
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 59

Algo-AR: Development of an Augmented Reality-

Supported Tangible Programming Tool to Improve

Algorithmic Thinking Skills
Araştırma Makalesi/Research Article

Zeynep ÇİPİLOĞLU YILDIZ
1

*, Süleyman DOĞAN
2

1Bilgisayar Mühendisliği, Manisa Celal Bayar Üniversitesi, Manisa, Türkiye,
2 Bilgisayar Mühendisliği, Manisa Celal Bayar Üniversitesi, Manisa, Türkiye

zeynep.cipiloglu@cbu.edu.tr, suleyman@codecosoft.com

(Geliş/Received:08.12.2023; Kabul/Accepted:02.02.2024)

DOI: 10.17671/gazibtd.1398781

Abstract— The main purpose of this study is to develop an educational tool to help children acquire algorithmic thinking

skills at an early age while having fun. The methodology combines modern technologies and approaches such as

augmented reality (AR), gamification, and tangible user interfaces. In this application, the coding components consist of

specially designed tangible command blocks in the form of jigsaw puzzle pieces. The application contains a 3D multi-

level game environment, and the user is expected to control the game character by constructing an algorithm with physical

command blocks. The constructed algorithm is scanned using a mobile AR application and converted into code that

controls the game environment. The major design considerations during the development of this application were

simplicity and accessibility. All design decisions were delineated extensively in the paper. In conclusion, an augmented

reality-based gamified tangible programming kit is proposed to improve children’s algorithmic thinking skills at an early

age. The application requires only a smartphone and printable command blocks. Thus, an inexpensive, accessible, and

entertaining educational tool is developed.

Keywords— algorithmic thinking, augmented reality (AR), gamification, heuristic evaluation, STEM, tangible user

interfaces (TUIs)

Algo-AR: Algoritmik Düşünme Becerilerinin Geliştirilmesi

İçin Artırılmış Gerçeklik Destekli bir Somut Programlama

Aracı Geliştirilmesi

Özet— Bu çalışmanın temel amacı, çocukların eğlenirken algoritmik düşünme becerilerini erken yaşta kazanmalarına

yardımcı olacak bir eğitim aracı geliştirmektir. Metodoloji, artırılmış gerçeklik (AG), oyunlaştırma ve somut kullanıcı

arayüzleri gibi modern teknolojileri ve yaklaşımları birleştirmektedir. Bu uygulamada kodlama bileşenleri, yapboz

parçaları şeklinde özel olarak tasarlanmış fiziksel komut bloklarından oluşmaktadır. Uygulama, çeşitli seviyeleri olan üç

boyutlu bir oyun ortamı içermekte ve kullanıcının fiziksel komut blokları ile bir algoritma oluşturarak oyun karakterini

kontrol etmesi beklenmektedir. Oluşturulan algoritma bir mobil artırılmış gerçeklik uygulaması ile taranmakta ve oyun

ortamını kontrol eden koda dönüştürülmektedir. Bu uygulamanın geliştirilmesi sırasında tasarımda dikkat edilen başlıca

hususlar basitlik ve erişilebilirlik olmuştur. Tüm tasarım kararları makalede kapsamlı bir şekilde açıklanmıştır. Sonuç

olarak, erken yaştaki çocukların algoritmik becerilerini geliştirmek için artırılmış gerçeklik destekli oyunlaştırılmış somut

bir programlama aracı önerilmiştir. Uygulama yalnızca bir akıllı telefona ve yazdırılabilir komut bloklarına ihtiyaç

duymaktadır. Böylece ucuz, erişilebilir ve eğlenceli bir eğitim aracı geliştirilmiştir.

Anahtar Kelimeler— algoritmik düşünme, artırılmış gerçeklik (AG), oyunlaştırma, sezgisel değerlendirme, STEM,

somut kullanıcı arayüzleri

https://orcid.org/0000-0003-4129-591X
mailto:zeynep.cipiloglu@cbu.edu.tr
mailto:suleyman@
https://orcid.org/0009-0008-0587-2525

60 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

1. INTRODUCTION

We live in an era of digital transformation where software

development and programming skills are essential.

Computational thinking (CT), algorithm design,

algorithmic thinking and coding skills are extremely

important for today and the future. Acquiring these skills

becomes more difficult with age. Therefore, activities that

develop computational and algorithmic thinking skills

must be embraced in preschool and primary education

curricula.

Many different approaches and tools have been developed

to improve these skills. These approaches can be broadly

divided into two categories “plugged” and “unplugged”, in

terms of whether they rely on computers. The plugged

category includes traditional text-based or visual

programming tools. There are also unplugged approaches,

which are free of computers. In these applications,

problem-solving activities are carried out using real-world

objects such as paper and pencil.

Although text-based programming languages and tools are

traditionally dominant for programming, visual

programming languages are also widely used, especially

by children, to gain programming/coding skills. In visual

programming languages and tools, programming elements

are represented by graphical components rather than

textual commands, allowing users to control the program

flow by directly manipulating these elements. The most

common visual programming tools are Scratch [1], [2],

Alice [3], and Blockly [4]. Visual programming languages

make the programming process more understandable,

concrete and fun because they consist of visual elements

and work with the familiar drag-and-drop method.

Nevertheless, like traditional programming languages, they

still require a computer during the programming phase.

However, overuse of computers is known to cause

problems such as screen addiction for children.

Alternatively, tangible programming languages and tools

have been developed. Such languages allow users to

manipulate various physical objects to control virtual

objects or physical robots [5]. They can be referred as

hybrid programming environments. In many applications

of tangible programming such as Algoblocks [6], E-Block

[7], and LEGO Mindstorms [8], the control objects contain

some electronic and/or mechanical components, which

increases the cost and limits the accessibility. Durable and

low-cost solutions have also been proposed for the use of

tangible programming languages in the classroom

environment [9], [10]. These studies generally use low-

level image processing techniques, which can lead to

computational costs and recognition errors, or some

robotic components.

The main objective of this work is to develop simple,

comprehensible, accessible, and enjoyable material that

will help children acquire algorithmic thinking and

programming skills. We also avoid a fully plugged

approach, as the target audience is preschool children. To

achieve this, the following contemporary methodologies

underpin our approach:

 Gamification: It is known that one of the best teaching

methods for young children is the gamification

technique [11], [12]. The aim of employing

gamification is to make the learning process more fun,

instructive, and memorable.

 Tangible programming: A key concern for children’s

physical and mental health is the overuse of

computers. Parents generally limit their children's

screen time. The adoption of a tangible programming

approach makes the process almost “unplugged”.

 Augmented reality (AR): The benefits of using AR

technology are manifold. First, it requires only a

smartphone or tablet, making it a low-cost and

accessible kit. Second, it enables a flexible tool that is

content-renewable, as virtual objects can be placed in

the real world. Thirdly, it contributes to entertainment

and engagement [13]. Finally, it provides a robust and

computationally inexpensive method for detecting

code blocks, compared to using low-level image

processing operations.

In the proposed application, a maze-like game environment

is superimposed on the user's real world using AR

technology, and the game character is controlled by the

player's algorithm constructed using tangible command

blocks.

A common problem with tangible AR applications is that

there are no well-defined design standards as there are for

traditional desktop UIs. Therefore, we take a design-centric

view throughout the paper. For the benefit of researchers

in the field, the design trade-offs, implementation

decisions, heuristic evaluation results, limitations and

possible improvements have been detailed.

The rest of the paper is organized as follows: The next

section provides a summary of the related studies in the

literature. The third section explains the tools and

methodologies used to develop the proposed application.

In the fourth section, the results of the heuristic evaluation

are explained. Comparison of our approach to other similar

approaches is performed. The limitations and future work

are then described. The last section summarizes and

concludes the study.

2. RELATED WORK

The use of AR technology in education is known to make

the learning process more enjoyable and memorable [14],

[15]. AR technology has been used effectively in many

different fields of education [14]–[17]. The use of AR

technology for teaching algorithms and programming is

relatively new. Experimental studies have shown that AR

technology significantly contributes to learning and

entertainment factors [13], [18]. Today, tangible

programming tools have begun to be combined with AR

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 61

technology [19]. For recent literature reviews about

different applications of AR, serious games, and tangible

interfaces in education, see the papers [20]–[22].

AR Scratch [23] provides features that extend the Scratch

programming language to enable the development of

simple AR applications. In the ARMaze [24] application,

the visual codes on the cube-shaped programming blocks

are recognized by an image processing library and the

interpreted commands move the character around a maze

using AR technology. Similarly, there are applications

such as HyperCubes [25] and CodeCubes [18] where

programming commands are represented by cubes.

Another example of tangible AR is the ARQuest [26]

application, which enables team collaboration using a

client-server architecture. In this application, users can

design the game environment and present it to other teams.

This application appeals to the 9-10 age group and does not

contain advanced programming components such as loops

and conditions.

The Code Bits [27] application consists of code blocks that

are designed to be printed on paper to be affordable and

accessible, as in our study. In the CodeBits application,

there are no commands such as loops and conditions, and

the commands are scanned and transferred to the game

environment one at a time. Although this is good for

debugging purposes, it can limit usability.

Command blocks in the Code Notes [28] application are in

the form of cards and consist of English phrases such as

“Turn position to the left, draw a tree” instead of visual

codes. Text recognition techniques are used to interpret the

commands in the cards. It is stated that the application is

mainly aimed at the 12-13 age group. Similarly, the Kart-

ON [29] application aims to provide an affordable,

extensible, and expressive programming environment

using paper programming and relying on text recognition.

The literature review shows that although there are studies

on the use of tangible programming tools to teach

algorithmic thinking and coding skills to children, these

studies have not yet reached saturation point. Most of these

tools involve microcontrollers and mechanical components

and/or are paid for. This reduces accessibility due to cost.

At this point, combining AR technology with tangible

programming tools is an alternative. In these studies,

programming commands generally consist of blocks in the

form of cubes, and visual codes consist of abstract shapes,

as they aim to facilitate recognition by the artificial vision

system rather than user perception. In addition, current

studies generally fail to explain the rationale behind design

choices and provide limited insight for further research.

The key contributions of this study and the advantages of

the proposed solution can be summarized as follows:

 An affordable and simple educational tool has been

developed to improve children's algorithmic thinking

skills.

 The primary user group is 5-10 year old children. The

application and command blocks have been designed

with the target user group in mind.

 The proposed solution offers a compromise between

plugged and unplugged approaches to algorithmic

thinking activities by combining AR and tangible

programming.

 The tool contains no electronic or mechanical

components. This makes it cheap and safe.

 The solution does not rely on low-level image

processing techniques that can degrade the system's

recognition accuracy and interactivity.

 It has a broader command gamut compared to similar

tools, including conditions and loops.

 The game environment is presented in 3D and is

attached to the real world using AR technology to

enhance realism and engagement.

 The results of the usability analysis, design trade-offs,

and implementation decisions are explained to help

other researchers and designers.

3. METHODOLOGY

This section first describes the use of the proposed kit. It

then summarizes the tools and techniques used to develop

the proposed system. This is followed by the details of the

rationale behind the design and implementation choices,

together with possible design trade-offs.

3.1. Overview

In the proposed application, there is a 3D game

environment, such as a maze, and the game character must

be controlled to move to the target location. The steps

performed by the user are shown in Figure 1, and an

example view during gameplay is shown in Figure 2.

Figure 1. Steps of the usage of the application

Figure 2. A sample view during gameplay

62 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

First, the player inspects the problem on the virtual grid

that is displayed on top of the physical gaming platform

using AR technology. The player then places specially

designed command blocks as physical jigsaw puzzle pieces

to create the required algorithm. These physical command

blocks are scanned and converted into code using the

proposed mobile AR application, and the game character

moves in the digital environment according to these codes.

With the help of AR technology, the playground is

displayed in the user’s physical environment, increasing

fun, motivation, and engagement.

3.2. Command Blocks

The first step was to determine the commands that would

be used to control the character's movements. The most

necessary commands have been implemented for this

prototype, but it is planned to increase the variety of

commands in future developments. The commands in the

current prototype are: Start (Başlangıç), End (bitiş), Move

n steps (n adım ileri), Turn right/left (sağa/sola dön),

Repeat n times (n defa tekrarla), and If (eğer). Therefore,

the current prototype involves the most important concepts

of programming, including loops and conditions. The users

organize the command blocks to build their algorithms.

The algorithms must be placed between the start and end

commands. The same background colour is used for the

complementary commands (i.e. start-end). The visual

codes to be used for the reocgnition of the blocks were

generated using the VuMark tool1. These command blocks

are shown in Figure 3 and printable command blocks are

available in the Appendix.

Figure 3. Command blocks

3.3. Mobile AR Application

A mobile AR application called Algo-AR was developed

using the Unity
2
 game engine and the Vuforia SDK

3
. The

playground was designed as a 3D grid-like structure in

which some cells may have obstacles. The game has

several levels of increasing difficulty. Using command

blocks, the player is expected to create an algorithm that

will transport the game character from its current location

to the target location without hitting obstacles. The

1 https://library.vuforia.com/objects/vumarks
2 https://unity.com/

installation file of the application and sample videos on

how to use the application can be found in the Appendix.

Figure 4 shows an example of the process of converting

command blocks into game control. After the users

physically create the necessary algorithm using the

command blocks, they scan this algorithm with the camera

through the Algo-AR application. For the recognition of

the command blocks, we use marker-based AR technology.

In marker-based AR, where the digital content will be

placed is pre-defined to the system with a marker. For this

purpose, the image targets of the command blocks and the

corresponding text codes were matched using the Vuforia

SDK. Target images are recognized by the detector of the

Vuforia platform. The recognized text codes corresponding

to the image targets are converted by the application into

C# functions that provide the necessary parameters for the

character's movement, and these functions are executed in

the game by the Unity game engine.

Figure 4. The process of converting the command blocks

to game control

Figure 5. Pseudocode describing the game loop process.

3 https://developer.vuforia.com/

https://library.vuforia.com/objects/vumarks
https://unity.com/
https://developer.vuforia.com/

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 63

In Figure 5, a description of the game process is given in a

pseudocode format. When the game starts, the player

selects the level, inspects the puzzle, constructs the

algorithm using the blocks then scans the algorithm with

the camera. Detection of the puzzle pieces by the system

and the construction of the command list from the detected

pieces is also given in the second part (Function

ConstructAlgorithm) of the pseudocode. The returned

algorithm is executed on the game board and the resulting

animation is displayed.

3.4. Design Rationale

This section explains critical implementation issues and

major design goals that were considered in the

development of the current prototype.

1) Cost: The proposed tool requires only a smartphone or

a tablet and command blocks that can be printed on a

piece of paper. This makes it an inexpensive kit.

2) Accessibility: As a direct consequence of the low cost,

this tool is easily accessible to people on low incomes.

In addition, since visual codes are used, illiterate

children can also use this material. Although the

primary audience of the application is children, it is

suitable for users of all ages who are new to

algorithmic skills.

3) Durability: The proposed tool does not require

complex and fragile mechanical or electrical

components as many popular tangible programming

tools do. Thus, there is no problem with the breakdown

of these components. In the worst-case scenario, if the

printed command blocks are torn, they can be

reprinted. It is also possible to use durable materials

such as wood or plastic for the command blocks.

Although this will increase the cost, it will enhance the

overall user experience.

4) Safety: As the target user group is children, special

attention must be paid to the safety of the material. As

mentioned above, the kit does not contain any

electrical components, so it is quite safe to use.

5) Engagement: Fun is an important factor in increasing

people's motivation and learning rate. The more

people feel involved in the application, the more they

are motivated to learn. To increase fun and motivation,

the application is designed as a game with levels of

increasing difficulty. Additionally, the game

environment and the characters are designed in 3D,

which also contributes to engagement. Nevertheless,

more visual/audio effects and game levels are required

to raise the fun factor of the game. In other respects,

the usage of the application requires a focus switch

between physical command blocks and the virtual

content on the screen, which may damage

engagement.

6) Unplugged usage: Most similar applications aimed at

teaching children to program or design algorithms

require coding with a computer or mobile phone. Such

applications can be referred to as “plugged-in” tools.

However, social/mental/physiological problems or

digital addiction may arise if too much time is spent

with digital devices, especially at a young age.

Completely “unplugged” tools are also available to

enrich computational thinking without computers

[30], [31]. We offer a compromise between plugged

and unplugged tools by combining AR and tangible

programming. Since the algorithm construction is

done using physical command blocks, the plugged

usage time is very short. When the game environment

is projected on a shared display, parents or teachers

can control the application with their smartphones.

This can be considered unplugged use for children.

This allows for cooperation as well as competition.

Therefore, depending on the age of the users, the usage

process can be adjusted as plugged or unplugged. This

is another flexibility of the proposed tool.

7) Design of the command blocks: An image target was

created to represent each command block. When

creating image targets, it is important to have different

images for different commands and unique details so

that the application can easily recognize the images.

However, completely abstract shapes such as QR

codes were avoided so as not to complicate children’s

perceptions. Instead, black-and-white image targets

were created using the VuMark tool to identify the

commands. Additional visual images were also added

for human perception. Although the image targets

uniquely identify the commands, text equivalents for

each command were also included in the command

blocks. Turkish was preferred as the text language for

the presentations, but in practice, no modification is

required to change the text language. For this reason,

command blocks can be used in any language, even

without text.

8) Accuracy and efficiency: Instead of training our

models with low-level image processing and computer

vision techniques, the marker-based AR method was

found to be suitable for recognising the command

blocks. This is because in this problem, unlike a

standard object recognition problem, the images to be

recognized are specified and fixed at the beginning. In

addition, due to the variable environmental conditions

in mobile environments and the real-time interactivity

requirement of the application, a robust solution with

low computational cost is needed. Therefore,

employing marker-based AR techniques was found to

be the most appropriate solution.

3.5. Design Trade-offs

In this section, we summarize the major trade-offs that we

encountered during the design and implementation of the

proposed tool. In some of these situations, we force the user

to meet a specific design goal, while some trade-offs are

flexible and left to the user’s control.

1) Cost/affordability vs. usability: Command blocks can

be printed on a piece of paper for cost-effectiveness,

64 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

but from a usability perspective it is easier to use other

firm but more expensive materials such as wood or

plastic. At this point, the application does not have a

restriction and the user has control over this choice.

Another issue related to this trade-off is the use of

mobile AR or AR glasses. While AR glasses allow for

hands-free use, they are not very accessible due to

their cost. For this reason, we have traded off cost

against usability in this question.

2) Cost/affordability vs. durability: As mentioned earlier,

the user can choose the material for the command

blocks to be printed. This can be a piece of paper (for

low cost) or 3D printed using other durable materials.

3) Error prevention (affordance) vs. usability: The

Jigsaw puzzle-like form of the command blocks caters

to affordance and hence error prevention. However,

this may limit usability somewhat when paper is the

material for the command blocks. The tool still works

even if the user cannot place the blocks correctly

concerning the interlocking mechanism. However, the

user is in control of the choice for this compromise and

may prefer to use a different material for a better user

experience.

4) Simplicity vs. expressiveness: A wider range of

commands, including other programming concepts,

would provide a more expressive tool. However, given

the age of the target audience, we preferred to keep it

simple and understandable. Similarly, the number of

command blocks in a particular algorithm is

deliberately limited to simplify comprehension and

avoid visual clutter on the screen. This was also

suggested by the usability experts who evaluated our

prototype.

5) Accessibility vs. expressiveness: Several alternatives

were considered for the design of the command

blocks. Firstly, a text-based approach was considered

to provide an expressive and extensible tool, but this

method was abandoned bearing in mind the illiterate

children and the method’s dependence on the text

language. The idea of assigning distinctive images to

command blocks was found to be more appropriate

and non-abstract visuals were determined for children.

6) Accuracy vs. usability: For the scanning process of the

algorithm, we contemplated three options: i) scanning

the whole algorithm and playing its result on the game

at once, ii) scanning and playing the blocks one by one

(the idea in [27]), or iii) scanning the blocks one by

one and playing the whole recognized algorithm at

once. Scanning the whole algorithm (option i) would

be more usable and intuitive, as it was also suggested

to us by a heuristic evaluator, but it requires more

computation and low-level image processing

operations. This could reduce the recognition accuracy

and efficiency. Therefore we preferred to scan the

blocks sequentially one at a time. Nevertheless, since

4
https://media.nngroup.com/media/articles/attachments/Heuristic_Eva
luation_Workbook_1_Fillable.pdf

the second option limits usability more than the last,

the current prototype supports only sequential

scanning and full replay (option iii). However, we plan

to evaluate these options from both usability and

efficiency perspectives and update the next prototype

of the application accordingly.

4. HEURISTIC EVALUATION

To assess the usability of the proposed system for the target

user group and to identify design problems at an early

stage, we carried out a heuristic evaluation process, which

is a usability testing method in which experts assess the

usability of the system against a set of pre-defined criteria.

It can be argued that heuristic evaluation is limited in the

sense that the evaluators are not part of the target audience.

However, it is a very powerful tool because it provides a

cost-effective way of detecting design problems early in

the development process.

4.1. Evaluation Methodology

Three usability experts independently assessed the

proposed application according to Nielsen’s usability

heuristics [32]. They benefitted from the Heuristic

Evaluation Workbook provided by Nielsen Norman

Group
4
. They are informed about the purpose and target

users of the application. In their evaluations, they were

asked to consider children aged 5-10, especially pre-

schoolers, as the target user group. The evaluators first

inspected the application freely, then they were shown the

main functionality and finally, they played the game levels

shown in Figure 6. They used command blocks printed on

paper but were also informed about the possibility of using

other materials.

https://media.nngroup.com/media/articles/attachments/Heuristic_Evaluation_Workbook_1_Fillable.pdf
https://media.nngroup.com/media/articles/attachments/Heuristic_Evaluation_Workbook_1_Fillable.pdf

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 65

Figure 6. Top – sample game levels, and bottom – their

solutions

4.2. Findings

The evaluators' findings are explained below according to

the predefined usability criteria. These findings are also

summarized in Table 1. This table lists the key strengths of

the tool and recommended improvements for each usability

criterion.

1) Visibility of system status (“The design should always

keep users informed about what is going on, through

appropriate feedback within a reasonable amount of

time.”)

When the application recognizes a command block, visual

and auditory feedback is presented to the user, and the

recognized algorithm is displayed online. In Figure 7, the

algorithm constructed by the player using physical

command blocks is shown on the left. On the right, the

recognized commands are displayed virtually as they are

scanned.

Figure 7. A screenshot from the gameplay, while scanning

the constructed algorithm

2) Match between the system and the real world (“The

system should resemble the experiences that users

already had. The design should speak the users'

language. Use words, phrases, and concepts familiar

to the user, rather than internal jargon. Follow real-

world conventions, making information appear in a

natural and logical order.”)

The command blocks are designed as interlocking jigsaw

puzzle pieces and are used based on the intuitive drag-and-

drop metaphor. This is consistent with real-life puzzle

games and popular visual programming languages. It also

prepares children for block-based programming tools,

which are generally the next level in the learning process.

The use of the same colour for the complementary

command blocks (i.e. start-end) is also a good choice.

Although the images on the command blocks generally

match universal visual codes such as arrows, play buttons,

numbers, etc., the visual code for the if command block is

somewhat ambiguous.

3) User control and freedom (“Users should be able to

reverse their action if done by mistake.”)

The application provides a visible "Sıfırla (Reset)" button

to reset the algorithm. The choice of red colour for this

button is considered appropriate as it is a dangerous

operation that requires attention. However, an Undo

operation should also be provided to allow users to reverse

their actions taken in error.

4) Consistency and standard (“Follow platform and

industry conventions. Similar system elements should

look similar.”)

AR interfaces and tangible user interfaces are relatively

new fields. As a result, there are no widely accepted

industry standards as there are for 2D interfaces. On the

other hand, the puzzle-like form of the command blocks is

consistent with common visual programming conventions.

5) Error prevention (“Either eliminate error-prone

conditions or check for them and present users with a

confirmation option before they commit to the

action.”)

Another advantage of the jigsaw puzzle form of the

command blocks is that it provides affordance and thus

prevents possible syntax errors. Furthermore, the feedback

(see item 1) made available to the user when a command

block is recognized by the application prevents potential

errors.

6) Recognition rather than recall (“Minimize the user's

memory load by making elements, actions, and

options visible. The user should not have to remember

information from one part of the interface to another.

Information required to use the design should be

visible or easily retrievable when needed.”)

The application is easy to learn because the command

blocks are designed like puzzle pieces that everyone is

familiar with from everyday life or common visual

programming languages. The simple design of the tool

contributes to learnability as well. Expressive and

memorable visual codes have generally been assigned to

the command blocks. Text codes are also helpful in

identifying the meaning of a block, but they are helpless

for illiterate children. The control buttons, “Başla (Start)”

and “Sıfırla (Reset)”, should also have familiar icons rather

than text, taking into account illiteracy. These buttons are

designed to be visible, but in the context of AR,

background and lighting conditions may affect visibility.

Similarly, the nature of AR requires switching focus

between real and virtual content, which can generate

additional cognitive load.

7) Flexibility and efficiency of use (“both new and

experienced users should be able to efficiently use the

system”)

The target user group consists of young children and the

application does not generally require shortcuts for

experienced users. On the other hand, the developed tool

66 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

offers some flexible options that users can customize

according to their needs. First, the user can print command

blocks on a piece of paper or any other material. Second,

the language of the expressions in the command blocks can

be changed or completely removed. Third, although the

command blocks were originally designed as puzzle

pieces, they can also be used flat, as it can be difficult to

use puzzle pieces when paper command blocks are

preferred.

One evaluator made the following suggestions in addition

to the common opinions listed above. The application was

designed for mobile AR, which requires holding the mobile

device. Adapting it for AR glasses is also suggested to

allow hands-free and comfortable use. Scanning the whole

algorithm at once could be more efficient and usable.

8) An aesthetic and minimalist design (“Interfaces should

not contain information that is irrelevant or rarely

needed.”)

The interface and the system have been designed in a fairly

simple and minimalist manner. However, the game grid

and the look and feel of the UI elements could be more

aesthetically pleasing. Limiting the overall command

gamut is a sound decision, given the age of the target

audience and the short-term memory limitations of the

human brain. Similarly, the total number of command

blocks required to construct a particular algorithm should

also be limited. Otherwise, long algorithms will result in

visual clutter on the screen, and the scanning of the

algorithm will become more difficult as the length of the

algorithm increases.

9) Help users recognize, diagnose, and recover from

errors (“Error messages should be expressed in plain

language, precisely indicate the problem, and

constructively suggest a solution.”)

Although it is very rare, if the user inadvertently moves the

mobile device during the sequential scanning process, the

application may fail to recognize some command blocks.

In such cases, the user is informed of the situation as the

recognized blocks are displayed on the screen. However,

the only way to recover from this situation is to reset the

algorithm. An Undo operation must also be made available

to the user. In addition, the errors in the constructed

algorithm could be shown to the user.

10) Help and documentation:

More detailed documentation, including the meaning of the

blocks, sample usage scenarios, etc. could be provided.

Online textual instructions on how to use the system should

also be provided as audio messages, taking into account the

illiterate population in the target user group.

Table 1. Summary of the heuristic evaluation (C1-C10

refers to the evaluation criteria, in the above order)

 Strengths Recommendations

C1 Visual/auditory feedback

C2
Intuitiveness

Use of metaphors
Revision of the visual codes

C3 Visible control buttons Undo operation

C4
Puzzle-like form

Drag-and-drop metaphor

C5
Affordance

Feedback

C6

Easy to learn

Familiar elements

Simplicity contributes to
learnability

Memorable visual codes

Audio messages for illiterate

children

Familiar icons for control

buttons

C7
Flexible options for
command blocks

Adaptation for AR glasses

Scanning the algorithm at

once

C8

Simple and minimalist
design

Limited command gamut

Refining the look-and-feel

C9
Undo operation
Showing the algorithm errors

C10
More detailed documentation

Audial instructions

5. COMPARISON TO OTHER APPROACHES

In this section, we perform a qualitative comparison of our

kit with other alternative tools for cultivating

computational thinking. We make this comparison in the

context of our target user group (preschoolers) and our

main design goals: “unplugged use”, “simplicity”, and

“accessibility/affordability”.

In Table 2, interface types and main methodologies of

similar studies are listed. The interface type refers to the

usage of a tool and we categorize it as Unplugged, Plugged,

and Hybrid. Unplugged interfaces rely on traditional

methods and do not use any computers, plugged interfaces

require a computer and/or electronic components, while

hybrid interfaces require computers only for specific

stages. Algo-AR falls into the hybrid interface category by

combining tangible programming and AR as mentioned

before, since a mobile phone is only required for displaying

the results. Limiting screen time is one of our crucial goals

because of the target users. Compared to totally unplugged

activities, AR increases the fun factor.

Table 3 evaluates similar studies in the literature in the

context of the design goal of simplicity. Preschool children

are the target user group, therefore the design, usage and

comprised programming concepts should be simple. As

indicated in the table, some of the tools are text-based and

not suitable for illiterate children, some contain complex

programming concepts, and some are sophisticated for

little children. Algo-AR has a simple interface and limits

the complexity of algorithms and programming concepts.

Accessibility and affordability are also among our primary

design objectives. Therefore, the studies in the literature

are also elaborated from this perspective and the summary

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 67

is given in Table 4. Unplugged activities can be considered

as the most accessible category. There are also free visual

programming tools that only require a computer. Some of

the tools, such as Algoblocks and E-Block, necessitate

special hardware for the command cubes, which limits

their accessibility. On the other hand, most of the tools in

the hybrid interface category, rely on a mobile device and

paper-based command blocks. This provides a low-cost

and accessible solution.

Table 2. List of the studies according to interface type and

methodologies
Studies Interface Tools/Methodologies

[30] [31] Unplugged Paper, pen, etc.

Scratch [1], [2]

Alice [3]
Blockly [4]

Plugged Visual programming

Algoblocks [6] Plugged Tangible programming

E-Block [7] Plugged Tangible programming,

Microcontrollers

HyperCubes [25] Hybrid Tangible programming,
AR, Spatial tracking

CodeCubes [18]

Hybrid Tangible programming,

Marker-based AR

ARQuest [26] Hybrid Tangible programming,
Marker-based AR

Code Bits [27] Hybrid Tangible programming,

Marker-based AR

Code Notes [28] Hybrid Tangible programming,

Computer vision,

Text recognition

Kart-ON [29] Hybrid Tangible programming, AR,
Text recognition

Algo-AR Hybrid Tangible programming,

Marker-based AR

Table 3. List of the studies according to simplicity design

goal
Studies Simplicity

[30] [31] Simple to use, appeals to all ages of children

Scratch [1], [2]
Alice [3]

Blockly [4]

Simple drag-and-drop metaphor
Not for illiterate children in general

Comprises many programming concepts

Not suitable for preschoolers

Algoblocks [6] Appeals to primary and secondary school
Includes conditionals, loops, parameters, and

basic movement commands

Requires command cubes connected with
cables which limit usability

E-Block [7] Appeals to 5-9 age

Includes basic movement commands

HyperCubes [25] Appeals to late elementary and middle school

Includes visual and sound inputs

Requires constructing command cubes
Complex for preschoolers since it includes

abstract markers and parameters are adjusted

by a menu

CodeCubes [18]

Appeals to 13-14 age

Includes basic movement commands

Requires constructing command cubes

ARQuest [26] Appeals to primary school (9-10 age)
Includes basic movement commands

Designed for collaborative usage

Code Bits [27] Preschoolers can use

Includes basic movement commands
Commands are transferred to the application

one-by-one

Code Notes [28] Based on English text
Not suitable for illiterate children

Includes a wide range of commands

Kart-ON [29] Based on English text
Not suitable for illiterate children

Includes a wide range of generalizable

commands

Algo-AR Simple command gamut (loops, conditionals,

basic movement)

Simple algorithm complexity
Simple drag-and-drop metaphor

Suitable for illiterate and preschool children

Table 4. List of the studies according to accessibility

design goal
Studies Accessibility/Affordability

[30] [31] Requires basic materials such as paper, pen

So, very cheap and accessible in general

Scratch [1], [2]
Alice [3]

Blockly [4]

Requires a computer
Freely accessible in general

Algoblocks [6] Requires a computer and special wired

command cubes, so not much accessible

E-Block [7] Requires a computer and command blocks that

include microcomputers, infrared transmitters

and receivers, batteries, wireless modules, and
LEDs. So they are not much accessible

HyperCubes [25] Requires a mobile device and paper cubes

CodeCubes [18] Requires a mobile device and paper cubes

ARQuest [26] Requires a computer, a mobile device and

paper tokens

Code Bits [27] Requires a mobile device and paper tokens

Code Notes [28] Requires a mobile device and paper tokens

Kart-ON [29] Requires a mobile device and paper tokens

Algo-AR Requires a mobile device and paper blocks

6. LIMITATIONS AND FUTURE WORK

Despite its many benefits, the current prototype has some

shortfalls and potential for improvement. These

improvements can be considered under five main

categories: refining the usability aspects, reinforcing the

pedagogical aspect, enriching the content, increasing the

supportability, and conducting comprehensive evaluations.

Firstly, the user interface and usability of the tool should

be improved in light of the results of the heuristic

evaluation. These improvements should include refining

the visual codes on the command blocks in terms of

expressiveness and discoverability, adding an undo

operation, considering illiteracy in the design of the UI

elements, and improving the documentation.

Second, the current prototype supports programming

concepts such as condition and loop that are not found in

many similar applications. Considering that people will not

develop very complex algorithms during the learning

phase, it can be said that the current application has

functional competence in terms of targeted acquisition of

algorithmic thinking. However, more programming

elements such as arithmetic operations, functions and

variable definitions can be added. Correct solutions and

errors should be displayed on the application. It could also

be useful to enable the teacher/parent to track the progress

of the students.

68 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

Third, more levels should be added to the game to increase

the fun and motivational factors. The following

improvements can be considered, which will also affect the

difficulty level of the game: time limit, types of obstacles,

bonus items, and shortest path problems. The application

should be made more impressive and customizable by

enriching it with more animations, visual effects,

sound/music, and virtual environment/character themes.

Game themes and difficulty levels should be determined

according to age groups, taking into account the views of

educators and pedagogues.

Fourth, the current prototype works on Android devices,

but it is possible to easily deploy it for other operating

systems. Its use with AR glasses, however, should be

specifically tested and the application should be adapted to

the needs of such use. Since one of the main design goals

is affordability, we have not yet considered the use of AR

glasses.

Finally, although the usability aspect has been assessed by

some experts, the tool has not yet been tested by the target

user group. Thus, comprehensive user studies are required

to evaluate different aspects of the user experience and to

draw generalizable conclusions. The application should be

extensively tested with different age groups and its long-

term effects in different dimensions (learning,

entertainment, motivation, cognition, etc.) should be

statistically analysed.

7. CONCLUSION

A prototype application has been developed to improve

children's algorithmic thinking skills. The main design

goals are simplicity, affordability, entertainment, and

unplugged usage. The application has a gamified structure

and is intended to be particularly interesting for children.

Although the primary audience of the application is

children, it is suitable for users of all ages who are just

starting to learn algorithm construction. The proposed

application has been developed using modern technologies

such as AR and tangible programming. A design-oriented

view of the work could be of great benefit to the

researchers in the field. In summary, a low-cost, flexible,

unplugged educational material for the development of

algorithmic thinking skills at an early age is proposed and

elaborated.

APPENDIX

Materials related to this study can be downloaded from the

links obtained by scanning the QR codes in Figure 8. The

downloadable materials include sample videos

demonstrating the use of the game, the installation file of

the Algo-AR application for Android devices, and the

printable command blocks.

Figure 8. OR-codes for accessing the sample material of

the proposed tool

REFERENCES

[1] J. Fagerlund, P. Häkkinen, M. Vesisenaho, J. Viiri, “Computational

thinking in programming with Scratch in primary schools: A

systematic review,” Comput. Appl. Eng. Educ., 29(1), 12–28, 2021.

[2] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman, M. Resnick,

“Scratch: a sneak preview [education],” Second International

Conference on Creating, Connecting and Collaborating

through Computing, Kyoto, 104–109, 2004.

[3] M. Conway, S. Audia, T. Burnette, D. Cosgrove, K. Christiansen,

“Alice: lessons learned from building a 3D system for novices,”

SIGCHI Conference on Human Factors in Computing

Systems, Netherlands, 486–493, 2000.

[4] N. Fraser, “Ten things we’ve learned from Blockly,” IEEE Blocks

and Beyond Workshop (Blocks and Beyond), USA, 49–50,

2015.

[5] A. Strawhacker, M. U. Bers, “‘I want my robot to look for food’:

Comparing Kindergartner’s programming comprehension using

tangible, graphic, and hybrid user interfaces,” Int. J. Technol. Des.

Educ., 25, 293–319, 2015.

[6] H. Suzuki, H. Kato, “Algoblock: a tangible programming

language, a tool for collaborative learning,” 4th European Logo

Conference, 297–303, 1993.

[7] D. Wang, Y. Zhang, S. Chen, “E-block: A tangible programming

tool with graphical blocks,” Math. Probl. Eng., 2013, doi:

10.1155/2013/598547.

[8] F. Klassner, S. D. Anderson, “LEGO MindStorms: Not just for K-

12 anymore,” IEEE Robotics and Automation Magazine, 10(2),

12–18, 2003, doi: 10.1109/MRA.2003.1213611.

[9] M. S. Horn, R. J. K. Jacob, “Designing tangible programming

languages for classroom use,” International Conference on

Tangible and Embedded Interaction, Louisiana, 159–162, 2007,

doi: 10.1145/1226969.1227003.

[10] E. Naude, A. Fowler, R. Lemon, C. J. Sutherland, “Kupe’s Journey:

Building a Low-cost, Screen-free Robotic Programming

Environment for Children,” 20th International Conference on

Ubiquitous Robots (UR), USA, 710–715, 2023, doi:

10.1109/UR57808.2023.10202226.

[11] S. Tobias, J. D. Fletcher, and A. P. Wind, “Game-based learning,”

Handb. Res. Educ. Commun. Technol., pp. 485–503, 2014.

[12] G. Lampropoulos, E. Keramopoulos, K. Diamantaras, G.

Evangelidis, “Augmented reality and gamification in education: A

systematic literature review of research, applications, and

empirical studies,” Appl. Sci., 12(13), 6809, 2022.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 69

[13] A. Gardeli, S. Vosinakis, "The effect of tangible augmented reality

interfaces on teaching computational thinking: A preliminary

study," 21st International Conference on Interactive

Collaborative Learning (ICL2018), Greece, 673-684, 2020.

[14] A. Theodoropoulos, G. Lepouras, “Augmented Reality and

programming education: A systematic review,” Int. J. Child-

Computer Interact., 30, 100335, 2021.

[15] S. A. Hassan, T. Rahim, S. Y. Shin, “ChildAR: an augmented

reality-based interactive game for assisting children in their

education,” Univers. Access Inf. Soc., 21(2), 545–556, 2022.

[16] Y.-C. Chien, Y.-N. Su, T.-T. Wu, Y.-M. Huang, “Enhancing

students’ botanical learning by using augmented reality,” Univers.

Access Inf. Soc., 18, 231–241, 2019.

[17] Z. Çipiloğlu Yıldız, M. Türker, R. Ak, “Mimari Miras Eğitiminde

Artırılmış Gerçeklik ve Fotogrametri Desteği,” Bilişim Teknol.

Derg., 14(2), 137–149, 2021, doi: 10.17671/gazibtd.792539.

[18] B. Cleto, C. Sylla, L. Ferreira, J. M. Moura, “CodeCubes: Coding

with Augmented Reality,” First international computer

programming education conference, Portugal, 7:1-7:9, 2020,

doi: 10.4230/OASIcs.ICPEC.2020.7.

[19] S. Washbrooke, N. Giacaman, “Play, Code, Learn: Fostering

Computational Thinking in Primary Aged Learners Through

Interactive Play,” IoT, AI, and ICT for Educational

Applications: Technologies to Enable Education for All, Ed.: S.

Papadakis, Cham: Springer Nature, Switzerland, 135–162, 2024.

[20] M. G. Rios, M. Paredes-Velasco, “Using Augmented Reality in

programming learning: A systematic mapping study,” IEEE Global

Engineering Education Conference (EDUCON), Austria, 1635–

1641, 2021, doi: 10.1109/EDUCON46332.2021.9454149.

[21] M. Liang, Y. Li, T. Weber, H. Hussmann, “Tangible interaction for

children’s creative learning: A review,” Conference on Creativity

and Cognition, 1–14, 2021.

[22] J. M. Cerqueira, B. Cleto, J. M. Moura, C. Sylla, L. Ferreira,

“Potentiating Learning Through Augmented Reality and Serious

Games,” Springer Handbook of Augmented Reality, Eds.: A. Y. C.

Nee, S. K. Ong, Cham: Springer International Publishing, 369–

390, 2023.

[23] I. Radu, B. MacIntyre, “Augmented-reality scratch: a tangible

programming environment for children,” Conference on

Interaction Design for Children, Italy, 2009.

[24] Q. Jin, D. Wang, X. Deng, N. Zheng, S. Chiu, “AR-maze: A

tangible programming tool for children based on AR technology,”

ACM Conference on Interaction Design and Children, Norway,

611–616, 2018, doi: 10.1145/3202185.3210784.

[25] A. Fuste, C. Schmandt, “Hypercubes: A playful introduction to

computational thinking in augmented reality,” CHI PLAY 2019 -

Extended Abstracts of the Annual Symposium on Computer-

Human Interaction in Play, Spain, 379–387, 2019, doi:

10.1145/3341215.3356264.

[26] A. Gardeli, S. Vosinakis, “ARQuest: A tangible augmented reality

approach to developing computational thinking skills,”

International Conference on Virtual Worlds and Games for Serious

Applications (VS-Games), Austria, 1-8, 2019, doi: 10.1109/VS-

Games.2019.8864603.

[27] S. Goyal, R. S. Vijay, C. Monga, P. Kalita, “Code bits: an

inexpensive tangible computational thinking toolkit for K-12

curriculum,” International Conference on Tangible, Embedded,

and Embodied Interaction, Netherlands, 441–447, 2016.

[28] A. Sabuncuoǧlu, M. Erkaya, O. T. Buruk, T. Göksun, “Code notes:

Designing a low-cost tangible coding tool for/with children,” ACM

Conf. Interact. Des. Child., Norway, 644–649, 2018, doi:

10.1145/3202185.3210791.

[29] A. Sabuncuoglu, T. M. Sezgin, “Kart-ON: An Extensible Paper

Programming Strategy for Affordable Early Programming

Education,” ACM Human-Computer Interact., 6(EICS), 1–18,

2022.

[30] T. Bell, J. Alexander, I. Freeman, M. Grimley, “Computer science

unplugged: School students doing real computing without

computers,” New Zeal. J. Appl. Comput. Inf. Technol., 13(1), 20–

29, 2009.

[31] A. Juškevičiene, G. Stupuriene, T. Jevsikova, “Computational

thinking development through physical computing activities in

STEAM education,” Comput. Appl. Eng. Educ., 29(1), 175–190,

2021.

[32] J. Nielsen, “Enhancing the explanatory power of usability

heuristics,” SIGCHI conference on Human Factors in Computing

Systems, USA, 152–158, 1994.

