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ABSTRACT

In this paper, we consider two G,-morphic 7-manifolds with G, structures and show that they
belong to the same class of G,structures. The converse may not be true, however.
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G,-MORFIK MANIFOLDLAR VE G, YAPILARI
Oz
Bu c¢alismada G,yapisia sahip 7-boyutlu G,-morfik manifoldlar ele alinmistir. Herhangi iki
manifoldun G,-morfik olmasi durumunda, bu manifoldlarin G,yapilarin ayni sinifinda yer aldiklar

gosterilmistir. Ancak, dnermenin tersi dogru olmayabilir.
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1. INTRODUCTION

Consider R”with its standard basis {ey, ..., e;} and dual basis {e?,...,e”}. The 3-form

Vo = 6123 + 6145 + 6167 + 6246 _ 6257 _ e347 _ e356

where ek = et A e/ A e¥ is called the fundamental 3-form on R”. The group G, is defined as

Go:={f € GL(7,R) | f79o = o},

where GL(7,R) is the group of isomorphisms of R”. The group G, is a compact, simple and simply
connected 14-dimensional Lie group. A 7-dimensional manifold M is called a manifold with
G,structure if its structure group reduces to the group G,. The existence of a G,structure is equivalent
to the existence of a 3-form on M which can be locally written as ¢,. This 3-form gives a Riemannian
metric and a volume form on M (Bryant, 1987).

Manifolds having G, structures were classified by Fernandez and Gray in (Fernandez and Gray,
1982). There are 16 classes of G, structures depending on the space the covariant derivative of the
fundamental 3-form ¢ belongs to. The defining relations for each of the 16 classes were given by
Fernandez and Gray (Fernandez and Gray, 1982) and then an equivalent characterization was obtained
by Cabrera using d¢ and d * ¢ in (Cabrera, 1996). This characterization is given in the Table 1.

Note that * dpAp =— x d*@ Ax@p, a=— i*(* doNhe), [=— %*(* deA¢@) and
f =3+ (¢ Adg) (Cabrera, 1996).

Let (M1, ,) and (M5, ¢,) be 7-manifolds with G,structures. If there exists a diffeomorphism
F:M; — M, such that F*(¢,) = @4, then F is called a G,-morphism and (M4, ¢,) and (M, ¢,) are
said to be G,-morphic (Cho, Salur and Todd, 2011).

Let (My, 1) and (M,, @,) be G,-morphic. Then d@; = 0 iff dp, = 0 since d commutes with
pullback maps (Cho, Salur and Todd, 2011).

Table 1. Classification of G,structures

P dp=0and d*p =0
W, dp=kxpand d*@p =0
w, dp=0
W; d*p=0and dpAhp =0
W, dp=aAN@and d*@p =B Ax @
w, W, dp=kx+xpand * dxpAxp =0
w, W, d*xp=0
W, D W, dpAp=0and * dpAhp =0
W, ewW, dp=aAp+frpandd*xp =L Axgp
w, W, dp=aAg
W, W, dpAhp=0and d*xp =L A+gp
W, DW, W, *dpAe=0o0r* d*pAx@p =0
W, eW, W, dp=ahp+tfx*g
W, OW, W, dxp =LA@
w, W, W, dpAep =0
w No relation
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In the present paper, we show that G,-morphisms do not only preserve closed G,structures, but
also other 15 classes too. We consider two G,morphic manifolds and prove that both belong to the

same class of G,structures.
2. RELATIONS BETWEEN G,-MORPHIC MANIFOLDS

Take two G,-morphic manifolds (M4, @) and (M,, @,). Then there exists a diffeomorphism
F:M; — M, such that F*(¢,) = ¢,. Let g, and g, denote the Riemannian metrics and Q;, Q, the

volume forms determined by ¢, and ¢, respectively. Then for x,y € TM; and x',y' € TM,,
followings hold (Bryant, 1987) :

Ccdop) A (o) Aoy = g1 (%, ¥)Qy,
(X" d@2) A (Y d@2) Ay = g2(x",y")Qy,
where the symbol "1" denotes the contraction of the 3-form ¢. Now
9106,¥)Q1 = (o) A (vle1) Ay
= (d Fro) Ny Frpz) A Frop,
= (F*(E.()192)) A (F (E()19)) A Fo;
= FH{(F.(x) o) A (FE(¥)192) A gy}
= F*{gz(F.(x), E.(3))Q;}
= g:(F.(0), EW)F"Q,.
Take a local orthonormal frame {ey, ..., e;} on an open neighbourhood of q\€ M;. Then
910, y) = g1(x, y)Q (ey, ..., €7)
= gz(F*(x), F*(}’))F*Qz(ep e €7)

= g2(F.(0), E)Q(F.(e1), ., F.(e7))

= 0,(F 00, E)) (detgs (Eed E(e)))

Thus if (M4, ¢4) and (M,, ¢,) are G,-morphic, then
kF g, = g1

where k = (detgz (P; (e)), F*(ej)))l/z'

Let P, and P, denote the two-fold vector cross products determined by ¢, and @,, respectively.
Then

gZ(PZ(Ek(x)' Ek(y))' P;(Z)) = (pZ(P:F(x)' Ek(y)' Ek(z))
= ¢1(%,y,2)
= g1(P1(x,y),2)
= g2(kE.(P1(x,y)), F.(2)).
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forall x,y € T;M;. Since F, is an isomorphism and g, is non-degenerate, we obtain:
F*P, = kF, o P;.
Note that the isomorphism F,: TM; — TM, induces an isomorphism
F*: AP(TM,)* — AP(TM,)".
Now we extend the metrics g, and g, to spaces AP (TM;)* and AP (TM,)*, respectively.
Let a and 8 be 1-forms on M,. In this case F*a and F*§ are 1-forms on M;. Let # denote the

metric dual of a given 1-form or a vector field. Take a local orthonormal frame {e,, ..., e;} on an open
neighbourhood of a point g of M;. Then for any vector x € Tg4)M,, we have

a(x) = g (x,a*)
= 92 (F.((F)7*(x)), FE.((F) ™ (a*)))
= k™19, ((F) (%), (F)~(a"))

S (DR CR)RARIED

and thus

(Fra)* = k™2 (F) " (a™).

This gives
91(F*a,F*B) = g, (F*a)*, (F*p)*)
=k 29, (F)™ (™), (F)'(B")
= k~2kg, (a*, B
=k™'g:(a, B),
that implies

92(a,B) = kg, (F*a,F*)
for any 1-forms «, f on M,.
Now leta = a; A ...Aa, and B = B; A ... A B, be p-forms on M,. Then
F*(a) = F*(ay) A ... A F*(ap) and F*(B) = F*(B1) A ... A F*(B,) are p-forms on M;. Then
91 (F* (@), F*(B) = g1 (F* (@) A . A F*(ap), F*(B1) A . A F*(Bp))

= detg; (F*(a;), F*(B))) = k™Pdetg,(a;, B)
=kPg,(a; Ao Nay, L A A By) = kTP gy (a, B),

which gives,

g2(a,B) = kPg,(F*a, F*B)
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1/2
for p-forms a, f on M,. Now since k = (detgz (F; (ep), ﬂ(q))) , we have

k* = detg,(F.(e;), F.(e}))

= detgy((F.(e)", (F.(ep))

= det(k™" g1 (e; €)))

=k77g,(e; AN g, e AN ey) = k77,
Thus we obtain k° = 1 which is possible only if k = 1.

Therefore if (M;, ¢,) and (M5, ,) are G,-morphic, then

F g2=01, (€]
F'Py=F.o Py @
Conversely, if (1) and (2) hold, then (M;, ¢,) and (M,, ¢,) are G,-morphic .
Let *; and *, denote Hodge-star operators determined by metrics g; and g,, respectively. If a
and S are p and 7-p forms on M,, then F*a and F*f are p and 7-p forms on M;. Take a local

orthonormal frame {e,,...,e;} on an open neighbourhood of a point g of M;. We compute the
following:

g2(x2 @, B) = g2(a A B, Q)

= g1(F (@A B), F Q)

=g.(F'a N F*B,mQ,)

=mg,(*1 F'a, FB)
m g1 (F*((F)™" (+1 F*a)), F*(F) ™' (F*B)))
m g,((F)™(+, F*a), B)

where m = (F*Q,)(ey, ..., €7). Therefore
F*(x, @) = m =, F*a.

Now we use the formula * ¢(w,x,y,2) = % gw, Sy, P(P(x,y),2z)) given in (Fernandez and

Gray, 1982) for the Hodge-star * of the fundamental 3-form ¢ of a manifold with G, structure. There
exist w,x,y,z€ T,M; such that FWw)=w EX)=x"FE{y)=y,F(z) =2z for any
w',x',y',z" € Tpiq)M,. Thus
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w2 0, (W',x,y',2") =x; @3 (F. W), E.(x), E(y), E.(2))
= % 92(F.(W), Gy, Po (P, (E.(x), F.(¥)), F.(2)))
= % 92(F.(W), Gy, Py (F. (P (x,¥)), F.(2)))
= % 92(F.(W), Gy, F.(P1(P1(x, ¥), 2))

1
= ggl(wr nyzpl(Pl (x,¥),2))

=% o1 (W, %, y,2),
i. e. we get
F* (x5 ¢2) =*1 @1.

Put @ = ¢, in the equation F*(*, a) = m*; F*a, to observe that m = 1. Hence we get the
equation

F*(*y @) =+, F*a 3)
for any p-form a on M.
3. G;-MORPHIC MANIFOLDS AND CLASSES OF G,STRUCTURES

Let (My,¢,) and (M,,¢,) be G,-morphic manifolds. There exists a diffeomorphism
F:M; — M, such that F*(¢;) = ¢4. Assume U is one of the sixteen classes of G, structures. In this
section, we show that M; € U iff M, € U. We use the characterization of Cabrera in (Cabrera, 1996).
We investigate each class separately. We use relations (1), (2) and (3) we found in the previous
section.

The class P: Let M; € P. Then dp; = 0 and d *; ¢, = 0. Thus
0=dg, =dF" ¢, =F'do,

and 0 =d *; @1 = d(F*(*; ¢3)) = F*(d *, ;). Since F* is an isomorphism, we get dgp, = 0 and
d *2 (pz = 0

The class W: Let M; € W,. Then do, =t *; ¢, and d *; ¢, = 0 for dep; # 0. It is enough to
show the first condition. For t # 0 we have dg; = t *; ¢4, which is equivalent to

d(F*@,) = t(F*(*3 ¢3)). Since d commutes with pullback maps, we have F*(dg,) = F*(t *; ¢,).
This implies dg, =t *, ¢, since F* is one-to-one. Since dp; # 0 and

F* is an isomorphism, we get dp, #+ 0. Thus M, ¢ P.

The class Wy: Let M; € W,. Then d@; = 0 for d *; ¢, # 0. Here it is enough to see that M, can
not belong to the class . Assume that M, € P. Then d *, ¢, = 0 which implies that

d((F*) Y %y @1) = (F*)71(d #; ¢4). Thus d *; @, = 0 which is a contradiction. Thus M, ¢ P.
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The class W3: Let M; € W;. Then d *; ¢; = 0 and de; A @, = 0 for de; # 0. It is enough to see
the second condition. Since

0=dps Aoy =d(F @) N (F';) = F*(de) A (F*@y) = F*(dey A @3)

and F* is an isomorphism, we get dg, A ¢, = 0. We can use the arguments we used while showing
M, & P in the previous class here to see that M, & P similarly.

The class Wy: Let M; € W,. Then do; = a A@, and d *; @1 = B A+, @1 for a,f # 0. The
condition d@,; = a A ¢, is equivalent to d(F*¢,) = a A F*p,. We can write this equation as
F*(dp,) = F*(F) Ya) A F*o, = F*((F*)"a A @, ) and since F* is an isomorphism, we have
do, = (F) Ya A @,. In addition, d *; ¢; = B A*; @, means d(F* *, ¢,) = B A F* *, ¢,. Hence
F*(d *5 @) = F*((F)T'B) A F* %5 5 = F*((F*)™'B N* 02)
and similarly we get
d x5, @, = (F*)71B Ax, @,. Note also that dg, # 0 and d *, ¢, # 0. Thus M, € W,.
The class W; @ W,: Let M; € W, @ W,. Thendgp, =t *; ¢4 and
(*¥1d *1 @1) N*1 @1 =0 forde; # 0and d *; @; # 0. It is enough to show the following:
0 = (1 d* ¢1) A*1 g

=x1 d(F" x5 03) N F* (%2 92)

=1 F*'(d %2 92) N F* (%2 ¢2)

= F"xy (d %2 92) N F* (%2 ¢3)

= F"((x2 d *2 @2) N*3 ¢2).

This gives (*, d *, @,) A*, @, = 0. Similar to previous classes we can see that M, can not belong to
subclasses of W; @ W,.

The class W; @ Wj3: Let M; € W; @ W5, Then d *; ¢; = 0 for de,; # 0. Here it is enough to
show that M, can not be an element of subclasses of W; @ W, and this can be seen again by using

that F* is an isomorphism.

The class W, @ W3: Let M; € W, @ W;. Then dop; A, =0 and (¥ dp;) Ao, =0 for
dp; # 0and d *; ¢, # 0. Itis enough to see followings:

0=C(1dp) Aoy
=x1 d(F @) A F @,
=x; F*(dgy) N Fo,
= F'(x2 dp2) N F7 @,
= F*'((+2 dg2) A @2).

This implies (*, d@,) A @, = 0. We can also show similarly that M, can not be in the subclasses.
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The class W @ Wy: Let M; € W, @ W,. Thendp, = a A, + f *; ¢, and

d *1 @1 = B N*¥4 @, for a nonzero function f, dp; # 0 and d *; ¢, # 0. We should see the
following:

dpy =ahe;+f ¢4
d(F*@;) = a N Fr@y + fF (%2 ¢2),
F*(dgy) = F*(F)'a) A F gy + fF" (%2 92)
=F'((F)'ang,+fo Flx0)),

which implies dg, = (F*)"la A @, + f o F~1 x, ¢,. We can also show similarly that M, can not be
in the subclasses.

The class W, @ W,: Let M; € W, @ W,. Then d@; = a A ¢, for de, # 0. We showed that the
condition d@; = a A ¢, is equivalent to the condition dg, = (F*)"1a A ¢,. We can see that M, can
not belong to the subclasses similar to previous classes.

The class W3 @ Wy: Let M, € W; @ W,. Then dp; A@p; =0 and d *; @1 = Axqy @1 for
dp; # 0and d *; ¢; # 0. We saw that this is only possible if dp, A ¢, = 0 and

d x5, @, = (F*)71B A%, ¢,. We can eliminate the subclasses of W5 @ W, similarly.
The class W; @ W, @ Wj: Let My € W, @ W, @ W;. Then *; dep; = 0 or
*1d * 1 N¥1 1 =0fordep, # 0and d *; ¢ # 0.1f *; dp; = 0, then
0 =xy dy =+ d(F"@3) =% F*de, = F* (x5 do,),
so we get *, dg, = 0. If *; d *; ¢, A*{ @1 = 0, then
0 =+1 d *; 91 A*1 @

=+ d(F*(*2 92)) A F* (%2 92)

=x1 F*d (%3 93) A F* (%3 ¢3)

= F" x5 d (3 2) A F*(*; ¢3)

= F* (%3 d(*3 92) N*3 ¢2)

and this implies *, d(*, @,) A*, ¢, = 0 since F* is an isomorphism. We can see that M, can not
belong to the subclasses similarly.

The class W1 @ Wy @ Wy: Let M; € W, @ W, @ W,. Then
dpr =aA@i+f* ¢

for a non-zero function f and d¢,; # 0. It is enough to see that M, is not an element of a subclass.
This can be done by using that F* is an isomorphism.

The class W, @ W3 D Wy: Let My € W; @ W3 @ W,. Then d *, ¢ =  A*1 @, for de; # 0

and d *; ¢; # 0. It is enough to see that M, is not an element of a subclass. This can be done by
using that F* is an isomorphism.
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The class W, @ W3 @ Wy: Let M; € W, @ W3 @ W,. Then do; A, =0 for de; # 0. It is
enough to see that M, is not an element of a subclass. This can be done by using that F* is an
isomorphism.

The class W: Let M; € W. Then M, is in the same class, too. All subclasses can be eliminated by
using that F* is an isomorphism.

4. CONCLUSION

We observe that for two G, -morphic manifolds (M, @) and (M5, ¢,), if M; belongs to U, then
M, is in the same class too. We can easily see that being G,-morphic is an equivalence relation. Thus
M; € U iff M, € U. That is, the classes of G, structures are preserved under G,-morphisms. The
converse may not be true. That is, if there are two diffeomorphic manifolds which are in the same
class of G, structures, they need not to be G,-morphic. An example of two diffeomorphic manifolds
which are not G;morphic are the Aloff-Wallach spaces. These are spaces M, ;: = SU(3)/U(1), for
k # +1, where U(1)g; is the subgroup of SU(3) generated by the elements of the form
ediag(ikiLi(-k=0) Note that a diffeomorphism G: M; — M, between Riemannian manifolds (M;, g;)
and (M, g,) is called a homothety iff G*g, = cg, for some nonzero constant ¢ (O’Neill, 1983). It is
known that Mj ; admits two non-homothetic G,structures in W, (Cabrera, Monar and Swann, 1996)
and since these G,structures are not homothetic, they are not G,morphic. Hence, the classification of
manifolds with structure group Gjaccording to G,morphisms is finer than the classification of
Fernandez and Gray in (Fernandez and Gray, 1982).
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