
P(t) ≥ 0, S(t) ≥ 0, D(t) ≥ 0, C(t) ≥ 0, E(t) ≥ 0 and F(t) ≥ 0 are also non-negative ∀t > 0.

Proof Now, let us take the first equation of system (1) as follows

dP
dt

= Λ − (α1 + βH
F

F + K
+ µ)P + α2S + α3E

≥ −(α1 + βH
F

F + K
+ µ)P,

dP
dt

+ {α1 + βH
F

F + K
+ µ}P ≥ 0.

Then we obtain,
d
dt

P(t) exp(
∫t

0(α1 + βH
F

F + K
+ µ)ds) ≥ 0. Integrating from 0 to t,

∫ t

0

d
dt

(
P(s) exp

(∫ t

0

(
α1 + βH

F
F + K

+ µ

)
ds
))

ds ≥ 0,

then

P(t) ≥ P(0) exp
(∫ t

0

(
α1 + βH

F
F + K

+ µ

)
ds
)

=⇒ P(t) ≥ 0.
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This shows that P(t) ≥ 0 for all t > 0. Similarly, we can show for all other classes. ■

Theorem 2 Let

ωH =

{
(P, S, D, C, E) ∈ R5

+, 0 ≤ P + S + D + C + E ≤ Λ
µ

}
, (3)

and

ωF =
{

F ∈ R+, 0 ≤ F ≤ K(1 −
r
b
)
}

. (4)

Define ω = ωH × ωF. If N(0) ≤ Λ
µ

and F(0) ≤ K(1 −
r
b
), then the region ω is positively invariant

under system (1) with initial condition (2) in R6+.

Proof Let us consider system (1), we have human population N = P + S + D + C + E and Food
compartment F exposed with concentration of EDC. From adding first five equation of system (1),
we have

dN
dt

= Λ − µP − µS − µE − µD − µC − δC ≤ Λ − µN,

which yields that

N(t) ≤ Λ
µ
− N(0)e−µt,

where Λ be the recruitment rate and N(0) represents initial values of total population.

lim
t→∞ sup N(t) =

Λ
µ

= N∞.

Assuming 0 ≤ N(0) ≤ N∞, we obtain that 0 ≤ N(t) ≤ N∞, for all t > 0. For this reason, we define
a separate feasible region ωH for the human population as in (3). For the food compartment, it
follows that

dF
dt

= bF
(

1 −
F
K

)
− rF.

Let

F∞ = K(1 −
r
b
).

Note that F∞ is the stable equilibrium point of the above differential equation. Assuming 0 ≤
F(0) ≤ F∞. We obtain that 0 ≤ F(t) ≤ F∞. Our compartment F doesn’t exceed F∞. We get feasible
region ωF for the Food compartment as in (3). Therefore, N(t) and F(t) are bounded for all t > 0,
respectively. Hence every solution of system (1) with initial condition (2) in ω are remains in ω. ■

3 Optimal control problem

In this section, we used an optimal control approach to reduce the consumption of EDC-exposed
food products by individuals at higher risk of T2D. In our model (1), we have included the
following controls to reduce the impact of EDC among Healthy people as well as Diabetes people.
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• u1 be the percentage of healthy people prevented from pre-diabetes.
• u2 be the people prevented from consumption of EDC.
• u3 be a treatment for exposed.
• u4 be the control implemented to decrease the level of EDC.

The optimal control problem for the system (1) is given in the following system of equation.

dP
dt

= Λ − (α1(1 − u1) + βP(1 − u2)
F

F + K
+ µ)H + α2S + (α3 + pu3)E,

dS
dt

= α1(1 − u1)H − (γ1 + γ3 + α2 + β1(1 − u2)
F

F + K
+ µ)S,

dD
dt

= (γ1 + (1 − ϵ)β1(1 − u2)
F

F + K
)S − (γ2 + µ)D + θ1E, (5)

dC
dt

= (γ3 + ϵβ1(1 − u2)
F

F + K
)S + θ2E + γ2D − (µ + δ)C,

dE
dt

= βP(1 − u2)
F

F + K
P − (θ1 + θ2 + α3 + µ + pu3)E,

dF
dt

= bF(1 −
F
K
)− u4F.

The problem is to minimize the objective functional J defined as.

J(u1(t), u2(t), u3(t), u4(t)) =
∫T

0

(
A1S + A2C + A3D + A4E + A5F +

B1u2
1

2

+
B2u2

2
2

+
B3u2

3
2

+
B4u2

4
2

)
dt, (6)

where Ai, Bi, i = 1 to 4 are cost coefficients. They are selected to weigh the relative importance of
ui, i = 1 to 4 at time t, T is the final time. In other words, we seek the optimal controls u∗

i , i = 1 to
4 such that

J(u∗
1, u∗

2, u∗
3, u∗

4) = min
ui∈U

J(u1, u2, u3, u4), (7)

where U is the set of admissible controls defined by

U =
{
(ui)/0 ≤ u1min ≤ u1(t) ≤ u1max ≤ 1, 0 ≤ u2min ≤ u2(t) ≤ u2max ≤ 1,

0 ≤ u3min ≤ u3(t) ≤ u3max ≤ 1, 0 ≤ u4min ≤ u4(t) ≤ u4max ≤ 1, t ∈ [0, T]
}

.

H(t) = (A1S + A2C + A3D + A4E + A5F) +

(
B1u2

1
2

+
B2u2

2
2

+
B3u2

3
2

+
B4u2

4
2

)

+
11∑
1

λi fi(P, S, D, C, E, F), (8)

where fi is the R.H.S of differential equation (5) of ith state variable.
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Existence of the optimal control

Using the result of Fleming and Rishel [36], we can prove the existence of optimal control. It
follows that the set of controls and corresponding state variables is non-empty. Also, the control
space U is convex and closed by definition. All the R.H.S of equation (5) is continuous, bounded
above by a sum of bounded control and state and can be written as a linear function of ui with a
coefficient depending on the time and state. The integrant in the objective function is convex on U.

L(y, ui, t) ≥ −ð1 + ð2|u1|
ð + ð3|u2|

ð + ð4|u3|
ð + ð5|u4|

ð.

Thus, the results satisfy all the conditions mentioned in Fleming and Rishel’s work [36]. Therefore,
we establish the following theorem:

Theorem 3 Consider the control problem with the system (5). There exists an optimal control ui, i = 1 to
4 ∈ U4 such that

J(u∗
1, u∗

2, u∗
3, u∗

4) = min
ui∈U

J(u1, u2, u3, u4). (9)

Proof The existence of the optimal control obtained using the result of Fleming and Rishel [36],
checking the following steps:

• It follows that the controls and corresponding state variables are non-empty. We will use a
simplified version of an existence result.

• J(u1(t), u2(t), u3(t), u4(t)) is convex in U.
• The control space U = (ui)/ui, i = 1 to 4 is measurable. 0 ≤ u1min ≤ u1(t) ≤ u1max ≤ 1, 0

≤ u2min ≤ u2(t) ≤ u2max ≤ 1,0 ≤ u3min ≤ u3(t) ≤ u3max ≤ 1, 0 ≤ u4min ≤ u4(t) ≤ u4max ≤ 1,
t ∈ [0, T] is convex and closed by definition.

• All the R.H.S of equation (5) is continuous, bounded above by a sum of bounded control and
state and can be written as a linear function of ui with a coefficient depending on the time and
state.

• The integrant in the objective functional

(
B1u2

1
2

+
B2u2

2
2

+
B3u2

3
2

+
B4u2

4
2

)
is clearly convex on

U.
• Since the solution of system (5) is bounded, the system satisfies the Lipshitz property with

respect to the variables P, S, D, C, E and F. Therefore, there exists an optimal control.

Hence, from Fleming and Rishel [36], we conclude that there exists an optimal control. ■

Characterization of the optimal control

To derive the necessary conditions for the optimal control, we apply Pontryagin’s maximum
principle to the Hamiltonian H given by equation (8) at time t.

Theorem 4 Given the optimal control (u1, u2, u3, u4) and the solution P∗,S∗,D∗,C∗,E∗,F∗ of the corre-
sponding state system (5), there exists adjoint variable λi, for i = 1 to 6 satsifying

−
dλp

dt
=

∂H
∂P

,−
dλs

dt
=

∂H
∂S

,−
dλd
dt

=
∂H
∂D

,−
dλc

dt
=

∂H
∂C

,−
dλe

dt
=

∂H
∂E

,−
dλ f

dt
=

∂H
∂F

,

with the transversality conditions at time T, λj(T) = 0, j = p, s, d, c, e, f . Furthermore, for t ∈ [0,T], the
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optimal controls u∗
1, u∗

2, u∗
3, u∗

4 are given by

u∗
1(t) = max

{
0, min

{
1 − ε,

(λ2 − λ1)α1P
B1

}}
,

u∗
2(t) = max

{
0, min

{
1 − ε,

(λ1 − λ5)βPP
B2

F
F + K

+
(λ3 − λ2)β1S

B2

F
F + K

+
(λ4 − λ3)ϵβ1S

B2

F
F + K

}}
,

u∗
3(t) = max

{
0, min

{
1 − ε,

(λ5 − λ1)p1E
B3

}}
,

u∗
4(t) = max

{
0, min

{
1 − ε,

λ6F
B4

}}
.

Proof For t ∈ [0, T], the adjoint equation and transversality conditions obtained by using Pontrya-
gin’s principle such that

λ ′
1 = λ1

(
α1(1 − u1)− βP(1 − u2)

F
F + K

+ µ

)
− λ2α1(1 − u1)− λ5(1 − u2)βP

F
F + K

,

λ ′
2 = −A1 − λ1α2 + λ2(γ1 + γ3 + α2 + β1(1 − u2)

F
F + K

+ µ)− λ3(β1(1 − ϵ)(1 − u2)
F

F + K
+ γ1)

−λ4(ϵβ1(1 − u2)
F

F + K
+ γ3),

λ ′
3 = −A2 + λ3(γ2 + µ)− λ4γ2,

λ ′
4 = −A3 + λ4(µ + δ),

λ ′
5 = −A4 − λ1(α3 + p1u3)− λ3θ1 − λ4θ2 + λ5(θ1 + θ2 + α3 + p1u3 + µ),

λ ′
6 = −A5 + βPP(λ1 − λ5)(1 − u2)

K
(K + F)2 + β1S(λ2 − λ3(1 − ϵ)− λ4ϵ)(1 − u2)

K
(K + F)2

−λ6

(
b(1 −

F
K
)− b

F
K
− u4

)
,

with transversality conditions λi = 0, i = 1 to 11. For t ∈ [0, T], the optimal controls u∗
1, u∗

2, u∗
3, u∗

4

can be solved by the optimality conditions
∂H
∂ui

.

u∗
1(t) =

(λ2 − λ1)α1P
B1

,

u∗
2(t) =

(λ1 − λ5)βPP
B2

F
F + K

+
(λ3 − λ2)β1S

B2

F
F + K

+
(λ4 − λ3)ϵβ1S

B2

F
F + K

,

u∗
3(t) =

(λ5 − λ1)p1E
B3

,

u∗
4(t) =

λ6F
B4

.

By the bounds in U of the controls, it is easy to obtain the optimal controls. ■

4 Numerical simulation and discussion

Simulation is required to understand the reasoning behind theoretical findings. It changes ac-
cording to the values assigned to the parameters. We stimulate the diabetes model using Euler’s
method. The optimal control problem is solved using the Forward-backward sweep method.
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Initial and final conditions exist for state and adjacent systems, respectively. The weight constants
and initial conditions are A1 = A2 = A3 = A4 = A5 = 1, B1 = B2 = B3 = B4 = 2000.
The parameter values described in Table 2 are applied to simulate the diabetes model using the
Matlab program. We have used diabetes data for India from 1980 to 2015. The diabetes dataset
is available on the NCD-RisC website (https://ncdrisc.org/index.html). Then, using manual
calibration, we fitted each parameter to get the best fit to our proposed model (1). Figure 2 shows
that our model fits almost to the dataset. The range of parameter values used in calibration are
from the literature. The parameters b and r are essential for regulating the EDC density of the food.

1980 1985 1990 1995 2000 2005 2010 2015

Years

1

2

3

4

5

6

7

D
ia

b
e
ti
c
 I
n
d
iv

id
u
a
ls

10
7

Model fit

Real data

Figure 2. The diabetes population data from 1980 to 2015 in India and best curve fit of the proposed model

As a basic guideline, r must be higher than b. It means that r is the controlling parameter of EDC
in any product. Parameter b is higher than parameter r. It represents that higher concentrations of
EDC in food may affect humans. Every population with b < c and b > c is depicted in Figure 3.

It noted that whenever the control parameter r fails to control the level of Endocrine, the diabetes
prevalence increases. Figure 4 depicts each compartment with and without control. Diabetes
is largely preventable by taking the proposed control variable. Figure 5 illustrates the control
profile with B4 = 20 and B4 = 2000. The graph indicates that if control costs are low, people can
afford them for a long time. If the control cost is reasonable, then more individuals will be able
to get better. According to the findings in Figure 6, the concentration of EDC in food products is
reduced more effectively over time if the cost of control is affordable and the exposed population
seems minimized. The graph indicates that lowering the concentration of EDC impacts T2D,
although other regulations are applied to reduce diabetes incidence. The prevalence of diabetes
has decreased after implementing the necessary controls. The graph clearly shows that the lower
the control costs, the higher the likelihood of recovery.

https://ncdrisc.org/index.html
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Figure 5. The control profile with different values of cost of controls
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Figure 6. The profile of E, D, C and F with different values of the cost of controls

5 Conclusion

In this paper, we have developed a mathematical model of the diabetic population with the effect
of EDC. This proposed model offers a different approach to understanding the prevalence of
diabetes, particularly when the daily consumption of food is exposed to some harmful chemicals
that lead to health problems. A suitable control strategy discussed includes intervention for
exposed people, diabetes prevention, control of EDC concentration on daily consumption, and
prevention of consuming EDC. We have found the optimal control strategies that are more effective
in controlling the prevalence of diabetes. The findings demonstrate the efficacy of the proposed
control strategies. The results show that less EDC exposure is better for diabetes control. In the
future, one can try to incorporate other sources of T2D with fractional-order differential equations
and cost-effective analysis to improve the effective way of controlling diabetes. Also, studying the
nature of equilibrium and stability analysis can be considered.
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