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ABSTRACT

In this paper a queuing system with recurrent arrivals, three heterogeneous servers, and no waiting
line is examined. In this system an arriving customer may choose any one of the free servers with
equal probability. When all servers are busy, customers beyond the capacity of the system are lost.
These customers are called “lost customers”. The probability of losing a customer is computed for the
queuing system, and it is shown that when the mean of the interarrival time distribution is fixed, loss
probability is minimized by deterministic interarrival time distribution. This conclusion is supported
by the simulation results.
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HETEROJEN KANALLI GI/M/3/0 KUYRUK SISTEMINDE
KAYBOLMA OLASILIGININ OPTiMIiZASYONU

0z

Bu caligmada rekurrent girisli, bekleme yerinin olmadigi, 3 heterojen kanalli bir kuyruk modeli
incelenmigtir. Bu sistemde gelen miisteri, bos olan kanallardan herhangi birisine esit olasilikla girer.
Biitiin kanallar dolu ise sistem kapasitesi agildigindan, gelen miisteri hizmet almadan sistemden ayrilir.
Bu tiir miisterilere “kaybolan miisteri” denir. Incelenen kuyruk sisteminde miisterinin kaybolma
olasilig1 hesaplanmig ve ortalamasi sabit olan gelisleraras: siire dagilimlari i¢cinden gelisleraras1 siire
dagilimi deterministik secildigilde kaybolma olasiliginin minimum oldugu gdsterilmistir. Elde edilen
sonuglar bir simiilasyon ¢aligsmasiyla desteklenmistir.
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1. INTRODUCTION

The M /M /n/0 queuing model, known as Erlang’s loss model, was first analyzed by Erlang [4],

and the stationary probability that k servers of the system are occupied is given by Erlang’s loss for-
mula:

kI
P,{:M, 0<k<n (1.1)

Z”:(/l/ﬂ)

o k!

In Erlang’s formula, 1/ A is the mean interarrival time, and 1/ g is the mean service time. Palm

[10] indicates that the stream of the lost customers from a GI/M /n/0 queuing system forms a re-
newal process and derives the Laplace-Stieltjes (LS) transform for the times between customer losses.
Palm [10] gives the loss probability for the the GI /M /n/0 queuing model as in (1.2):

1 n
F=Z(2)Ck (1.2)
5=0

n

where kis the number of busy servers in the system and ¢, is

_1=f) 1= Sk

¢ =1, c = , k=1 (1.3)

AVD) (k)

In (1.3), f is the LS transform of the interarrival time distribution. Erlang’s formula was extended
to the case of dependent service times by Konig and Matthes [7]. Takacs [16] analyzed the model
M/M/n/0, which was introduced initially by Erlang (1917), considering the discrete parameter stochas-
tic process (Markov chains) to describe arrival and departure times. Brumelle [2] generalized Erlang’s
loss system to state dependent arrival and service rates. Halfin [6] derived distribution of interoverflow

times in the model GI /G /1 with no waiting line.

Generally in queuing models, a restrictive assumption is made about the servers’ homogeneity, that is
the mean service time is identical for all servers. In reality, the mean service time is not identical for
all servers. Because of the growing abundance of technology such as automated telephone systems and
production lines, there is a need for continual analysis refinement of queuing models.

Gumbel [5] and Blanc [1] obtained the limiting distribution of the number of customers for the
M /M /n queuing system with heterogeneous exponential servers with the assumption that the queue

length is unbounded. Singh [14] examined the Markovian queuing system M /M, /2 /() with two

heterogeneous servers. Besides he calculated the mean of queue length, the mean holding time and the
mean number of customers in the system. Then he compared the results with the model M/M/2/(E)
with two homogenous servers. Singh [15] obtained the average characteristics of Markovian queuing

system M /M, /3 with heterogeneous servers. Nath and Ens [9] proved that with the fastest-service

rule, loss probability was minimum from the queuing model M / M / n/0 with heterogeneous servers.
Kumar, Madheswari and Venkatakrishan [8] examined the Markovian queuing system M /M /2 with
heterogeneous servers and catastrophes, besides they calculated the average characteristics of the sys-
tem.

Our paper mainly builds on the results of Palm’s paper (1943); however, unlike the existing literature,
we analyze a model with three heterogeneous service channels. The GI/M /3/0 queuing model
with heterogeneous servers is examined. In addition to the calculation of customer loss probability,
minimization of the loss probability is examined. In the second part of the paper, model formulation
and related assumptions are given. The details of the simulation study are explained, and the results
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are proposed in the following section. Finally, conclusions and future research directions are presented
in the last section.

2. MODEL FORMULATION

We consider the queuing system in which the arrival process may have any general distribution
whereas the service process is exponential. The interarrival times are independent and identically dis-
tributed random variables whose distribution function is F'(¢) . There are three service channels whose

mean service times are assumed to be different. The service time for each customer getting service
from the Athservice channel is an exponential random variable with parameter 1, (k =1,2,3) and rep-

resented by 77, .
Pn,<t)=1-e* , 120 (2.1)

The service discipline is assumed to be “random” in the sense that the probability of an arriving cus-
tomer getting service from any idle server is equal. Provided that all the servers are busy, the customer
cannot be served, and that customer is lost.

The defined queuing system is represented as GI / M /3/0 . In this setting M indicates that the service
channels are not homogeneous. That is, the parameters of the distribution functions are different from
each other.

Let 7, <7, <... be arrival times to the system when all servers are busy. The sequence {7} is called
the stream of overflow. The sequence {7, } is a renewal process i.e. 7, —7,,7; —7,,... are independ-
ent, identically distributed random variables, 7, and {r, — 7, ,, k = 2} are independent. The aim of

this study is to examine the stream of overflow for the GI/ M/3/0 queuing model and to find the
function F( J;) ’ [1— F(t)]dt = a where ais constant) that minimizes the loss probability. The problem of

describing the stream of overflow for a finite queue with a recurrent arrival and single negative expo-
nential server is considered by Cinlar and Disney [3].

2.1 Semi-Markov Process Representing the System

Let X(¢) denote the customer number in the system at time t; in particular let
X, =X(t,—0), n=1.1If a customer arrives and finds that all servers are occupied, she/he departs
never to return and is said to have overflowed.

We define a semi-Markov process {&(f), ¢ > 0} as £(£) = X, ,ifand only if t, <¢ <t ., . We denote
by O, (x) the kernel of process &(#) , that is

O;(X)=P{X,, =j, t,,—t, <x|X, =i}, (2.2)
where x>0 and 0 <7, j <3.These O, (x) states can be obtained for the process as follows:

Op(¥)=F(x)-0, (%),

Ou(0) =1 [ (€ +e + e )dF (),
0



76 Anadolu Universitesi Bilim ve Teknoloji Dergisi - B 1 (1)
Teorik Bilimler

Qoz(x) = 0’ Q03(X):0,

X
QIO (x): éj‘[?, —De Mt _pTHt _omHt | ottt | i)t | (k) ]dF(t) ,
0

0, (%) =F(x)=0y(x) =0, (x),

1¢ _ _
le ()C)= gj(e (p+)t +e (p+us)t +e (ﬂz+ﬂ3)t)dF(t) , Q13 (x) =0 ,
0
X
on (x): _[[1 oMl _pmHt _ it o)t e—(ul+#3)t + e—(#z‘*'/l})f _ e—(ﬂl*'#z‘*'#s)f]dF(t) ,
0

x
QZl(x)Z J.[e—#lf + e‘/‘zt + e—#zt _ 2(8_(/11‘*'/12)’ + e—(llﬁ'ﬂz)f + e‘(#z"‘#z)’) + 36—(#l+#2+#3)f ]dF(t) ,
0

0,, = F(x) = 05(x) = 0,,(x) = 055(x),

X

Q23(X) :J‘e*(ﬂﬁ#zﬁtls)t dF(l‘),

Q3j (X) = QZj (.X), J = 0919253~

Let g, (s) be the LS transform of O, (x), and f(s) be the LS transform of F(x). The g(s) is the

square matrix of elements g, (s). The g(s) =[g, (s)]; matrix can be expressed as in (2.3).

IORENID ) 0 0

()= FO-SAHIAG  GAO-LE] A 0| @)
FO)- FO+LO-A6) [O-260+3L6) LO)-3A6) )
O A6+ L) £6) A6 -2 436) LO-3L6) A0)]

where
Si(s)=fls+p)+ f(s+ )+ f(s+ 1),
Fo8)= s+ + )+ f(s+p+p)+ f(s+ 1, + 1), 24

fi(8)=f(s+u +p, + 13)

Now we suppose that p, = P(X, =j/ X, =i) is the one-step transition probability of {X}.

Since p, = ¢,(0), the matrix P may be obtained as follows:
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1 1

-3 = 0 0
2 1 2 1

P= 1—§f1 +§fz E(ﬁ - /5) Efz 0 (2.5)

I-fitfi=fs L-2L+3fG f,-3f )
_1_f1+f2_f3 f1_2f2+3f3 f2_3f3 f3_

where f, = £,(0), k=123.

2.2 The Analysis of Overflow Process

Let {E’;( t), t= 0} be the semi-Markov process whose state space is S ={0,l,...,n} and suppose
O, (1) = p;F;(?) is the kernel of & (¢) where p; is the one-step transition probability for the embed-

ded Markov Chain, and F’

; 1s the distribution function of the sojourn time in state I, given that the

next state is j .

Let 7, be first passage time to go from state Oto n, 7 be the recurrence time to state z. In addition,

let ,,(s), ¢,,(s) and g, (s) be the LS transforms of 7, , 7, and Q,(x) respectively.

On> “nn

Pyke [11-12] proved that inverse of the matrix / — g(s) = (5, — g,;(s)) is available on the condition
that Res > 0 and obtained the following formulas for ¢, and ¢,

@0, (s) =1L, (5)/T,,(s)
1-9,()=1/T,,(s)

where [';(s) is the (i, j) entry of the matrix (/ — q(s))™" (I —q(s))™". Then (2.6) and (2.7) can be
obtained

P, (8) = Dy, (5)/ D, (s) (2.6)
1-o,,(s)=|I —q(s)|/ D,,(s) 2.7)

where D (s) and D, (s) are the cofactors of (n,n) and (0,7) entries of the matrix / — g(s), respec-
tively. The mean recurrence time to the state n can be obtained as in (2.8) by using (2.7)

ET, = D(m,,...,m,)/ D, (0) (2.8)

where m, (i =0,...,n) refers to the expected value of the sojourn time in state i, D(m,,...,m,) is
the determinant |I - q(0)| |I - q(0)|. The determinant D(m,,...,m,) is obtained by writing

(m,...,m,)" instead of the 0" column in the determinant |7 — ¢(0)|.

We apply the (2.6) and (2.7) formulas for the matrix g(s) and obtain (2.9).

|1_CI(S)| === f+q0)d =g —g2)+ A= f +G5)91 + 4o (1 = §2 — 423 + q15)] (2.9
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The cofactors of (3,3) and (0,3) entries of the matrix / — g(s) are obtained as in (2.10) and (2.11)
respectively.

Dy; = (1= qo ) =4y, — G2 + 41192 — 912921) — 901 (@10 + 912920 — G1092) » (2.10)

Dy; = 4019129 (2.11)

For n =3, by using (2.6) and (2.7),

9019129
@03(5,): 017112123 (2.12)
(=g =411 =92 + 9192 = 912921) — 901 (410 + 912920 — G10922)
and
A=NNA= f+a19)d=d9p —dp3) + A= f+d50)d10 + 9911 =dpy —dp3 +d17)]
1_¢,33(s): (2.13)

(I=ag0)1 =411 =422 + 411922 = %12921) ~901(410 * 212920 ~ 910922)
can be obtained where f = f(s), and g, = g, (s). The formulas (2.12) and (2.13) define the stream
of overflows in the GI / M /3/0 queuing system.

2.3 Steady State Analysis

Using (2.6), (2.7), when m, = m, = m, = m, = a , the following is obtained

A A A A

Fr=——, El,=—, El,L,=——, ET,=—,
" Dy(0) ¥ Dy(0) " Dy, (0) ? Dy(0)

L “N-F@)ldt =a
where

a —Po 0 0
A= a l-p, -p, 0
a —p, l=-py —py

a —py =Py l=pyl,
A=a[p,(1—py —Py)+Pu(— Py — Py + D)+ PPyl

Dy, (0), Dy;(0), Dy, (0) and D, (0) are the cofactors of (0,0), (3,3), (0,1) and (0,2) entries of
the matrix

1=pyy =Py 0 0
-Po 1-py —-po 0
—Pxn  —Py 1-Dyn —Py
—Pxn —Pu  —Pn =Py,

[-P=1-g(0)=
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That is,

Dyy(0) == p )= Py = P23) = PaPor »
Dy, (0)=F,(1-P, - PB;),

Dy, (0) = pypi, (1= py3),

D;;(0) = py, 1, Pas -

The transition probabilities p, are defined in (2.5). The mean recurrence times to the state 0 and state
3 and the mean first passage time from state O to state 1 and state 2 are calculated as follows:

alpyy(=py = py)+ Po(l= Py — Py + P1y) + PP ]

ET, =
00 (I=p )= Py = Py3) = PP
ET = al[pyy(l=py = Py)+ po(I= Py — Py + Piu) + PPyl
01 - )
Po(l=py = Py3)
ET. — alpy(1= Py = Pr3) + Po(L= Py — Doy + Ppy) + D1y Pag
02 — )

PP (1= py3)

ET. = alp,y(d=p,, = Pr3) + Poy(L= Py = Py + P1) + DDy
3= .
PorP1aPr»

The steady state probabilities can be derived as follows:

— a (1= p )= py, = Py) — PP
[ - B
ETyy  Pi(l= Py = Py)+ Poi(1= Py = Poy + Pa) + PaPag
J— a  _ Po(= Py — Py3)
1 — - )
ETy,  pi(l=py = py)+ Po(l= Py = Py + P1)+ PiaPao
T = a PP, (1—Ppy)
2 = - >
ETy,  pi(l=py = py)t Py (= Py — Py + D)+ PiPa
72.3 — a p01p12p23 (214)

ETy;  pi(1= Py = Pr) + Poy(1= Py = Doy + P12) + PraPao
2.4 The Loss Probability and Its Minimization

The probability of a losing customer is equal to the probability of all the servers being busy where
there is no waiting line. Hence, from (2.5) and (2.14), the loss probability is given as in (2.15).

P, = ; ﬁﬁﬂ ; 5 (2.15)
9 (l_fz +2f3)(1_§f1 +§f2)+§f2(1_§f1 +f2_f3)
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In (2.16), f, = f,(0) , k=1,2,3 is obtained by setting s =0 in (2.4). As a modification of (2.15),

with the assumption of g, =y, = p; =, yields Palm’s loss formula [10] with #=3 as follows for the
defined system:

LIPS S 020 B et A 070) | Sl ©70) W LA 020 | LA €))L A CT2))
) S (w) S fQu) S fQCu)fGu)

The analysis of optimization problems results in more efficient working systems. Signh [15] mini-
mized numerically the average characteristics of the model M /M, /3 with heterogeneous system and

(2.16)

compared to the corresponding homogeneous system M /M /3. Nath and Enns [9] examined the

M /M /n/0 queuing model and found the loss probability was minimized, provided that the sum of
the service rates is constant and arriving customers were assigned to the server with the shortest mean
service time.

Let H, indicate the class of interarrival time distributions /'having a fixed mean a,and let P, (F') de-

note the loss probability for a defined system with an interarrival time distribution /' € H, . And also,
assume A(?) is deterministic distribution, that is, A(¢) =0 for t < a and A(¢) =1 for > a . It is ob-
vious that 4 € H , and e is the LS transformations of A(%) .

Theorem. The loss probability P, (F), FF € H, is minimized by F' = 4 .

Proof. (2.15) can be written as in (2.17).

A
P, (F)=-22 2.1
= 5r) @17
where
(-fir2 -2 p+t el na-2pv - 1)
#(f) = 3 3 3 3
/,
1 2 1 1 1
:(1—§flf3)+(1—§fz)(—§f1)+(l—gfs)(—gfz)+2
f,

The term £, f, /9 can be rewritten as in (2.18) f(s) = e is attained from Jensen’s inequality [13]

P )+ )+ S U )+t 41+ 1 ot + )19 @.18)

> (e*”ﬂ] + e*aﬂz + e*aﬂs )(e*“(/h*/lz) + e*“(/‘l*#s) + e*“(#z*#})) / 9

f(s)=e ™ is used to calculate each of the following elements 1— f,f,/3, 1-2f,/3, — f,/3,
1-f;/3, — f,/3 and f;, as shown below:
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1—%1’1/’3 =1—%[f(ﬂ1)+f(ﬂz)+f(ﬂ3)]-f(ﬂ1 + iy + 1)

1, _ _ - -
Sl——(e L oTM 4 o a#s).e a(ﬂl"‘ﬂz‘*'/ls)’

1—§f2 :l—g[f(ﬂl ) S+ )+ f (it + 1)

< 1 _g[e—a(/‘ﬁ/‘z) + e‘“(#l‘*’#ﬂ + e‘“(#z"’ﬂs)]

2

—%fl :_%[f(,ul)+f(ﬂz)+f(ﬂ3)]

< —%(e“’”l +e " et ™),

1 1
1_§f3 :l_gf(/ul + [y + [13)

< 1 _ le—a(ﬂﬁ'ﬂz‘*ﬂz)

- 2

-3 fi —%[f(ul ) S+ 1)+ f ity + 1)

< _%(e—a(#ﬁ#z) + e‘“(#l‘*’#ﬂ + e—u(#z*'/ls))’

Sy =+ py + 1)

> e—a(ﬂl"'/lz +143)

For convenience, above equations can be written as follows:

¢l(e—05) =1 _%(ea/ll 4o M2 4 o ) . e—a(ulﬂlzws)

e *)=1 _% e*”(/‘l*#z) + e—a(ﬂlﬂls) + e—a(ﬂz‘*'/ls)
? 3

1
file ) =S e re )

1

¢4 (e—as) — 1 _ Ee*a(#ﬁﬂz*/@)

¢5(e—aS) — _%(ea(ﬂﬁrﬂz) + efa(/tﬁr#s) + e*“(#z*ﬂs))

¢6 (e—as ) — e*a(#ﬁ#zﬂts)
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Then the ¢( /') function can be written as follows:

Pi(e ")+, (eT) - gi(e M)+l T) Ps(e ) |

= < 2,
4=4(1) )
Hle ™) = gi(e”)+p,(e ™) ¢y (e:as)+¢4 (e™)-ps(e™) oy (2.19)
Ps(e™)

And finally (2.20) is obtained using the results from (2.18) and (2.19)

(e*aﬂl o W 4o )(e*a(uﬁruz) +e*a(ﬂ1+ﬂ3) +e*a(ﬂz+ﬂ3))

P (F)2>
() 9g(e™)
e M 4 oTU o e*a(ﬂlﬂlz) + e*a(/tlﬂh) +e*a(ﬂ2+ﬂ3)
PL(A)=( X SHe™) ) (2.20)
P,(F)2 P,(4)

As aresult, P, (F') is minimized when the interarrival time is constant with probability one.

3. SIMULATION STUDY

The queuing system with three heterogeneous servers was simulated. Three different distributions
considered for the arrival process. When a customer enters the system, she is served either by server 1,
server 2 or server 3, whichever becomes available first. If all of them or two of them are available at
the same time, the customers are served by any server with equally likely. If all of the servers are busy,
the customer is lost.

Service process was considered to be exponential and the mean service times for servers were se-
lected arbitrarily such as 4.08, 3.15, and 4.88, for server 1, 2 and 3, respectively. It has been proved
that the difference between mean service times is statistically significant for a=0.01. Since service
times are exponential, the distribution assumption of ANOVA is violated. Hence, the significance test
of differences between service times for each server was tested by Kruskal Wallis. The test statistics
was obtained as H=74.71; when it was compared with the chi-square value (9.21) for 2 degrees of
freedom and 0.01 significance level, the null hypothesis is rejected. It was concluded that each of three
exponential server has different parameter.

Kruskal-Wallis Test

Kruskal-Wallis Test on Service Times

Servers N Median | Ave Rank Z

1 1000 | 2.733 1505.5 0.20
2 1000 | 2.174 1330.9 | -7.58
3 1000 | 3.411 1665.6 7.38
Overall | 3000 1500.5

H=74.71 | DF=2 | P=0.000

The simulation of the system begins with an empty system and it is arbitrarily assumed that the
first event, an arrival, takes place at clock time 0. The state of the system is modified by events; in
other words, discrete event simulation was used to simulate the queuing system. The events which are
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arrivals or departures occur at discrete time points. Associated with each event, there is a clock which
indicates that event’s scheduled time to occur. At the time of any customer departure, the simulation
schedules the next event. If no customers in the system, no departure is scheduled and the simulation
clock is set to 9999. When a customer enters to a system, the simulation clock is reset according to
service time distribution.

The scope of the simulation study is to find the loss probability under the assumption of different
distributions of interarrival times and to indicate that the minimum loss probability is achieved when
the interarrival times are deterministic. A partial listing of results after running the simulation is given
in Table 1.

Table 1. A sample output of system simulation

Number
TM | Event | CN | Server1 | Server2 | Server 3 |of the Lost AT DT
Customers
0.0000 0 0 0 0 0 0 0.0000 | 9999.0000
0.0000 1 1 0 0 1 0 1.8600 11.0629
1.8600 1 2 1 0 1 0 1.9217 11.0629
1.9217 1 3 1 1 1 0 4.1228 7.9152
4.1228 1 4 1 1 1 1 5.5701 7.9152
5.5701 1 5 1 1 1 2 6.4621 7.9152
6.4621 1 6 1 1 1 3 7.9272 7.9152
7.9152 0 1 1 0 1 0 7.9272 11.0629
7.9272 1 7 1 1 1 0 8.1848 11.0629
8.1848 1 8 1 1 1 1 11.6520 11.0629
11.0629 0 2 1 1 0 0 11.6520 12.8413
11.6520 1 9 1 1 1 0 12.6903 12.8413
12.6903 1 10 1 1 1 1 15.0165 12.8413
12.8413 0 3 1 0 1 0 15.0165 16.1897
15.0165 1 11 1 1 1 0 15.6177 16.1897
15.6177 1 12 1 1 1 1 16.3625 16.1897
16.1897 0 4 0 1 1 0 16.3625 16.2440
16.2440 0 5 0 1 0 0 16.3625 17.9879
16.3625 1 13 0 1 1 0 16.6322 17.9879
16.6322 1 14 1 1 1 0 17.0998 17.9879
17.0998 1 15 1 1 1 1 17.5842 17.9879
17.5842 1 16 1 1 1 2 19.5915 17.9879
17.9879 0 6 1 0 1 0 19.5915 19.1843
19.1843 0 7 0 0 1 0 19.5915 22.5107
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The first column represents the simulation clock. In the second column the type of event has been
specified. “0” indicates “departure”, whereas “1” indicates “arrival”. Each customer is numbered and
these numbers can be seen in column three. The following three columns represent the status of the
servers (1=busy, O=idle). Column seven shows the number of customers lost. Last two columns sig-
nify the next arrival and departure times. For example, the second arrival into the system occurs at
time 1.86. This customer is served by the first server. There have not been any lost customers yet. The
next arrival, the third arrival, will be at time 1.9217, and the customer who is being served at that time
will depart from the system at time 11.0629.

Exponential, Weibull, and Gamma distributions were considered as the interarrival time distribu-
tion. The computations were carried out for Weibull distribution with different parameters. The system
simulation was replicated different times for each interarrival time distribution, and the loss probabil-
ity was computed as the relative frequency of the loss probability found in each run for each case. It is
assumed 1000 customers for the each simulation run. The loss probabilities when the interarrival time
comes from Exponential, Gamma and Weibull were compared with those for the case in which the
interarrival time is deterministic.

The following three tables provide the loss probability for different interarrival time distributions
with three different means.

In the first case, mean interarrival time was assumed to be 2 minutes. Three different interarrival
time distributions such as exponential, gamma, and weibull with the same mean were compared to the
case in which interarrival times are deterministic with a mean of 2 minutes. The results are shown in
Table 2. Simulation was performed 250, 500, 1000, and 5000 times and the loss probability was esti-
mated for each run and it was concluded that this probability does not chance according to the replica-
tion number. Besides, the standard error of estimates and 95% confidence intervals can be seen in the
last column of the Table 2. As we can see, the loss probability is minimized when interarrival time is
deterministic with a mean of 2 minutes.

The probability density function of Weibull distribution is given as follows:
f(x)= abx"e™ | x>0

Weibull distribution was considered with two different shape parameter; b=3 and 5=4. Scale parameter
a was determined so that the mean was 2 minutes.

The probability density function of Gamma distribution is given as follows:

e—x/&

x)=x"——— x>0
S (x) TR
The shape parameter k and the scale parameter € were determined so that mean was 2 minutes.
The same computations were performed for the same interarrival time distributions with a mean of 4
minutes and the results are shown in Table 3. The mean server times for servers are fixed, as before.
The simulation results show that the loss probability is minimized when interarrival time is determinis-
tic with a mean of 4 minutes.
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Table 2. The loss probabilities when the mean interarrival time is 2 minutes.
Interarrival Time Distri- Mean interarrival Replication Loss Prob- SE of estimates
bution Time (minutes) number ability e d
250 0.1874 (0,16240?(9).72063)
500 0.1892 (0.1 7880;()3?1987)
E)?ailiig;1al 2 1000 0.1867 (0.1 8(2)00?(2)41 915)
2000 0.1879 0.1 8(5)'50?(1).21903)
5000 0.1889 (0.18260?8.51899)
250 0.1233 (0.1 1860?5.91270)
500 0.1221 0.1 18530;0(1).21 244)
Gars 2 1000 0.1228 (©. 12(1)'30;08?1 244)
(k=2,6=1) 2000 0.1235 (. 12(2)40?3,51 245)
5000 0.1231 . 12(2)40;03.3123 8)
250 0.0811 (0,07901' (2001.0830)
500 0.0795 (0,07210;()8.70809)
. :\gggili ) 2 1000 0.0794 (0.07250;()(0).50804)
2000 0.0800 (0‘078'30;08%0807)
5000 0.0801 (0.078'60?(0).20805)
250 0.0717 (0_06(3)30?3.30800)
_ 500 0.0720 (0_067050;201.0762)
(2=0.042;b=4) 2 1000 0.0724 (0,07830?(1).10745)
2000 0.0721 (0.07(1)60?8:5073 )
5000 0.0716 (0.07(1)'20?3.20721)
250 0.0616 (0.058'90?3?0634)
500 0.0619 (0.068.70;08.6063 1)
Deterministic 2 1000 0.0624 (0.06(1).50??)%632)
2000 0.0626 (0.06360?8.30632)
5000 0.0624 (0.06360;08.20628)
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Table 3. The loss probabilities when the mean interarrival time is 4 minutes.

Anadolu Universitesi Bilim ve Teknoloji Dergisi - B 1 (1)

Teorik Bilimler

Interarrival Time Dis- Mean interarrival Replication Loss Prob- SE of estimates
tribution Time (minutes) number ability o0
250 0.0408 (0_032'20?3%0474)
500 0.0425 (0.03820?(1).70458)
Eﬁairiizglal 4 1000 0.0418 (0,04820?8§0435)
2000 0.0418 (0,04(1)60?8%0426)
5000 0.0413 (0_04(1)60?8.20417)
250 0.0159 (0.00801'0;05‘.0237)
500 0.0158 (0,01(2)'10?(1),90194)
_— ) 1000 00162 | 0147 (;)'(()).%%7)
(k=2,6=2) 2000 0.0160 (0,01280?8.10163)
5000 0.0161 (0.01290?8.10162)
250 0.0050 (-0.00890;0 8.0109)
500 0.0048 (0.00(1)80?3).50078)
ooty 4 e
2000 0.0048 (0.00210?8.30054)
5000 0.0047 (0.00270?890048)
250 0.0035 0.0001
(0.0032 ; 0.0037)
500 0.0032 0.0001
| (0.0030 ; 0.0034)
(a=(¥¥)%1§g;ltl>=4) 4 1000 0.0035 (0.00240?8.10037)
2000 0.0033 (0,00303'(2000.0034)
5000 0.0034 (0.00240?890035)
250 0.0019 (-0.00260;' 0093864)
500 0.0020 (-o.oo%?(;) 101.0041)
Deterministic 4 1000 0.0020 (0. 00(1).20?8%0029)
2000 0.0020 (0.0001'82009(1)021)
5000 0.0019 (0.00108(9)(2000.(1)0191)

Finally, the calculations for the same interarrival time distributions with a mean of 6 minutes were
performed, and the results are shown in Table 4. The simulation results show that the loss probability
is minimized when interarrival time is deterministic with a mean of 6 minutes.
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Table 4. The loss probabilities when the mean interarrival time is 6 minutes.
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Interarrival Time Distribu- | Mean interarrival Time Replication Loss Prob- SE of estimates
tion (minutes) number ability and %95 CI
250 0.0152 (0.012;10?8%0160)
500 0.0153 (0.01280?8?0158)
Ex(r;\o:rlle/réglal 6 1000 0.0152 (0,01280?8.20156)
2000 0.0154 (0.01210;08.10156)
5000 0.0152 (0.01260?(0).10154)
250 0.0038 (0.00 1080;001.0058)
500 0.0035 (0.00(2)60?3.50045)
( gzm;:lg) 6 1000 0.0036 (0,00_9,'20;08.20040)
2000 0.0038 (0.00(3)'70?8.10039)
5000 0.0037 (0,00(3)60?890037)
250 0.0016 (0.008&30?(0)%0024)
500 0.0016 (0,00(1)20?8.20020)
(kG:a&méI:lg) 6 1000 0.0017 (0,00?350;08.10019)
2000 0.0017 (0.00(1)50?8.10018)
5000 0.0017 (0.00(1)'70?390017)
250 0.0005 (-0.00%? (;)%6.0018)
500 0.0005 (-0.00%?(;)003.001 D)
(a:(%%l??;lé:s) 6 1000 0.0005 (0.008'30?8.10008)
2000 0.0005 (0.008210;08.10007)
5000 0.0005 (0.008'50?(0)90006)
250 0.0003 (-o.oo%g (;)(())2.0007)
500 0.0003 (0.00860;08.10005)
(a=0?)(\)/g(l)t;l;1;lb=4) 6 1000 0.0003 (0,00820?8 1 0004)
2000 0.0003 (0,00820?g90003)
5000 0.0003 (0.00(0)'30;08?0003)
250 0.0001 (-0.00%4(1) (;)%%0006)
500 0.0001 (-0.00%3 (;)%1.0003)
Deterministic 6 1000 0.0001 (_0,0()%(()) (;)(())1_0002)
2000 0.0001 (0.008'10;08?0001)
- 00001 0.0000

(0.0001 ; 0.0001)
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4. CONCLUSIONS AND SUGGESTIONS

By using semi-Markov process representing the GI /M /3/0 queuing model, the basic character-
istics of the system were computed. By analyzing the stream of overflow, the LS transforms of in-
terover flow times were obtained. With these transforms, the means of the aforementioned times were
computed. At the instants of the customers’ arrival, a formula of loss probability was obtained. As this
formula is defined with a determinant consisting of a one-step probability, it can be calculated easily.
Assuming that the mean of the interarrival times distribution is fixed, it is indicated that the loss prob-
ability is minimized by deterministic interarrival time distribution.

The result of the theorem was supported by a simulation study in which there are three heteroge-
neous servers. Having shown that the mean service times are statistically different at a %1 significance
level, the computations were conducted. The loss probability was computed for three statistical distri-
butions of interarrival times and compared with the loss probability for deterministic interarrival time.
The loss probability under deterministic interarrival time distribution is minimized in each case.

The GI /M /n/0 queuing model can be analyzed by a similar method used in this paper. It is
expected that the loss probability is minimized when the interarrival time distribution is deterministic

forthe GI /M /n/0 queuing model.
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