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1. INTRODUCTION 
 

Huge marketing databases containing not only demographic, descriptive and address information 
about company’s clients but also the whole history of client – company relations are a powerful device 
for statistical data mining enabling to estimate mathematical models used to support relationship 
oriented marketing decisions. The approach to marketing focused on effective use of information 
about individual customers is called database marketing. According to various definitions database 
marketing is:   

 
 
 "an interactive approach to marketing, which uses the individually addressable marketing 

media and channels (such as mail, telephone and the sales force): to extend help to a 
company's target audience; to stimulate their demand; and to stay close to them by 
recording and keeping an electronic database memory of the customer, prospect and all 
commercial contacts, to help improve all future contacts and to ensure more realistic of all 
marketing" (Shaw and Stone, 1988); 
 
 

 “managing and computing relational database, in real time, of comprehensive, up-to-date, 
relevant data on customers, inquiries, prospects and suspects, to identify our most 
responsive customers for the purpose of developing a high quality, long-standing 
relationship of repeat business by developing predictive models which enable us to send 
desired messages at the right time in the right form to the right people – all with the result of 
pleasing our customers, increasing our response rate per marketing dollar, lowering our cost 
per order, building our businesses, and increasing our profits” (National Center for Database 
Marketing). 

 
 

What makes database marketing a distinguished discipline of marketing is concentration on data 
mining in order to model customers behaviour. Its development is connected with new digital 
technologies of collecting and analyzing information and interactive communication with customer. 
With the beginning in 80s of XX century database marketing is becoming more and more important 
due to extended abilities to process huge amounts of data and increasing popularity of internet 
commerce. Econometric and statistical models used in database marketing are logit, tobit, hazard 
models, RFM analysis, cluster analysis, decision trees, neural networks, Markov models and many 
others. 

 
Markov models are stochastic processes with wide applications in marketing researches such as 

modelling customer behaviour and loyalty, brand switching, identification of purchasing patterns or 
customer relationship management. Hereby the attention is focused on applying Markov models in 
calculating customer lifetime value. The paper refers to the approach suggested by Pfeifer and 
Carraway2 basing on a Markov chain with transition probabilities resulting from RFM analysis. A 
modification of this approach consisting in including additional information (such as remarketing 
expenditure) is presented, followed by a method of finding optimal remarketing strategy.  
 
2. CUSTOMER LIFETIME VALUE 
 

One of the crucial concepts in customer relationship management is CLV (customer lifetime 
value) defined as discounted value of revenue ever generated by a client. Proper calculation of CLV 
enables to quantify company long-term profitability and support decisions related to the level of 
expenditure on customer acquiring and retention, planning promotions, choosing distributions 
channels. Calculating CLV of individual customer is particularly important in direct marketing.  

 

                                                            
2 Ph.E. Pfeifer, R.L. Carraway (2000).  
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The concept of CLV in relation to direct marketing3 has been popularized by Dwyer4 who 

provided examples of its application in situations called retention and migration. Mathematical models 
of CLV in these two situations have been given by Berger and Nasr5. Blattberg and Deighton6 have 
constructed CLV model oriented on finding balance between acquisition and retention expenditures.   

 
Retention situation may be characterized as follows: 
 
 customer who has break in relations (for instance no purchase in previous time period) is 

considered lost for good, in case of another purchase in the future the history of previous 
relations is not taken into account, 

 is adequate in contract relations with observed churning. 
 

Migration models refer to situation when: 
 
 breaks in relationship are allowed, 
 migration consists in ability of moving between distinguished states, for that reason Markov 

chains are quite often applied,  
 states are defined basing on RFM (recency, frequency, monetary) analysis, used since years 

50s of XX century in direct marketing as a method of segmentation. The marketers noticed 
that most information about customer’s behaviour is concentrated in three variables: recency 
(time elapsed from the previous purchase), frequency of purchases and their monetary value. 

 
A basis formula7 of customer lifetime value is following: 
 

 




 


1 )1(
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t
t

t

d

V
CLV   (1) 

 
 
with tV  representing revenue in period t generated by a customer, d – one period interest rate. 

Extended formula of CLV8 contains decomposition of tV  on various cost and income categories, 
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3 History of direct marketing has the beginnings in 1872 in the USA when a cloths selling company published a 
list of items which could be ordered and purchased by mail. The term “direct marketing” was introduced in 1967 
and it refers to direct mail, telemarketing and online techniques. According to Direct Marketing Association, 
founded in 1917 to support businesses and non-profit organization using direct marketing tools and techniques, 
in 2009 direct marketing accounted for 8.3% of total US GDP and spending on it was over 54% of all 
advertising expenditure. 
 
4 F.R. Dwyer (1989). 
 
5 P.D. Berger, N.J. Nasr (1998). 
 
6 R.C. Blattberg, J. Deighton (1996). 
 
7 R.C. Blattberg, B.D. Kim, S.A. Neslin (2008). 
 
8 H.H. Bauer, M. Hammerschmidt (2005). 
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AC  – acquisition cost,  
r      – retention rate,  

tAR  – autonomous revenue in period t,  

tUR  – up selling revenue in period t, 

tCR  – cross selling revenue in period t, 

tRV  – gross contribute from reference activity of customer in period t,  

tSC  – cost of serving in period t, 

tRC  – cost of retaining customer in period t, 

TC  – cost of terminating the relationship,  
D – interest rate,  
T – time horizon, expected time of relationship. 
 

Recently definition of CLV has been expended by including the value of influences made by a 
customer during his network activity. Weinberg and Berger9 propose CSMV (Customer Social Media 
Value) to represent the value of customer’s influence on other consumers by his interactions with 
other social media users. 

 
An important element of formula (2) is retention rate, determining the percentage of customers 

who remain active in next period. Models of retention are presented in next section. Another important 
issue is expected time of relationship. Kumar10 underlines that in non-contractual relationships it is 
usually hard to identify moment of beginning and ending. Besides, allowing longer time horizon may 
result in problems with interest rates stability and precision of predicting monetary value of incomes 
and costs. In practice CLV is usually calculated for 3-years period (except from motor industry and 
insurance).  
 

3. RETENTION RATE MODELS 
 
The simplest model of retention assumes constant retention rate. The formula for CLV is then11 

  





 
T

t

t

dtt
t CRrCLV

1

1

1
11 , 

 

with following notation: tR  - revenue in period t, tC  - costs in period t, r – retention rate, d – interest 

rate. With additional assumption of constant costs and revenues its limit value is.  
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Blattberg and Deighton12 suggested a model with retention rate depending exponentially on 
remarketing expenditure M incurred to maintain relationship with customer. 
 

0,  )),exp(1(  babMar .  (3) 
 

                                                            
9 B.D. Weinberg, P.D. Berger (2011). 
 
10 V. Kumar (2010). 
 
11 R.C. Blattberg, B.D. Kim, S.A. Neslin, op.cit., pp. 111. 
 
12 R.C. Blattberg, J. Deighton , op.cit. 
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Another approach13 consists in applying logistic function.  

0,  ,
)exp(1




 ba
bM

a
r .  (4) 

 
According to formula (3), retention rate is an increasing function of remarketing expenditure and 

no expenditure results in zero retention rate. In case of logistic function (4) even null expenditure 
results in positive value of retention rate. This can be easily corrected by including an intercept in 
exponent and obtaining 

 
0,,  )),exp(1(  cbabMcar .  (3a) 

 

0,,  ,
)exp(1




 cba
bMc

a
r .  (4a) 

 
In all cases parameter 1a  refers to limit retention rate achieved with unconstrained budget. An 

alternative to functions (3) or (4) could be applying logistic regression.  
 
4. RETENTION RATE WITH LAST PURCHASE MEMORY  
 

Ma, Li and Chen14 suggested a model in which retention rate depends on customer’s history. 
They applied a stochastic process  tY , 
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satisfying Markov property 
 

)()|(P),...,,|(P 1110 MpiYjYiYYYjY ijtttt   .  (5) 
 

Therefore they obtained a two-state Markov chain with transition probabilities (which are 
equivalent to probabilities of being active in the next period) depending on customer’s activity in 
actual period and remarketing expenditure M. By introducing a variable describing revenues, 
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and denoting time of relationships by T , they obtained customer lifetime value formula 
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RCLV

1 )1(
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13 M. Ma, Z. Li, J. Chen (2008). 
 
14 Ibidem. 
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Parameter δ  denotes time of inactivity after which customer is considered lost for good and no 

more remarketing expenditure are taken. In order to obtain expected values of tR , T  and CLV  Ma, 

Li and Chen used an auxiliary Markov chain  tX  with state space }12,...,1,0{  . Transient states 

refer to binary sequences of last δ realizations of original chain  tY , 
 

)1(
1

2
2

1 2...22 


  nnnnn YYYYX , 

 
and state 0 is an absorbing one and refers to a sequence of δ visits in non-purchasing state. 

 
The method of deriving CLV with analogous assumptions and making use of the concept of 

Pfeifer and Carraway15 is now presented. The situation considered is following: 
 

 company makes effort to acquire and maintain a customer, if succeeds it obtains revenue R for 
each purchase made,  

 breaks in customer-company relationship are admitted,  
 

 company suffers remarketing expenditure M each period when customer is considered active, 
 

 probability of purchase in the next period depends of customer’s recency (time from the 
previous purchase). 

 
This is a migration model as customers “migrate” among states defined in terms of how recently 

they have purchased from the company. In opposition to retention model customer might skip one or 
more periods and still be considered an active one. 

 
A mathematical model of a situation described is δ+1-states Markov chain with rewards. First δ 

states are defined as the number of periods elapsed form the previous purchase and the last state is an 
absorbing one and refers to terminating the relation. It is equivalent to stating that company does not 
believe in coming back of a customer who has been inactive for last δ periods and considers such 
customer to be lost for good. Transition matrix of the Markov chain involved is following, 
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with ip  for δi ,...,2,1  denoting probability of purchasing after i periods of being inactive. Vector of 

rewards is equal 
 

 TMMMR 0... R . 
  

 

                                                            
15 Ph. E. Pfeifer, R.L. Carraway, op.cit. 
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Following the theory of Markov chains with rewards the elements of vector  
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t

d
T

0
1

1 RPCLV   

  
equal the value of customer starting in states δ,...,2,1  with time horizon T. For infinite time horizon 
vector of customer lifetime value takes form 
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Specific form of transition matrix P  enables to present elements of the first row of matrix 

  1

1
1 
 PIA

d
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and CLV for a customer in state 1, that is the most “recent” customer is then 
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The second row of the matrix   1

1
1 
 PIA

d
takes form: 
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and enables to calculate directly CLV for a customer in state 2, that is customer whose last purchase 
was made two periods ago. Analogous derivation is possible for customer in each state. 
 

Elements of fundamental matrix   1 SIN , with S denoting matrix of transition probabilities 
between transient states δ,...,2,1  of a Markov chain with transition matrix (7), take form: 
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The expected absorbing time, which refers to expected time of customer-company relationship, is 

derived by summing elements in each row of fundamental matrix. Particularly, for customer in state 1 
(customer whose last purchase was made a period ago) the expected time of relationship equals. 

 

     
 




  





1 1

1)1(

j p
jk

k

t .  (9)
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Next step consists in defining relations between probabilities ip  of transition matrix (7) and 

retention rates from the Markov chain  tY  (see formula (5)): 

 
)()1|1(P 1111 MpYYp tt   ,  
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… ,  
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These relations enable to apply directly formulae (8) and (9) to calculate customer lifetime value 

and expected time of his relationship with company. 
 
5. OPTIMAL STRATEGY 
 

This section illustrates the method of calculating CLV described above. Retention rates take form 
of logistic function (4) and are put into a transition matrix of a Markov chain  tY : 
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Parameters )1,0(, 10 aa  refer to retention ceiling, the limit retention rates for both states. With 

zero remarketing expenditure M retention rates equal half retention ceiling. Parameter b  refers to the 
speed of convergence to retention ceiling (see Figure 1).  

 
 
 
 

 
Figure 1. Retention rate (4a), a=0.25 

 
Source: Author’s computation 
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Simulation taken for various values of model parameters lead to following conclusions: 

 
 increasing parameter δ referring to time of considering inactive customer to be lost for good 

results in longer expected time of relationship but generally does not increase the optimal 
customer lifetime value, 
 

 optimal level of remarketing expenditure and maximal CLV is obtained for retention rates 
leading 98% of their ceilings and mean purchases frequency is then slightly lower than 
frequency accessible with unconstrained budget, 

 
 consequently, optimal values of remarketing expenditure and CLV are not significantly 

sensitive for parameters changes, particularly for changes of retention ceilings, 
 

 model with last purchase memory seems to be a good basis for proper calculation of CLV and 
the method of its calculation presented is easy to apply and computationally non demanding. 

 
 
Those conclusions remain valid for both retention rate in form of exponential function (3) and logistic 
function (4). 
 
 
6. MARKOV CHAINS IN MARKETING  
 

Probably the most common application of Markov chains in marketing is in modelling customers 
loyalty16 (brand switching). Assuming that customer making brand purchasing decision remembers 
only the last brand chosen a Markov chain describing customers migration between brands is 
constructed with transition probabilities referring to retention, loyalty or churn rates. The models 
enables predicting market structure and in classical version is a homogeneous one however a natural 
modification would be modelling transition probabilities as functions of marketing efforts, price 
relations etc. 

 
Identification of purchasing patterns of financial and insurance products has been analyzed by 

Prinzie and Poel17 who used a third-order Markov model and associated mixture transition model 
(MTD). Bozetto18 et al. examined customers relationship with an insurance company by means of 
various types of Markov models (homo and nonhomogeneous, first and second ordered, mover-stayer 
model) to identify purchasing dynamics patterns and predict future number and acquisition structure. 
Ching19 et al. applied Markov chain with rewards methods to optimize CLV and derive optimal 
promotion strategy.  
 
 
 
 
 
 

                                                            
 
16 G.Styan, H.Smith (1964). 
 
17 A. Prinzie, D. Van den Poel (2006).  
 
18 J.F. Bozzetto, L. Tang, L.C. Thomas, S. Thomas (2000). 
 
19 W.K.Ching, M.K..Ng, K.K.Wong, E.Altman (2004). 
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