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BETA GENERATED SLASH DISTRIBUTION: DERIVATION,
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Abstract. In this paper, we introduce a new distribution called beta gener-

ated slash distribution by applying the slash construction idea to the existing
beta distribution of first kind. The statistical properties of the distribution

such as moments, skewness, kurtosis, median, moment generating function,

mean deviations, Lorenz and Bonferroni curves, order statistics, Mills ratio,
hazard rate functions have been discussed. The location-scale form of the beta

generated slash distribution is also established. The hazard rate function is
seen to assume different shapes depending upon the values of the parameters.

The method of maximum likelihood is used to estimate the unknown parame-

ters of beta generated slash distribution and a simulation study is conducted
to check the performance of these estimates. Finally, the proposed distribu-

tion is applied to a real-life data set on failure times and the goodness-of-fit of

the fitted distribution is compared with four other competing distributions to
show its flexibility and advantage particularly in modeling heavy tailed data

sets.

1. Introduction

The beta distribution is a continuous type of probability distribution. This
distribution represents a family of probabilities and is a versatile way to represent
outcomes for percentages or population. The basic beta distribution is called the
beta distribution of first kind and is used in a range of disciplines including rule
of succession, Bayesian statistics and task duration modelling. The probability
density function of beta distribution of first kind is:

f(x, a, b) =
1

β(a, b)
xa−1(1− x)b−1, 0 ≤ x ≤ 1 (1)
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The shape of the distribution is controlled by the two shape parameters a and
b. Beta distribution is more useful than the normal distribution if we need to
model a behaviour that is obviously bounded. In (1), β(a, b) is referred to as
the beta function and with its help, incomplete beta function ratio, incomplete
beta function, the members of several beta generalised distributions have been
introduced. For example, Beta Normal distribution by Eugene et al. [1], Beta
Gumbel distribution by Nadarajah and Kotz [2], Beta Exponential distribution by
Nadarajah and Kotz [3], Beta Exponentiated Weibull distribution by Cordeiro et
al. [4] and Beta - Dagum distribution by Domma and Condino [5].

The slash distribution is defined by Rogers and Tukey [6] as the ratio of standard
normal random variable to the uniform random variable following the stochastic
representation

Y =
X

U
1
q

(2)

where X∼ N(0,1) and U∼U(0,1). q > 0 is the shape parameter which controls the
kurtosis of the distribution. The fundamental studies on slash distribution have
focused on its properties and application to model heavy-tailed data. A modified
version of slash distribution has been proposed by Reyes et al. [7] who considered
the distribution of U in (2) as exponential distribution with parameter 2. Reyes
et al. [8] have introduced generalised modified slash distribution by considering
U in (2) to be distributed as two - parameter gamma distribution. The authors
have showed that this generalised modified- slash distribution performs better than
the existing slash distribution and modified-slash distribution in modelling heavy-
tailed data. The logit slash distribution [9] is a new extension of slash distribution
having support in (0,1). This distribution offers flexible forms depending on the
values of the shape parameter q, thus making it useful for bounded heavy-tailed
data. The slash distribution is particularly useful when models with heavy tails
are neccesary to fit a real data set. This simple concept has launched a remark-
able creativity among the reseachers. In the last decade, slash distribution for
many popular parent distributions have been extensively explored. For example,
the slashed versions for the epsilon half-normal has been established by Gui et
al. [10] where a slash distribution is naturally defined with the help of an exten-
sion of half normal distribution, the extended slash distribution of sum of two
independent logistic variables [11], the modified slash Birnbaum−Saunders distri-
bution by Reyes et al. [12] where an extension of Birnbaum−Saunders has been
introduced on the basis of modified slash distribution approach proposed by [7].
An extension of Akash distribution has been introduced by Gomez et al. [13] by
using slash construction approach to make the kurtosis of the Akash distribution
more flexible. Extensive works on multivariate slash distributions have also been
carried out by several authors. For instance, the multivariate skew - slash dis-
tribution by Wang and Genton [14] where they discussed the multivariate skew
version of the distribution and studied its properties and inferences and used it to
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fit some skewed data sets. The multivariate asymmetric slash Laplace distribution
has been established by Punthumparambath [15]. An alternative to multivariate
skew - slash distribution has been introduced by Arslan [16]. Genc established
the generalisation of slash distribution by using the scale mixture of exponential
power distribution [17]. A family of skew-slash distributions generated by normal
and Cauchy kernels was established by Punthumparambath [18] [19]. The general
properties of the canonical form of slash distribution have been studied by Rogers
and Tukey [6] and Mosteller and Tukey [20]. The maximum likelihood estimators
of the location and scale parameters of the standard slash distribution have been
studied by Kafadar [21]. Both the discrete and continous structure of the uniform
slash and α-slash distributions have been established by Jones and Higuchi [22].
A new family of modified slash distribution along with their applications has been
studied by Reyes et al. [23] where type II modified slash distribution is introduced
by considering the distribution of U in (2) to be Birnbaum−Saunders distribution.

An extensive review of the existing works on slash distribution revealed that the
slash distribution is particulary useful when models with heavy tails are necessary
to fit a real data set. In presence of extreme values, the heavy-tailed models are
required to perform better modelling. Skewed models provide better prospect in
modelling heavy - tailed data and slash distribution is one type of skewed distri-
bution. The usual regression model which finds application across diverse fields
of biology, sociology, economics, psychology, epidemiology, marketing etc may not
conform to the normal probability law all the time. In such cases the error struc-
tures should be handled from the perspective of asymmetry or skewness. Also,
slash distribution offers flexibility in modelling extreme events as it is associated
with augmenting the kurtosis of the underlying data, thereby accomodating the out-
liers. Slash distribution has been more popular in robust statistical analysis. Slash
distribution remains robust where traditional distribution may fail to adequately
capture the tails of the data.

Heavy - tailed lifetime data often arise in real life which requires a flexible heavy-
tailed probability model for describing its behaviour. One may also need to look for
a probability model which is able to account for the outliers in lifetime data. A slash
distribution being a flexible heavy-tailed model is equipped to handle such type of
data. Further, most of the existing works focuses on establishing the slash version
of random variables having support in the range (−∞,∞) and (0,∞). However
till now, not much work on developing the slash distribution for finitely bounded
random variable has been carried out. This motivated us to carry out our work
on constructing the slashed version of a finite bounded r.v. which is particulary
applicable to lifetime data. In particular, the beta random variable of first kind has
been considered for this research work.

Here, we introduce an extension of beta distribution through the slash construc-
tion idea and the proposed distribution has been named as the beta generated slash
(BGSl) distribution. The newly proposed distribution is expected to be useful in
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modelling data with higher level of kurtosis, providing a more precise representation
of extreme outcomes.

We shall say that Y follows the BGSl distribution with parameters a, b and q
or Y ∼ BGSl(a,b,q) if it can be stochastically expressed as

Y =
X

U
1
q

where X ∼ beta(a,b) and U∼U(0,1) and are distributed independently of each other.
The rest of the paper is organised as follows. Section 2 introduces the density

function of the proposed distribution. Expressions for pdf, cdf, various descriptive
statistics are derived and and behaviour of the curve of the proposed distribution
for varying values of the parameters graphically are shown in Section 3. The max-
imum likelihood estimation of the parameters of the distribution are dealt with in
Section 4. In Section 5, some stochastic simulations are performed to illustrate the
behaviour of the parameters of the proposed distribution. In Section 6, the pro-
posed model is applied to data set on failure times to exhibit the potential of the
distribution in modeling real-life data sets. Finally, the conclusions of this paper
are given in Section 7 .

2. Definition and Derivation of the BGSl Distribution

Theorem 1. Let Y ∼ BGSl(a,b,q). Then the pdf of Y is given by:

f(y; a, b, q) =


q

β(a,b)yq+1 β(y; a+ q, b), 0 ≤ y < 1

q
β(a,b)yq+1 β(a+ q, b), 1 ≤ y <∞

(3)

where a,b are the scale parameters, q is the shape parameter and β(y; a + q, b) is
the incomplete beta function which is given by:

β(y; a, b) =

∫ y

0

ua−1(1− u)b−1du

Proof. Let us consider X to be distributed as Beta(a,b). Then the pdf of X is given
by

f(x; a, b) =
xa−1(1− x)b−1

β(a, b)
, 0 ≤ x ≤ 1

Let us now consider the following stochastic representation:

Y =
X

U
1
q

where U ∼ U(0, 1)

Suppose
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W = U =⇒ X = YW
1
q

Then the jacobian of the transformation is:

J =

∣∣∣∣∣∣
∂X
∂Y

∂X
∂W

∂U
∂Y

∂U
∂W

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
w

1
q yw

1
q
−1

q

0 1

∣∣∣∣∣∣∣ = w
1
q

∴

fY (y, w) = fx,u(yw
1
q , w)|J |

=
1

β(a, b)
xa−1(1− x)b−1w

1
q

=
1

β(a, b)
ya−1w

a
q (1− yw

1
q )b−1

When 0< X <1 =⇒ 0< yw
1
q <1 =⇒ 0< y < 1

w
1
q

When 0< U < 1 =⇒ 0< W < 1
∴ The required joint pdf is

f(y, w) =

{
1

β(a,b)y
a−1w

a
q (1− yw

1
q )b−1, 0 < y < 1

w
1
q
, 0 < w < 1

0, otherwise
(4)

Hence, the marginal distribution function of Y is given by:

f(y,w) =

{
f1(y), 0 ≤ y < 1

f2(y), 1 ≤ y <∞
(5)

where

f1(y) =
ya−1

β(a, b)

∫ 1

0

w
a
q (1− yw

1
q )b−1dw

=
q

β(a, b)yq+1
β(y; a+ q, b) (6)

β(y; a+ b, q) being the incomplete beta function and

f2(y) =
ya−1

β(a, b)

∫ 1
yq

0

w
a
q (1− yw

1
q )b−1dw

=
q

β(a, b)yq+1
β(a+ q, b) (7)

□

The pdf of BGSl distribution for different values of parameters, is plotted in
Figure 1. From the figure it is seen that the kurtosis of the distribution increases
with an increase in the value of q.
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Figure 1. Probability density function plots of the BGSl distri-
bution for different values of a,b and q

Again the cdf of Y is given by :

F (y) =

{
F1(y), 0 ≤ y < 1

F2(y), 1 ≤ y <∞
(8)

where

F1(y) = P (Y ≤ y)

=

∫ y

0

q

β(a, b)tq+1
β(t; a+ q, b)dt

=
q

β(a, b)

∫ y

0

β(t; a+ q, b)t−(q+1)dt

=
β(y; a, b)

β(a, b)
− y−q β(y; a+ q, b)

β(a, b)
(9)

F2(y) = P (Y ≤ y)

=

∫ 1

0

f1(t)dt+

∫ y

1

f2(t)dt

= 1− β(a+ q, b)

β(a, b)
+
β(a+ q, b)

β(a, b)
(1− y−q) (10)
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The cdf plot for BGSl distribution is shown in Figure 2.

Figure 2. Cumulative distribution function plots of the BGSl dis-
tribution for different values of a,b and q

2.1. Location Scale form of BGSl(a,b,q). Another form of beta generated slash
distribution is the location - scale form. By applying the well known location - scale
transformation and considering the general form of BGSl distribution, we get the
location - scale transformed BGSl variate as

T = µ+ σ
X

U
1
q

(11)

where X ∼ Beta(a,b) and U ∼ U(0, 1) are independent, q > 0, 0 < µ < ∞ and
σ > 0. µ and σ are the location and scale parameters respectively. The location-
scale form of BGSl distribution has the following pdf:

f(t; a, b, q) =


qσq(t−µ)−(q+1)

β(a,b) β( t−µ
σ ; a+ q, b), µ < T < µ+ σ

qσq(t−µ)−(q+1)

β(a,b) β(a+ q, b), µ+ σ ≤ T <∞
(12)

It is denoted by T ∼ BGSlLS(a, b, q, µ, σ).
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2.1.1. Special cases of BGSlLS(a, b, q, µ, σ):

• If µ = 0, σ = 1, then BGSlLS(a,b,q,µ,σ) reduces to BGSl(a,b,q).

• If q→∞ then BGSlLS(a,b,q,µ,σ) tends to β(a, b, µ, σ) which is the location
scale form of beta distribution.

3. Properties of BGSL(a,b,q)

3.1. Moments and Other Descriptive Measures. If Y ∼ BGSl(a, b, q), then
the rth raw moment of Y is given by:

µ/
r = E(Y r)

=

∫ ∞

0

yrf(y)dy

=

∫ 1

0

yrf1(y)dy +

∫ ∞

1

yrf2(y)dy

where r =1, 2, 3...... and q> 0.

In particular,

µ
/
1 =

a

(a+ b)

q

(q − 1)
, q > 1

µ
/
2 =

a(a+ 1)

(a+ b)(a+ b+ 1)

q

(q − 2)
, q > 2

µ
/
3 =

a(a+ 1)(a+ 2)

(a+ b)(a+ b+ 1)(a+ b+ 2)

q

(q − 3)
, q > 3

µ
/
4 =

a(a+ 1)(a+ 2)(a+ 3)

(a+ b)(a+ b+ 1)(a+ b+ 2)(a+ b+ 3)

q

(q − 4)
, q > 4

The measures of skewness and kurtosis denoted by γ1 and γ2 respectively, are
defined as:

γ1 =
µ
/
3 − 3µ

/
3µ

/
1 + 2µ

/
1
3

(µ
/
2 − µ

/
1
2)

3
2

, q > 3

γ2 =
µ
/
4 − 4µ

/
3µ

/
1 + 6µ

/
2µ

/
1
2 − 3µ

/
1
4

(µ
/
2 − µ

/
1
2)2

, q > 4 (13)

In Table 1, the skewness and kurtosis values for some selected values of a,b and q
are displayed. From Table 1, it is observed that skewness decreases and kurtosis
increases with an increase in q. When b is fixed for some values, skewness and
kurtosis increase for a < 0.5 but kurtosis decreases slowly as a > 0.5.
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Table 1. Skewness and Kurtosis measurements of BGSl(a,b,q)
distribution for different values of a, b and q

a q b Skewness Kurtosis
5 0.5 1.286 69.346

1 1.339 109.617
2 1.894 130.506

0.25 6 0.5 1.017 58.723
1 1.707 64.635
2 2.442 97.201

10 0.5 0.765 53.397
1 1.465 56.188
2 2.185 81.890

5 0.5 0.860 128.556
1 1.339 109.617
2 1.894 140.506

0.5 6 0.5 0.488 130.7417
1 1.025 139.622
2 1.603 160.215

10 0.5 0.126 141.748
1 0.736 139.866
2 1.336 157.930

5 0.5 0.9102 348.533
1 1.069 235.526
2 1.411 210.333

1 6 0.5 0.285 352.952
1 0.610 218.938
2 1.037 183.11

10 0.5 0.384 402.169
1 0.158 223.903
2 0.684 174.225

3.2. Median. The median (M) of a probability distribution is the value which
divides the total area under the probability curve into two equal halves. Since the
area under the probability curve of BGSl distribution is different in the range [0, 1)
and [1,∞), so the median of the proposed distribution can appear in either one of
the two ranges - [0, 1) or [1,∞). To find the median, the following steps are used:

(1) Compute F(1)=
∫ 1

0
f1(y)dy.
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(2) If F(1) ≥ 0.5 then the median will lie in [0, 1) and M is obtained by solving
the following equation: ∫ M

0

f1(y)dy = 0.5

=⇒ β(M ; a, b)

β(a, b)
− M−qβ(M ; a+ q, b)

β(a, b)
= 0.5

(3) If F(1) < 0.5 then the median will lie in [1,∞) and M is obtained by solving
the following equation:∫ 1

0

f1(y)dy +

∫ M

1

f2(y)dy = 0.5

=⇒ 1− β(a+ q, b)

β(a, b)
+
β(a+ q, b)

β(a, b)

[
1−M−q

]
= 0.5 (14)

The median values for different set of parameters are given in Table 2:

Table 2. Median values for diffrent set of parameters

Parameters Median
(0.9,0.3,2) 0.75938
(1,1.5,2) 0.56557
(2,0.3,0.5) 4.23087
(0.9,0.3,0.5) 9.96179

3.3. Moment Generating Function. For a random variable Y with pdf f(y),
the moment generating function is given by:

MY (t) = E(ety)

Hence the moment generating function of BGSL distribution is given by:

MY (t) = E
(
ety
)

=

∫ 1

0

etyf1(y)dy +

∫ ∞

1

etyf2(y)dy

=

∫ 1

0

ety
qβ(y; a+ q, b)

β(a, b)yq+1
dy +

∫ ∞

1

ety
qβ(a+ q, b)

β(a, b)yq+1
dy

=
q

β(a, b)

∫ 1

0

etyy−(q+1)β(y; a+ q, b)dy +
qβ(a+ q, b)

β(a, b)

∫ 1

0

etyy−(q+1)dy

=
q

β(a, b)

∫ 1

0

( ∞∑
k=0

(ty)
k

k!

)
y−(q+1)β(y; a+ q, b)dy+
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qβ(a+ q, b)

β(a, b)

∫ ∞

1

( ∞∑
k=0

(ty)
k

k!

)
y−(q+1)dy

=
q

β(a, b)

∞∑
k=0

tk

k!

∫ 1

0

yk−q−1β(y; a+ q, b)dy +
qβ(a+ q, b)

β(a, b)

∞∑
k=0

tk

k!

∫ ∞

1

yk−q−1dy

=
q

β(a, b)

∞∑
k=0

tk

k!

1

k − q
{β(a+ q, b)− β(a+ k, b)}+ qβ(a+ q, b)

β(a, b)

∞∑
k=0

tk

k!

1

q − k

=
q

β(a, b)

t0

0!

1

(−q)
{β(a+ q, b)− β(a, b)}+ q

β(a, b)

∞∑
k=1

tk

k!

1

k − q

{β(a+ q, b)− β(a+ k, b)}+ qβ(a+ q, b)

qβ(a, b)
+

∞∑
k=1

tk

k!(q − k)

{
qβ(a+ q, b)

β(a, b)

}

= 1− q

β(a, b)

∞∑
k=1

tk

k!(k − q)
β(a+ k, b) (15)

3.4. Additive Property. In this section, the additive property of BGSl(a,b,q) is
discusssed through the following theorem.

Theorem 2. BGSl(a, b, q) does not satisfy the additive property i.e., if X ∼ BGSl(a1,
b1,q1) and Y ∼ BGSl(a2,b2,q2), then (X+Y ) does not follow the BGSl distribution.

Proof. The m.g.f. of BGSl(a, b, q) is given by:

MY (t) = E
(
ety
)

=

∫ 1

0

etyf1(y)dy +

∫ ∞

1

etyf2(y)dy

= 1− q

β(a, b)

∞∑
k=1

tk

k!(k − q)
β(a+ k, b) (16)

Let Z = X+Y where X ∼ BGSl(a1, b1,q1) and Y ∼ BGSl(a2,b2,q2) and are
independently distributed of each other. Then the m.g.f. of Z is

MZ(t) =MX+Y (t)

=MX(t)MY (t)

=

(
1− q1

β(a1, b1)

∞∑
k=1

tk

k!(k − q1)
β(a1 + k, b1)

)

×

(
1− q2

β(a2, b2)

∞∑
k=1

tk

k!(k − q2)
β(a2 + k, b2)

)
(17)
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which is not the m.g.f. of BGSl distribution.
Thus, X+Y does not follow BGSl distribution or in other words, the BGSl distri-
bution does not satisfy the additive property. □

3.5. Mean Deviation About Mean. The mean deviation about mean of a popu-
lation measure the amount of scatter in a population to some extent. For a random
variable Y with pdf f(y), cdf F(Y), mean µ = E(Y), the mean deviation about
mean is defined by:

δ1(y) =

∫ ∞

0

|y − µ|f(y)dy

=

∫ ∞

0

(µ− y)f(y)dy +

∫ ∞

µ

(y − µ)f(y)dy

= µF (µ)−
∫ ∞

0

yf(y)dy − µ [1− F (µ)] +

∫ ∞

µ

yf(y)dy

= 2µF (µ)− 2µ+ 2

∫ ∞

µ

yf(y)dy

= 2µF (µ)− 2

∫ µ

0

yf(y)dy (18)

Hence the mean deviation for BGSl distribution is given by:

δ1(y) = I[0,1)(y)

[
2aq

(a+ b)(q − 1)

{
β(µ; a, b)

β(a, b)
− µ−qβ (µ; a+ q, b)

}
−
{

1

q − 1
β (µ, a+ 1, b)− µ1−q

q − 1
β(µ; a+ q, b)

}]
+(1− I[0,1))(y)

[
2qβ(a+ q, b)

β(a, b)(1− q)

{
(1− µ−q)− β(a+ q, b)

β(a, b)

}]
(19)

where

I[0,1)(y) =

{
1, if 0 ≤ y < 1

0, if 1 ≤ y <∞

3.6. Mills Ratio. The Mills Ratio is the ratio of complementary cumulative dis-
tribution function to the probability density function. Mills ratio can be used in
regression analysis to take account of a possible selection bias. Mills Ratio for BGSl
distribution is :

M(y) =
1− F1(y)

f1(y)
+ (1− I[0,1)(y))

1− F2(y)

f2(y)

= I[0,1)(y)

[
1− β(y;a,b)

β(a,b) + y−qβ (y; a+ q, b)

qβ(y;a+q,b)
β(a,b)yq+1

]
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+ (1− I[0,1))(y)

[
1− β(a+q,b)

β(a,b) (1− y−q)
q

β(a,b)yq+1 β (a+ q, b)

]

= I[0,1)(y)

[
yq+1β (a, b)− yq+1β (y; a, b)− yβ(y; a+ q, b)

qβ(y; a+ q, b)

]

+ (1− I[0,1))(y)

[
yq+1 {β(a, b)− β(a+ q, b)(1− y−q)}

qβ(a+ q, b)

]
(20)

3.7. Order Statistics. Consider a random sample y1, y2,......,yn of size n drawn
from BGSl(a,b,q). Further, let y(1) < y(2) < ......... < y(n) denote the order statistics

corresponding to this sample. Then the probability density function of the kth order
statistic is given by

f(k)(y) =
n!

(k − 1)!(n− k)!
[F (y)]

k−1
[1− F (y)]

n−k
f(y)

Hence the density of kth order statistic for BGSl(a,b,q) is

f(k)(y) = I[0,1)(y)

[
n!

(k − 1)!(n− k)!

{
β(y; a, b)

β(a, b)
− y−q β(y; a+ q, b)

β(a, b)

}k−1

{
1− β(y; a, b)

β(a, b)
+ y−q β(y; a+ q, b)

β(a, b)

}n−k
q

β(a, b)yq+1
β(y; a+ q, b)

]
+ (1− I[0,1)(y))

[{
β(a+ q, b)

β(a, b)
(1− y−q)

}k−1{
1− β(a+ q, b)

β(a, b)
(1− y−q)

}n−k

q

β(a, b)yq+1
β(a+ q, b)

]
(21)

The p.d.f of the smallest order statistic y(1) is

f(1)(y) = I[0,1)(y)

[
n

{
1− β(y; a, b)

β(a, b)
+ y−q β(y; a+ q, b)

β(a, b)

}n−1

q

β(a, b)yq+1
β(y; a+ q, b)

]
+ (1− I[0,1)(y))

×

[{
1− β(a+ q, b)

β(a, b)
(1− y−q)

}n−1
q

β(a, b)yq+1
β(a+ q, b)

]
(22)
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The pdf of the largest order statistic y(n) is

f(n)(y) = I[0,1)(y)

[
n

{
β(y; a, b)

β(a, b)
− y−q β(y; a+ q, b)

β(a, b)

}n−1
q

β(a, b)yq+1
β(y; a+ q, b)

]

+(1− I[0,1)(y))

[
n

{
β(a+ q, b)

β(a, b)
(1− y−q)

}n−1
q

β(a, b)yq+1
β(a+ q, b)

]
(23)

3.8. Lorenz and Bonferroni Curve. The Bonferroni and Lorenz Curve are the
most used tools in income inequality measurement. These two curves are widely
used in the field of reliability, demography, medicine and insurance. The Bonferroni
and Lorenz curves are defined as:

L(F (y)) = I[0,1)(y)

[
1

µ

∫ y

0

tf1(t)dt

]
+ (1− I[0,1)(y))

[
1

µ

∫ y

0

tf2(t)dt

]
(24)

B(F (y)) = I[0,1)(y)

[
1

µF1(y)

∫ y

0

tf1(t)dt

]
+ (1− I[0,1)(y))

[
1

µF2(y)

∫ y

0

tf2(t)dt

]
= I[0,1)(y)

[
L(F1(y))

F1(y)

]
+ (1− I[0,1)(y))

[
L(F2(y))

F2(y)

]
(25)

After simplifications,

L(F (y)) = I[0,1)(y)

[[
β(y; a+ 1, b)− t1−qβ(y; a+ q, b)

]
(a+ b)

aβ(a, b)

]
−(1− I[0,1)(y))

[
β(a+ q, b)(a+ b)y1−q

aβ(a, b)

]
(26)

B(F (y)) = I[0,1)(y)

[
β(y; a+ 1, b)− t1−qβ(y; a+ q, b)

]
(a+ b)

aβ(a, b)

×
[
β(y; a, b)

β(a, b)
− y−qβ(y; a+ q, b)

]
(27)

+ (1− I[0,1)(y))

[
β(a+ q, b)(a+ b)y1−q

a (β(a, b)− β(a+ q, b) + β(a+ q, b)(1− y−q))

]
3.9. Hazard Rate Function. The hazard rate function is a very important tool
in understanding about the failure mechanism of a lifetime distribution. Hazard
rate function can be used to postulate life distributions in the presence of several
competing risk factors. It measures the instantaneous rate at which a system or
component is likely to fail, given that it has survived up to a certain time. The
hazard rate function of BGSl(a,b,q) is obtained by using the following formula:

h(y) = I[0,1)(y)
f1(y)

1− F1(y)
+ (1− I(0,1))

f2(y)

1− F2(y)
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= I[0,1)(y)

[
qβ(y, a+ q, b)

yq+1 {β(a, b)− β(y, a, b) + y−qβ(y, a+ q, b)}

]
+ (1− I[0,1))(y)

[
qβ(y, a+ q, b)

yq+1 {1− (1− y−qβ(a+ q, b))}

]
(28)

The HRF plots of the BGSl distribution for various values of the parameters are
shown in Figure 3. For all the combinations of a,b and q, the initial hazard is
high which decreases consistently. This shows the flexibility of the hazard rate
function of the beta generated slash distribution, thereby indicating that various
real-life situations can be suitably modeled using this distribution. For example, for
a patient who has undergone a surgery, the hazard (probability of death because
of post-surgical complications in this case) is high for a specific period post the
procedure. The hazard keeps on decreasing with time and after a certain period
of time,i.e. after full recovery, the hazard drops to approximately 0 and remains
constant thereafter.
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Figure 3. HRF plots of the BGSl distribution for different values
of a,b and q

We shall now discuss the marginal probability of the variate obtained via the
conditional distribution of the location-scale form of beta distribution given a
Uniform(0, 1) variate, which is presented in Theorem 3.
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Theorem 3. If Z|U∼β(a,b,0, σ u−
1
q ) where β(a,b,0, σ u−

1
q ) is location -scale form

of beta distribution and U ∼U(0,1) then Z∼BGSl(a,b,q,0,σ u−
1
q ).

Proof.

P (Z|U = u) = f(z|u)

=
1

σu
1
q

( z
σ

)a−1 (
1− z

σ

)b−1

∴

fz =

∫ 1

0

f(z|u)f(u)du

=

∫ 1

0

u
1
q

σβ(a, b)

(
u

1
q
z

σ

)a−1 (
1− z

σ

)b−1

du

=
qσq

zq+1β(a, b)
β(
z

σ
, a+ q, b)

□

4. Estimation

In this section, we discuss the maximum likelihood method of estimation for the
unknown model parameters of BGSl(a,b,q). Let y1,y2,......,yn be a random sample
of size n from BGSl(a,b,q). Then the log - likelihood function is obtained as:

L(a, b, q,y) =

n∏
i=1

f(yi, a, b, q)

= L1(a, b, q,y) ∗ L2(a, b, q,y)

where

L1(a, b, q,y) =
∏n

i=1 f
I(0,1)(yi)
1

= f
∑n

i=1 I(0,1)(yi)
1

logL1(a, b, q,y) =

n∑
i=1

I[0,1)(yi)

[
log q + log β(yi, a+ q, b)

− log β(a, b)− (q + 1) log yi

] (29)

Again,

L2(a, b, q,y) =

n∏
i=1

f
1−I(0,1)(yi)
2

= f2
(n−

∑n
i=1 I(0,1)(yi))
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logL2(a, b, q,y) =

n∑
i=1

(
n− I[0,1)(yi)

) [
log q + log β(a+ q, b)

− log β(a, b)− (q + 1) log yi

] (30)

logL(a, b, q,y) =

n∑
i=1

I[0,1)(yi)

[
log q + log β(yi, a+ q, b)− log β(a, b)− (q + 1) log yi

]

+

n∑
i=1

(
n− I[0,1)(yi)

) [
log q + log β(a+ q, b)− log β(a, b)− (q + 1) log yi

]
(31)

The maximum likelihood estimates (MLE) of the parameters are computed by
solving the maximum likelihood equations, which are given by

∂ logL

∂a
=⇒

n∑
i=1

I[0,1)(yi)

[
1

β(yi, a+ q, b)

d

da
β(yi, a+ q, b)− {ψ0(a)− ψ0(a+ b)}

]
+
(
n− I[0,1)(yi)

) [ 1

β(a+ q, b)

d

da
β(a+ q, b)− {ψ0(a)− ψ0(a+ b)}

]
= 0

(32)

∂ logL

∂b
=⇒

n∑
i=1

I[0,1)(yi)

[
1

β(yi, a+ q, b)

d

db
β(yi, a+ q, b)− {ψ0(b)− ψ0(a+ b)}

]
+
(
n− I[0,1)(yi)

) [ 1

β(a+ q, b)

d

db
β(a+ q, b)− {ψ0(b)− ψ0(a+ b)}

]
= 0

(33)

∂ logL

∂q
=⇒

n∑
i=1

I[0,1)(yi)

[
1

q
+

1

β(yi, a+ q, b)

d

dq
β(yi, a+ q, b)− logyi

]
+
(
n− I[0,1)(yi)

) [1
q
+

1

β(a+ q, b)

d

dq
β(a+ q, b)− logyi

]
= 0 (34)

The above maximum likelihood Equations 32- 34 are not in closed form and so,
they are difficult to be solved analytically. Hence, we shall use a suitable numerical
technique to solve the above equations for a, b and q.

Here all the calculations have been carried out using the R software version
3.6.3. The maxLik package is used to obtain the maximum likelihood estimates of
the parameters, the rootSolve package is used to generate random variables from
BGSl(a,b,q) and zipfR package is used to evaluate the incomplete beta function.
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5. Simulation

In this section, generation of random numbers from BGSl(a,b,q) is discussed.
For different values of the parameters a,b and q, we generate random samples of
size 50, 100, 200 and 500 from BGSl(a,b,q) . Then the MLEs of the parameters are
obtained for each of the generated samples. Finally, the average values of bias and
mean squared error (MSE) of these estimates are calculated by using the Monte
Carlo approximation technique, taking N = 1,000 replicates. The algorithm used
in this simulation study is shown below:

(1) Simulate X ∼ Beta(a, b)
(2) Simulate U ∼ U(0, 1)
(3) Compute Y = X

U
1
q

Y thus generated is a random number from the BGSl(a,b,q). To calculate the
average bias and MSE of the likelihood estimates, we use the formulae as shown
below :

Let the true value of the parameter a be a* and estimate be â . Then the bias
and mean square error (MSE) of â in estimating a is given by:

Bias(â) =
1

N

N∑
i=1

(âi − a∗)

MSE(â) =
1

N

N∑
i=1

(âi − a∗)2

where N is the number of replications and âi is the MLE of â obtained in the ith

replicate. Similarly, the bias and MSE of b and q are calculated. It is well known
that an estimate is consistent if the bias and MSE decrease (approaches to zero)
with an increase in the sample size. Table 3 shows the results of the simulation
studies.

From Table 3, it has been found that the parameters are well estimated and
the bias and MSE of all the estimators approaches towards zero with an increase
in the sample size. Hence, the estimates of the parameters can be believed to be
consistent.

6. Application

To show the flexibility of the proposed distribution over some existing distri-
butions in modeling heavy - tailed data we apply these distributions to a real life
data set. The dataset is taken from Proschan [24] which describes the times among
airconditioning equipment consecutive failures in a Boeing 720 airplane. The data
set comprises of the observations:
74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326.
The histogram of the data set exhibits a right skewed behavior, which may be aptly
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Table 3. Average bias and RMSE of BGSl(a,b,q) distribution.

parameters n â b̂ q̂

Mean Bias(â) RMSE(â) Mean Bias(b̂) RMSE(b̂) Mean Bias(q̂) RMSE(q̂)
30 0.32641 0.02643 0.01384 0.59527 0.03287 0.08526 0.13275 0.00457 0.00042

a=0.3 50 0.31664 0.01658 0.00763 0.54859 0.02548 0.06785 0.10034 0.00331 0.00030
b=0.5 100 0.30603 0.00609 0.00368 0.53248 0.00825 0.05964 0.00957 0.00275 0.00018
q=0.9 200 0.30304 0.00327 0.00181 0.53008 0.00803 0.04327 00932 0.00187 0.00004

500 0.30238 0.00235 0.00072 0.51635 0.00629 0.03219 0.00854 0.00104 0.00001
30 0.17883 0.27816 0.07949 0.05267 0.05034 00034 1.91939 0.80460 0.00896

a=1.2 50 0.59274 0.09273 0.02966 0.53127 0.04520 0.00028 1.87617 0.78347 0.00725
b=0.5 100 0.52979 0.02979 0.01298 0.52958 0.04278 0.00023 1.86524 0.76219 0.00658
q=0.8 200 0.52421 0.02421 0.00664 0.51653 0.40595 0.00002 1.85928 0.75727 0.00568

500 0.50996 0.00996 0.00252 0.50216 0.03863 0.00001 1.84872 0.73527 0.00504
30 0.87878 0.07873 0.03837 1.23645 0.49152 2.96958 1.99152 0.87210 1.28645

a=0.8 50 0.83583 0.03583 0.02111 0.96879 0.00630 1.12792 1.94481 0.73594 1.00257
b= 1.3 100 0.82729 0.02729 0.01039 0.00435 0.00952 1.71888 0.70267 0.36485 0.99854
q=1.8 200 0.80816 0.00816 0.00498 0.94876 0.00380 0.00634 1.69458 0.65468 0.97380

500 0.80684 0.00684 0.00203 0.92135 0.00303 0.00439 1.54896 0.58642 0.93276

modelled by the proposed distribution. Since beta generated slash distribution is
an extended distribution having support on positive real line, we compare its fit to
the considered data sets with some other extended distributions, namely Modified
Slash Lindley (MSL) distribution, Generalised beta distribution of first kind (GB1),
Generalised Exponential distribution(GE) and Generalised Gamma(GG) distribu-
tion distributed on the range (0,∞). The various values of log-likelihood, AIC and
BIC statistic for BGSl and its competing distributions are shown in Table 4

From the Table 4, it is seen that the BGSl distribution has maximum likelihood
and minimum AIC, BIC statistics. Hence the BGSl distribution performs better
than the other competing distributions. Furthermore, Figure 4 and Figure 5 show
the histogram of the data set along with the fitted densities and the empirical
cdf versus fitted cdfs respectively for the times among airconditioning equipment
consecutive failures in a Boeing 720 airplane. These figures confirm the best fit of
BGSL(a, b, q) as compared to the other competing distributions.

7. Conclusion

This paper introduces a new distribution called the beta generated slash distri-
bution having three parameters, which is obtained from the beta distribution by
applying slash construction idea. The various distributional aspects such as mo-
ments, skewness, kurtosis, median, moment generating function, mean deviation,
mills ratio, order statistics, Lorenz and Bonferroni curves are studied. The method
of maximum likelihood is used to estimate the parameters and a simulation study
is performed to study the finite sample behaviour of the ML estimates. The MLE’s
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Table 4. Estimated parameters and discrimination criteria of
BGSl(a,b,q) distribution, Modified Slash Lindley (MSL) distribu-
tion, Generalised beta distribution of first kind (GB1), Generalised
Exponential distribution(GE) and Generalised Gamma(GG) dis-
tribution fitted to the data on failure times

Distribution MLE log-likelihood AIC BIC
BGSl(a,b,q) â=0.01976

b̂=7.9395 -16.9600 39.92008 37.4483
q̂=4.05135

MSL ˆλ=0.05035
q̂=1.196 -26.0660 56.1321 54.4843

GB1 â=0.4980

b̂=0.0271 -74.2625 156.5254 153.2293
p̂=0.5655
q̂=0.0513

GE â=0.4980153

λ̂=0.02710 -76.7627 157.5254 155.8773
GG â=97.9396

d̂=0.6999 -84.4641 174.9282 172.4565
p̂=0.5655

are found to be consistent and precise in estimating the true value of the parame-
ters. To show the application of the proposed distribution, it is applied to a dataset
consisting of failure times and its fit is compared with that of Modified Slash Lindley
(MSL) distribution, Generalised beta distribution of 1st kind (GB1), Generalised
Gamma distribution (GG)and Generalised Exponential (GE) distribution using log
- likelihood measure, Akaike information criterion(AIC) and Bayesian information
criterion(BIC). It is observed that the BGSl distribution is a better fit to the data
as compared to the others. Thus it can be concluded that the proposed distribution
is more flexible and has advantage in modeling right skewed heavy - tailed datasets
occuring in [0, ∞) or any subset of it.
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Figure 4. Histogram of and fitted densities to the data on air-
conditioning equipment consecutive failure times in a Boeing 720
airplane

Figure 5. CDF plot of the observed data and fitted distributions
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[12] Reyes, J., Vilca, F., Gallardo, D.I., Gómez, H.W., Modified slash Birnbaum-Saunders distri-

bution, Hacettepe Journal of Mathematics and Statistics, 46(5) (2017), 969-984. 10.15672/
HJMS.201611215603
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