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ABSTRACT

In this study, the maximum likelihood and Bayes estimators for the shape parameter of two-
parameter generalized exponential distribution are obtained based on the record values with the
number of trials following the record values (inter-record times) when the scale parameter is known.
By using a Monte Carlo simulation methods: (i) the maximum likelihood and Bayes estimators are
compared in terms of the estimated risk (ii) the estimators are compared with and without the inter-
record times are taken into consideration. Moreover, a real life data is used to illustrate the results
which were derived.
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REKOR DEGERLER VE ZAMANLARINA GORE GENELLESTIRILMIS USTEL
DAGILIM ICIN KLASIK VE BAYESCIi ANALIZ

0z

Bu ¢aligmada, iki parametreli genellestirilmis listel dagilimin bi¢gim parametresi i¢in en ¢ok ola-
bilirlik ve Bayes tahmin edicileri 6lcek parametresi bilindiginde rekor degerler ve deneme zamanlari
g6z Oniinde bulundurularak elde edilmistir. Monte Carlo simiilasyonu kullanilarak: (i) en ¢ok olabilir-
lik ve Bayes tahmin edicileri ortalama karesel hatalarina gore karsilastirildi, (ii) rekor degerlerin
deneme zamanlar1 dikkate alinarak ve alinmaksizin tahmin ediciler karsilastirildi. Ayrica, elde edilen
sonuglar1 6rnekle agiklamak i¢in gergek bir veri seti kullanildi.
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1. INTRODUCTION

The two-parameter generalized exponential (GE) distribution was introduced by Gupta and
Kundu (1999). They studied various properties of the model and observed those many of the prop-
erties are quite similar to those of the gamma family and the Weibull family. If a random variable
X is distributed two-parameter GE, denoted by GE(«x, 4), then its cumulative distribution function

(cdf) is

F(x;a,A)=(1-e"")", x>0, (D)
with the corresponding probability distribution function (pdf) as

f(xa,A)=ale > (1-e?)* " x>0, ()

where @ >0 and A >0 are the shape and scale parameters, respectively. There are vast literatures
when the underlying distribution is GE. For example, the single and product moments of order statis-
tics and the best linear unbiased estimators of the location and scale parameters with known shape
parameter were derived by Raqab and Ahsanullah (2001). The exact expressions for single and
product moments of record statistics and the best linear unbiased estimators of the location and scale
parameters were also obtained by Ragab (2002). The Bayes and empirical Bayes estimators for the
shape parameter based on record values and prediction bounds for future lower record values were
obtained by Jaheen (2004). The estimation of stress-strength reliability was derived by Kundu and
Gupta (2005) when the underlying distributions are independent and have the same scale parameters.
The Bayesian estimation and prediction of the parameters based on complete and type II censored
samples were considered by Ragab and Madi (2005). The Bayesian estimation and prediction of the
parameters based on lower record values were discussed by Madi and Raqgab (2007). The Bayes es-
timates of the parameters were obtained by Kundu and Gupta (2008). The minimum variance unbiased
estimator, the maximum likelihood estimator and the Bayesian estimator for the shape parameter
based on k-th lower record values were obtained by Malinowska and Szynal (2009).

Let X, X,,... be a sequence of continuous random variables. An observation X is called an

upper record value if it exceeds that of than all previous observation. By definition, X, is an upper
record value. We can give an analogous definition for the lower record values. A record data may be
represented by (R,K) =(R,,K,R,,K,,...,R ,K_ ), where R is the i th record value, meaning new
maximum (or minimum), and K, is the number trials following the observation of R, that are needed

to obtain a new record value R,,,, which is called inter-record times. There are two sampling schemes

for generating such a record-breaking data known as inverse sampling scheme and random sampling
scheme. Under the inverse sampling scheme, units are taken sequentially and sampling is terminated
when the M th maximum is observed. In this case, the total number of units sampled is a random

number and K is defined to be one for convenience. Under the random sampling scheme, a ran-

dom sample X, X,,..., X is examined sequentially and successive maximum values are record-

n

ed. In this setting, we have N (”), the number of records obtained, to be random and given a value of
m

m, > K =n.
i=1

In recent years there has been a growing interest in the study of inference problems associated
with record values. For example, the Bayesian estimation for the two parameters of some life distribu-
tions, including exponential, Weibull, Pareto and Burr Type XII, based on upper record values were
considered by Ahmadi and Doostparast (2006).
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The Bayes estimates for the two parameters of Burr Type XII distribution on the basis of a linear
exponential loss function were derived by Nadar and Papadopoulos (2011). Statistical analysis of
record values from the Kumaraswamy distribution was considered by Nadar et al. (2013).

When the underlying distribution is exponential, estimation of the mean parameter was obtained
by Sameniego and Whitaker (1986) under random sampling scheme and inverse sampling scheme.
Non-Bayesian and Bayesian estimates were derived for the two parameters of the exponential distribu-
tion based on record values and their corresponding inter-record times under the inverse sampling
scheme by Doostparast (2009). The optimal random sampling plan and associated cost analysis for
exponential distribution were studied by Doostparast and Balakrishnan (2010). When the underlying
distribution is lognormal, non-Bayesian and Bayesian estimates of the parameters were obtained by
Doostparast et. al. (2012).

In the literature, the maximum likelihood and Bayes estimates for one and two parameters GE dis-
tribution based on the lower record values were derived by Jaheen (2004) and Madi and Ragab (2007),
respectively. In this paper, we obtained the shape parameter estimations for the GE distribution using
upper record values with their corresponding inter-record times under the classical and Bayesian
frameworks when the scale parameter is known. For the sake of comparison we also obtain the esti-
mates based on the upper record values without considering inter-record times. Finally, Monte Carlo
simulations are performed to observe the effect of the inter-record times in estimations.

The paper is organized as follows. In Section 2, we derive the maximum likelihood estimation
(MLE) of the parameters under the inverse sampling scheme. In Section 3, when the scale parameter
A is known, we obtain the Bayesian estimations of the shape parameter & under the symmetric and
asymmetric loss functions. In Section 4, a computer simulation study is done to compare the different
estimators discussed in early sections and the results are reported. Moreover, real data is used to illus-
trate the findings. Finally, we conclude the paper in Section 5.

2. CLASSICAL ESTIMATION

In this section, we consider the parameter estimation of GE distribution under inverse sampling
scheme.

2.1. Inverse Sampling Scheme

Let X,, X,,... be independent identical distributed (i.i.d.) random variables, each drawn from a
population with cdf F(.) and pdf f(.). Then the likelihood function associated with the sequence
(R,.K,R,,K,,....,R,,,K,,) is given by Hofmann and Nagaraja (2003)

Lk =TT FO{FmF " 1, ) 3)

where I, =—o0, kK =1 and |,(X) is the indicator function of the set A. From the equations (1)- (3),
we have

L(a, A;r,K)=a"A" exp{—zZri +ay k, ln(l—e‘“‘)—ZIn(l—e‘“‘)}, —0< I <...<l (4)
i=1 1=1 i=1

and so the log-likelihood function is

(@, A;r,k)=mina+minA-2>_r+a) kin(l—e )= In(1-e"). (5)
i=1

i=1 1=1
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The maximum likelihood estimates (MLEs) of & and A are given by

G=- ©)

> K, In(1-e™
1=1

and A is the solution of the following non-linear equation
m

m <<
_—— .—1:_
A" Zl(le‘“ =0

Therefore, A can be obtained as the solution of the non-linear equation of the form h(41) = 4, where

-1

m m k
h(4)=m 21— Z re m . )
1= = Zkln(l e ™)

Since A is a fixed point solution of the non-linear equation (7), its value can be obtained using an it-
erative scheme as like:

h(ﬂ'(j)) = i(j+1): 3

-2

(j+n| 18

is the j th iterate of A . The iteration procedure should be stopped when ‘i

where A ()

(1)
sufficiently small.

2.2. MLE Estimation When A is Known

In this case, we assume that A =1 without loss of generality. Then, we have from (4)
m m m
L(a,r,k)=a™ exp{—Zl’i +0{Z:kiln(1—e_ri )—Zln(l—e‘“ )}, —o<<...<TI,. 9)
i=1 1=1 i=1

~ m
It is clear that U is a complete sufficient statistic for & and the MLE of o is a,, :U where
m
U= —z K, In(1—e™®). The distribution of &,, can be obtained by using the moment generating
1=1
1
function of U , which is given as M (t) =———, a >t. Therefore, U is distributed Gamma with
-t
a
parameters (M, ) with the pdf

am
f(u)= u™'e™™ u>0.

'(m)

114



Bilim ve Teknoloji Dergisi - B - Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

. . o . m-1
and an unbiased estimator of « is given by ¢, = o

It is easily seen that E(a,,) =

Moreover, du is a best unbiased estimator from Lehmann-Scheffé Theorem.

3. BAYESIAN ESTIMATION

Bayesian approach has a number of advantages over the conventional frequentist approach. Bayes
theorem is the only consistent way to modify our beliefs about the parameters given the data that actu-
ally occurred. The beliefs about the parameter are called prior distribution. Any prior information
about the parameters is considerably useful. We need to some prior distributions of the unknown pa-
rameters for the Bayesian inference. In this section, we consider the Bayes estimate of the shape pa-
rameter & when the scale parameter A is known.

We assume that & has a Gamma prior with parameters (,,0,) and its pdf denoted by 7 ().
Then, the posterior density function of ¢ is

L(a;r,K)z() _ (b, +U)™* oMl

w(a|r,k)=— I )
m+a
j- L(a;r,K)z(a)da !
0
that is a|r,K is distributed Gamma with parameters (M+a,,b, +U). We know that the Bayes esti-

I,k . Therefore,

mate of & under squared error (SE) loss function, &g , is the mean of the &

. m+a,
Ope = . 10
" +U (10)

It is well known that the use of symmetric loss functions may be inappropriate in many circum-
stances, particularly when positive and negative errors have different consequences. The use of asym-
metrical loss function, which associates greater importance to overestimation or underestimation, can
be considered for the estimation of the parameter. A number of asymmetric loss functions are pro-
posed for use, among these, one of the most popular asymmetric loss functions is linear-exponential
loss function (LINEX), was introduced by Varian (1975). The LINEX loss function can be expressed
as

L(8,0)=e"""" —v(6-0)-1,v=0,

where O is an estimator of . The sign and magnitude of V represents the direction and degree of
asymmetry, respectively. If V> 0, the overestimation is more serious than underestimation, and vice
versa. For V close to zero, the LINEX loss is approximately SE loss and almost symmetric. It is easily

seen that the value of 5(X) that minimizes EH‘ X [L(@, o(X ))] is

Sy = —%m(ng @),

provided Ea\x (e-ve) exists and is finite. Here E ., (.) denotes the expected value with respect to the

60X
posterior density function € given X .
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Therefore, the Bayes estimate of & under the LINEX loss function, & gL » for our case
is given by
1 1. % m+a Vv
dy =—1InE e )y=——In|e"z(a]|r,k)da = Lln| 1+ . (11)
=y 10 By (&™) == Infe (@ lode = [ b1+UJ

r.k is
distributed Gamma with parameters (M,U). Hence, the Bayes estimates of & under the SE and
LINEX loss functions are obtained as

If we use the Jeffrey's non-informative prior, that is 7(a) =1/« , then we have that &

~ m . m Vv
aBS’O :U, aBL,O :VIH[I+UJ . (12)

4. SIMULATION STUDY

In this section, we present the analysis of two data sets. The first data set is artificial and the sec-
ond is a real life one.

4.1 Simulated Data

In order to compare the different estimators, Monte Carlo simulations are performed by using dif-
ferent sample sizes and different priors. All the programs are written in Matlab 2010a. All the results

are based on 1000 replications. The estimated risk (ER) of &, when 0 is estimated by 6, is given by
N

1 A
ER(O) :WZ(@i —6.)* under the SE loss function. Moreover, the estimated risk of & under the

i=1

N A A
LINEX loss function is given by. ER(8) = ﬁz (ev('g‘“g') -Vv(6, -6)—- l).

i=1

In the Table 1, we consider the case where A =1 and « has Gamma prior with parameters
(a,,b)=(10,5) and (a,,b,) =(16,6). When the estimates obtained without taking inter-record times

into consideration, the results are given in Table 2 and is denoted by . The ML and Bayesian esti-
mates for SE and LINEX loss functions are listed in both Tables 1 and 2.

In Tables 1 and 2, it is observed that as the sample size increases the estimated risk of the esti-
mates generally decrease. The ERs of the MLEs are greatest among all estimators. Moreover, the ERs
of the Bayes estimators under the SE loss function are smaller than the MLEs, as expected. Further-

more, it is observed that the ERs for estimates of « are smaller than that of ¢ . It is quite natural to
see such a result when more information is available. As a result, the simulation illustrates that consid-
ering inter-record times is increasing the accuracy and the precision of the estimates.
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Table 1. Estimations of « and ERs when 4 =1 by upper record values with considering inter-record

times.
(@.,b) | m | & a,, a, Qs A,
v |-2 -1 | 2
(10,5) | 3 | 1.9931 | 3.0195 | 2.0130 | 2.0020 2.4069 | 2.1788 | 1.8595 | 1.7413
8.0356 | 3.1027 | 0.3329 0.8988 | 0.1918 | 0.1468 | 0.5235
5 2.5858 | 2.0686 | 2.0096 2.3552 | 2.1633 | 1.8826 | 1.7751
3.1378 | 1.7632 | 0.2881 0.7410 | 0.1626 | 0.1288 | 0.4627
8 2.2811 | 1.9960 | 1.9992 2.2762 | 2.1251 | 1.8920 | 1.7991
0.9970 | 0.6900 | 0.2341 0.5551 | 0.1266 | 0.1088 | 0.4052
10 2.1585 | 1.9427 | 1.9752 2.2148 | 2.0853 | 1.8798 | 1.7961
0.6242 | 0.4840 | 0.2341 0.5551 | 0.1266 | 0.1088 | 0.4052
(16,6) | 3 |2.6295 | 4.1175 | 2.7450 | 2.6621 3.1303 | 2.8704 | 2.4900 | 2.3447
43.0376 | 18.0657 | 0.4004 0.9879 | 0.2212 | 0.1840 | 0.6852
5 3.2998 | 2.6398 | 2.6457 3.0575 | 2.8312 | 2.4898 | 2.3562
5.4854 | 3.2035 | 0.3545 0.9297 | 0.1967 | 0.1632 | 0.6062
8 3.0307 | 2.6519 | 2.6505 3.0054 | 2.8126 | 2.5115 | 2.3905
2.0975 | 1.4729 | 0.3005 0.7477 | 0.1653 | 0.1395 | 0.5239
10 2.8375 | 2.5538 | 2.6272 2.9449 | 2.7735 | 2.5001 | 2.3883
1.0057 | 0.7888 | 0.2870 0.7147 | 0.1581 | 0.1337 | 0.5062

The first and second rows represent the average estimates and estimated risks.

Table 2. Estimations of « and ERs when 4 =1 by upper record values without inter-record times.

(@.h) |m|a v | % Ogy
v |2 -1 1 2

(10,5) | 3 [1.9931 | 3.9281 | 2.0868 2.1171 | 2.1645 | 1.4116 | 1.4591
36.1005 | 0.3712 1.4297 | 0.2126 | 0.2374 | 0.6736
5 3.8867 | 2.0940 2.1248 | 2.1722 | 1.4165 | 1.4639
27.5305 | 0.3704 1.3789 | 0.2108 | 0.2362 | 0.6739
8 3.7863 | 2.0899 2.1205 | 2.1679 | 1.4138 | 1.4612
24.7304 | 0.3716 1.4819 | 0.2165 | 0.2364 | 0.6720
10 3.5952 |2.0702 2.0995 | 2.1469 | 1.4009 | 1.4483
19.2838 | 0.3547 1.4428 | 0.2072 | 0.2380 | 0.6711

(16,6) | 3 [2.6295|4.9898 | 2.8882 2.8628 | 2.9469 | 2.0031 | 2.0872

79.2675 | 0.4908 1.5302 | 0.2443 | 0.2742 | 0.7696
5 5.1286 | 2.8831 2.8576 | 2.9416 | 1.9996 | 2.0837
59.4947 | 0.4906 1.5184 | 0.2436 | 0.2756 | 0.7717
8 5.1273 | 2.8875 2.8621 | 2.9462 | 2.0027 | 2.0868
50.1313 | 0.4862 1.5559 | 0.2425 | 0.2733 | 0.7662
10 4.6478 | 2.8857 2.8603 | 2.9443 | 2.0015 | 2.0855
35.9188 | 0.4888 1.7374 1 0.2471 | 0.2738 | 0.7623

The first and second rows represent the average estimates and estimated risks.
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4.2 Real Life Data

In this example we present a data analysis of the amount of annual rainfall (in inches) during
Januuary recorded at Los Angeles Civic Center from 1900 to 2006 (see the website of Los Angeles
Almanac: www.laalmanac.com/weather/we08aa.htm). The upper record values of this data and their
corresponding inter-record times are given in Table 3.

Table 3. Record and inter-record times data arising from annual rainfall data m =8

i 1 2 3 4 5 6 7 8
R |2.49|257|385(7.02|7.27|10.35|13.3 | 14.94
K, |4 1 1 2 5 2 53 1

The sample is tested if the underlying distribution is GE(&,0.25) by using the Kolmogorov-

Smirnov (K-S) test. We compute the K-S distance between the empirical distribution and the fitted
distribution functions when the parameters are obtained by MLE and Bayesian methods. All results
about this data are presented in Table 4. It is observed that the GE distribution when A =0.25 pro-
vides an adequate fit for data. The goodness of fit test strongly suggest to use the Bayesian estimates
for the parameter « , because of bigger p values.

Table 4. The estimates of &, Kolmogorov-Smirnov distances and the corresponding p -values between,
the empirical and the fitted distribution function when A =0.25, a, =2.9879, b, = 0.3868.

Methods Estimates | K-S distance | p-value
MLE 1.0400 0.4494 p = 0.05
Bayes (SEL) 1.3600 0.3975 0.1<p<0.2
Bayes(LINEX,v=-2) | 1.5626 0.3683 0.1<p<0.2
Bayes(LINEX,v=-1) | 1.4518 0.3841 0.1<p<0.2
Bayes(LINEX,v=1) | 1.2822 0.4089 0.1<p<0.2
Bayes(LINEX,v=2) | 1.2151 0.4190 0.05<p<0.1
5. CONCLUSION

In this study, we compared the different estimations for the shape parameter when the scale pa-
rameter is known for the two-parameter generalized exponential distribution. It is observed that the
Bayesian estimators have a smaller estimated risk and this result does not change for the different val-
ues of the prior parameters in Monte Carlo simulation. Moreover, the simulation illustrates why the
inter-record times should be considered. For the real life data prior parameters can be choosen by
method of moments. An application of goodness of fit test on annual rainfall data suggests to use
Bayesian estimations of the parameter « .

118



Bilim ve Teknoloji Dergisi - B - Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

REFERENCES

Ahmadi, J. and Doostparast, M. (2006). Bayesian Estimation and Prediction for some Life Distribu-
tions Based on Record Values. Statistical Papers 47 (3): 373-392.

Doostparast, M. (2009). A Note on Estimation Based on Record Data. Metrika, 69: 69-80.

Doostparast, M. and Balakrishnan, N. (2010). Optimal Sample Size for Record Data and Associated
Cost Analysis for Exponential Distribution. Journal of Statistical Computation and Simulation,
80 (12): 1389-1401.

Doostparast, M., Deepak, S. and Zangoie, A. (2012). Estimation with The Lognormal Distribution on
The Basis of Records. Journal of Statistical Computation and Simulation,
DOI:10.1080/00949655.2012.691973.

Gupta, R. D. and Kundu, D. (1999). Generalized Exponential Distributions. Austral. New Zealand
J.Statistics, 41: 173-188.

Hofmann, G. and Nagaraja, H.N. (2003). Fisher Information in Record Data. Metrika, 57: 177-193.

Jaheen, Z.F. (2004). Empirical Bayes Inference for Generalized Exponential Distribution Based on
Records. Communications in Statistics-Theory and Methods, 33(8): 1851-1861.

Kundu, D. and Gupta, R.D. (2005). Estimation of P(Y<X) for Generalized Exponential Distribution.
Metrika, 61: 291-308.

Kundu, D. and Gupta, R.D. (2008). Generalized Exponential Distribution: Bayesian Estimations.
Computational Statistics and Data Analysis, 52: 1873-1883.

Madi, M.T. and Raqab, M.Z. (2007). Bayesian Prediction of Rainfall Records using The Generalized
Exponential Distribution. Environmetrics, 18: 541-549.

Malinowska, I. and Szynal, D. (2009). Inference and Prediction for A Generalized Exponential Distri-
bution Based on The k-Th Lower Records. International Journal of Pure and Applied Mathe-
matics, 52(2): 211-227.

Nadar, M. and Papadopoulos, A. (2011). Bayesian Analysis for The Burr Type XII Distribution Based
on Record Values. Statistica, 71(4): 421-435.

Nadar, M., Papadopoulos, A. and Kizilaslan, F. (2013). Statistical Analysis for Kumaraswamy's Dis-
tribution Based on Record Data. Statistical Papers, 54: 355-369.

Raqab, M. Z., Ahsanullah, M. (2001). Estimation of The Location and Scale Parameters of General-
ized Exponential Distribution Based on Record Statistics. Journal of Statistical Computation
and Simulation, 69(2),109-124.

Raqab, M. Z. (2002). Inference for Generalized Exponential Distribution Based on Record Statistics.
Journal of Statistical Planning and Inference, 104, 339-350.

Ragab, M.Z. and Madi, M.T. (2005). Bayesian Inference for The Generalized Exponential Distribu-
tion. Journal of Statistical Computation and Simulation, 75 (10): 841-852.

119



Bilim ve Teknoloji Dergisi - B - Teorik Bilimler 2 (2)
Journal of Science and Technology - B- Theoretical Sciences 2 (2)

Samaniego, F.J. and Whitaker, L.R. (1986). On Estimating Population Characteristics from Record-
Breaking Observations. 1. Parametric Results. Naval Research Logistics Quarterly, Vol. 33,
531-543.

Varian, H. R. (1975). A Bayesian Approach to Real Estate Assessment. In: Finberg SE, Zellner A.(eds)

Studies in Bayesian Econometrics and Statistics in Honor of Leonard J. Savege. North Holland,
Amesterdam : 195.208.

120



