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Abstract— Researchers from leading technology companies, prestigious universities worldwide, and the open-source 

community have made substantial strides in the field of facial recognition studies in recent years. Experiments indicate 

that facial recognition approaches have not only achieved but surpassed human-level accuracy. A contemporary facial 

recognition process comprises four key stages: detection, alignment, representation, and verification. Presently, the focus 

of facial recognition research predominantly centers on the representation stage within the pipelines. This study conducted 

experiments exploring alternative combinations of nine state-of-the-art facial recognition models, six cutting-edge face 

detectors, three distance metrics, and two alignment modes. The co-usability performances of implementing and adapting 

these modules were assessed to precisely gauge the impact of each module on the pipeline. Theoretical and practical 

findings from the study aim to provide optimal configuration sets for facial recognition pipelines. 
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Yüz Tanıma Üretim Hatlarının ve Modüllerinin  

Birlikte Kullanımının Karşılaştırılması 
 

 

Özet— Son yıllarda, büyük teknoloji şirketleri, dünyanın önde gelen üniversiteleri ve açık kaynak topluluğundan gelen 

araştırmacılar, yüz tanıma alanında önemli ilerlemeler kaydetmişlerdir. Yapılan deneyler, yüz tanıma yaklaşımlarının 

insan düzeyinde doğruluk sağladığını ve hatta aştığını göstermektedir. Modern bir yüz tanıma süreci genellikle dört 

aşamadan oluşur: algılama, hizalama, temsil ve doğrulama. Mevcut yüz tanıma çalışmaları genellikle üretim hatlarındaki 

temsil aşamasına odaklanmıştır. Bu çalışmada, dokuz farklı son teknoloji yüz tanıma modeli, altı son teknoloji yüz 

dedektörü, üç mesafe ölçümü ve iki hizalama modunun farklı kombinasyonları için çeşitli deneyler gerçekleştirilmiştir. 

Bu modüllerin uygulanması ve uyumlu hale getirilmesinin genel performansları, her bir modülün üretim hattındaki 

spesifik etkisini belirlemek amacıyla değerlendirilmiştir. Çalışmanın teorik ve pratik sonucu olarak, yüz tanıma hatları 

için en iyi konfigürasyon setlerinin paylaşılması hedeflenmektedir. 
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1. INTRODUCTION  

In recent years, researchers and open-source communities 

have made substantial advancements in the field of facial 

recognition. This area of research has garnered attention 

from major technology companies and top universities 

worldwide. Experiments indicate that machine learning-

based facial recognition approaches developed by these 

entities have not only achieved but surpassed human-level 

accuracy.  

A widely accepted perspective among facial recognition 

researchers advocates for the incorporation of four 

fundamental stages in contemporary facial recognition 

pipelines [1]: detection, alignment, representation, and 

verification. Notably, the representation stage stands out as 

the most crucial phase, tasked with generating vector 

embeddings from facial images. Presently, state-of-the-art 

models for the representation module predominantly 

leverage convolutional neural networks, exemplified by 

models like FaceNet [2], VGG-Face [3], ArcFace [4], Dlib 

[5], Sface [6], OpenFace [7], DeepFace [1], and DeepId 

[8]. 

Following the representation stage, the verification module 

calculates distances between vector embeddings of face 

pairs. Experiments reveal that the distribution of distances 

for pairs belonging to the same person and different 

individuals is discrete, particularly in robust models [9]. 

Various metrics, such as Euclidean, L2 normalized 

Euclidean form, or cosine similarity, can be employed to 

compute the distances between vectors. 

Prior to the representation stage, both detection and 

alignment serve as early modules in the pipeline, aiming to 

provide clear inputs. Substantial progress has been made in 

recent years in the field of face detection. Noteworthy face 

detectors include OpenCV Haar Cascade [10], SSD [11], 

MediaPipe [12] [13], MTCNN [14], Dlib HOG [5], and 

RetinaFace [15]. Some of these detectors are built on 

modern convolutional neural networks, such as MTCNN, 

RetinaFace, and SSD, while others adhere to legacy 

approaches like OpenCV and Dlib HOG. Additionally, 

facial landmarks, including the coordinates of the eyes, are 

provided by these detectors, facilitating the horizontal 

alignment of faces. 

In the realm of facial recognition studies, there is, 

regrettably, a lack of uniformity as researchers and model 

creators approach the problem from diverse perspectives. 

The primary emphasis tends to be on the representation 

stage within the pipeline, where various combinations of 

face detectors, alignment procedures, and distance metrics 

are employed. This variability introduces a challenge in 

fairly comparing these models, as a facial recognition 

model may demonstrate superior performance when 

configured differently, potentially exceeding its initially 

reported score. The precise influence of detection, 

alignment, and verification modules on the overall pipeline 

remains to be fully understood. 

This study assesses the efficacy of facial recognition 

pipelines across four key dimensions: facial recognition 

models, face detectors, distance metrics, and the impact of 

enabling or disabling alignment modes. The objective is to 

identify optimal configuration settings for the pipeline. The 

paper further seeks to elucidate the tangible influence of 

each module on the overall pipeline score. Ultimately, the 

study compares the performance of human subjects to that 

of different models and configurations, determining which 

ones surpassed, matched, approached, or fell short of 

human-level accuracy. 

In this context, LightFace [9] [16] emerges as one of the 

most widely used facial recognition libraries for the Python 

programming language. Comprehensive in its coverage, it 

includes various facial recognition models, face detectors, 

distance metrics, and alignment modes, seamlessly 

managing all facial recognition procedures in the 

background. For the purposes of this study, the LightFace 

package was utilized and implemented to execute a range 

of experimental setups. 

2. DATASET 

The Labeled Faces in the Wild (LFW) dataset [17] stands 

as the predominant dataset in facial recognition studies, 

comprising 13,233 images belonging to 5,749 identities. 

For the purpose of this study, the LFW dataset was loaded 

using scikit-learn [18]. The dataset includes 2,200 pairs for 

training, 6,000 pairs for 10-fold cross-validation, and 1,000 

pairs for testing. Each pair is appropriately labeled as either 

depicting the same person or different individuals. The 

original size of images in LFW is (250, 250, 3). Given the 

focus on pre-trained models in this study, attention is 

directed solely to the test set. 

Half of the pairs of recommended test sets belong to the 

same person, whereas another half of the pairs correspond 

to different persons. So, the test set has fairly homogeneous 

target labels. That is why accuracy scores are mentioned in 

the performance results. The raw unaligned LFW images 

were used because detection and alignment impact in the 

pipeline were evaluated. 

There are successful studies in the literature with good 

results in capturing information from the context such as 

image background or hairstyle. Neeraj Kumar et al [19] 

reported the performance of human-beings on LFW 

dataset. They collected the classification votes of 10 voters 

for each pair in LFW dataset consisting of 6000 instances 

via Amazon Mechanical Turk. Besides, voters taken three 

different tests: verifying original image pairs, tight crop 

images and inverse crops as shown in Figure 1. 
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Figure 1. Test Tasks 

Humans are able to verify uncropped face pairs with 99.2% 

accuracy score. They also obtain 94.2% accuracy even for 

image pairs on same dataset with blurred or blacked facial 

areas. On the other hand, human-beings have 97.5% 

accuracy for verifying cropped face pairs. So, people can 

find out a lot information from the context such as 

background. Regions outside of the facial area is not 

strongly recommended to be used not to boost results 

artificially. That is why, facial recognition researchers 

always compare built model performances with this score. 

3. PIPELINE 

A modern facial recognition pipeline consists of 4 common 

stages: detection, alignment, representation and 

verification. This section outlines the current procedures in 

place for these modules. 

3.1. Detection and Alignment  

Only open source face detectors were used in the detection 

module. There are five of them: OpenCv, Ssd, MtCnn, 

Dlib, and RetinaFace. Their role will be to detect faces and 

discard regions outside of the facial area in order to avoid 

artificially boosting results. 

An alignment step is also performed after detection. The 

eye locations can then be used to construct a right-angled 

triangle with two corners at eye locations as shown in 

Figure  2. 

 
Figure 2. Alignment Procedure 

Calculating the cosine of an angle is then done using the 

cosine rule in Formula  1. Inverse cosine of this term 

returns angle in radian. The angle can then be converted to 

degrees using the formula  2. The image will then be 

rotated by A degrees until the eyes are horizontal. 

cos(𝐴) =  
𝑏2+𝑐2−𝑎2

2𝑏𝑐
   (1) 

𝐴° = arccos (
𝑏2+𝑐2−𝑎2

2𝑏𝑐
)

180

𝜋
 (2) 

3.2. Resizing 

The outcomes of the detection and alignment modules 

serve as inputs for the representation module. In facial 

recognition pipelines, the representation module 

predominantly relies on convolutional neural networks 

(CNNs). CNNs typically require inputs to have a fixed 

shape, yet detected and aligned facial images lack such 

uniformity. Table 1 provides an overview of the anticipated 

architectures for the facial recognition models discussed in 

this study including input shape, embedding dimensions, 

total parameters (weights and biases) and number of layers. 

Consequently, resizing the detected and aligned faces 

becomes imperative before invoking the representation 

module. 

Table 1. Facial Recognition Model’s Architectures 

Model 
Input 

Shape 

Embedding 

Dimensions 

Total 

Params 

Num of 

Layers 

FaceNet-128d 160, 160, 3 128 22M 447 

FaceNet-512d 160, 160, 3 512 23M 447 

Vgg-Face 224, 224, 3 4096 134M 36 

ArcFace 112, 112, 3 512 34M 162 

Dlib 150, 150, 3 128 63M 34 

SFace 112, 112, 3 128 9M 88 

OpenFace 96, 96, 3 128 3M 166 

DeepFace 152, 152, 3 4096 102M 9 

DeepId 55, 47, 3 160 395K 17 

In order to prevent deformation, black padding pixels were 

introduced to the images instead of resizing them. Figure 3 

visually depicts the outcomes of detection and alignment 

using various detectors, along with the addition of black 

padding pixels to resize the image to the expected input 

shape of VGG-Face. 

 
Figure 3. Detection, Alignment and Resizing 

 

 



98                                                                                                                                                                                          BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 

 

 

3.3. Representation 

The representation module of all the facial recognition 

models discussed in this study is based on convolutional 

neural networks. In spite of the fact that CNN structures 

have many output nodes, units were not used for 

classification tasks. Rather than finding the most dominant 

output node to make classification, the probabilities of 

output nodes were used. Figure 4 shows how DeepFace  [1] 

model finding vector embeddings.  

 
Figure 4. Vector Representation with DeepFace [1] 

3.4. Verification 

The representation module returns vectors for face pairs, 

and these vectors are passed to the verification module. The 

distance between those vectors was calculated in the 

verification module. Formula 3 shows the euclidean 

distance formula where p and q are n-dimensional vectors. 

Similarly, Formula 4 finds the cosine distance where p and 

q are n-dimensional vectors. 

𝑑(𝑝, 𝑞) =  √∑ (𝑝𝑖 −  𝑞𝑖)2𝑛
𝑖=1   (3) 

𝑑(𝑝, 𝑞) = 1 −
∑ 𝑝𝑖𝑞𝑖

𝑛
𝑖=1

√∑ 𝑝𝑖
2𝑛

𝑖=1 √∑ 𝑞𝑖
2𝑛

𝑖=1

  (4) 

Before feeding the vectors to distance formulas, l2 were 

applied for normalization to vectors to have smoother ones 

as shown in Formula 5 where q is a n-dimensional vector. 

𝑙2(𝑞) =  
𝑞

√∑ 𝑞𝑖
2𝑛

𝑖=1

   (5) 

Accordingly, this pair would be classified as the same 

person if the distance was less than the threshold. 

Similarly, this pair could be classified as different persons 

if the distance between them exceeds the threshold value. 

 

Figure 5. Distance Distribution 

The experiments demonstrate that the distance 

distributions for the same person and different persons 

classes, as tested with the VGG-Face facial recognition 

model using L2 Normalized Euclidean distance and 

enabled alignment mode on unit test items of DeepFace, 

can be separated, as illustrated in Figure 5. In this context, 

the C4.5 algorithm [20] was employed to identify the 

threshold that yields the maximum information gain. 

3.4. Handling Many Faces Issue 

Some instances of the LFW dataset have some problematic 

data. For instance, an image may contain many faces and 

the one targeted by the label may not be known precisely. 

In this case,  all pairs of faces were extracted using the 

current running detector (e.g. MtCnn), and all candidates 

were then represented as vectors using the current running 

facial recognition model (e.g. VGG-Face). Following that, 

all vector candidates were distanced by using current 

running similarity algorithms (e.g. cosine and euclidean). 

As a result, the face pair with the minimum distance was 

fed into the algorithm. Figure 6 explains how we extract 

the right face from these problematic samples. The faces of 

the lady are used in both images for this case since the 

distance is shorter. 

 
Figure 6. Picking a Face Among Many Faces 

4. PRE-TRAINED MODELS 

LightFace for python [21] will be used to build facial 

recognition pipelines. This library basically wraps the 

following models with pre-trained weights. 

4.1. Facial Recognition Models 

Researchers from the Visual Geometry Group at Oxford 

University developed the VGG-Face model. The model's 

structure was detailed in their paper [3], and they 

generously provided pre-trained weights for the VGG-Face 

model in MatLab, Torch, and Caffe on the research group's 

website [22]. Subsequently, the MatLab weights were 

converted into Keras, and the VGG-Face model was 

reconstructed from the ground up using Keras. 



BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024                                                                                                                                                                                          99 
 

 

Researchers at Google designed the FaceNet model, which 

outputs 128 dimensions. The model's structure is outlined 

in their paper [2], but the pre-trained weights are not 

publicly available. However, David Sandberg undertook 

the task of re-training FaceNet with both 128 and 512 

dimensional outputs and generously shared the pre-trained 

weights in TensorFlow format [23]. These TensorFlow 

weights were then converted to Keras format, and a new 

model in Keras was constructed from the ground up. 

ArcFace, a component of the InsightFace project, was 

developed by the Deep Inside research group [4]. The 

ArcFace model, along with its pre-trained weights, can be 

accessed on the group's website for both PyTorch and 

MXNet. Additionally, Leon D. Garse re-trained the 

ArcFace model specifically for Keras [24]. The pre-trained 

weights from this repository were utilized, and a new 

model was constructed from scratch in Keras. 

SFace, primarily developed by Yaoyao Zhong [6], includes 

shared models and pre-trained weights accessible for both 

PyTorch and MXNet. The OpenCV community played a 

role in converting the model to a language-independent 

ONNX format [25]. Consequently, SFace can be utilized 

through OpenCV in this context. 

Researchers from Carnegie Mellon University developed 

the OpenFace model. Both the model and its pre-trained 

weights can be accessed on the research group's website for 

Lua Torch. Victor Sy Wang took on the task of converting 

the pre-trained weights of the OpenFace model to Keras 

[26]. The weights from this re-implementation were 

utilized, and the model was then constructed from scratch. 

Facebook researchers developed the DeepFace model, 

outlining its structure in their paper [1], although they did 

not provide the pre-trained weights for the model. Swarup 

Ghosh took the initiative to re-train the DeepFace model 

using Keras from scratch and shared the resulting pre-

trained weights in his repository [27]. While the original 

study utilized the Social Face Classification (SFC) [1] 

dataset with 4030 identities, Ghosh re-trained the 

DeepFace model using the VGGFace2 [28] dataset with 

8631 identities. Consequently, the original DeepFace 

model produces 4030-dimensional vectors, whereas 

Ghosh's re-implementation generates 8631-dimensional 

vectors. The DeepFace model was reconstructed from the 

ground up, and the pre-trained weights from this re-

implementation were utilized. 

The DeepId model, crafted by researchers from the 

Chinese University of Hong Kong, had its model structure 

detailed in their paper [8]. However, the pre-trained 

weights were not made publicly available. Roy Ran took 

on the task of re-training the DeepId model from the 

ground up and generously shared the resulting pre-trained 

weights specifically for TensorFlow [29]. To facilitate 

utilization of these pre-trained weights, a conversion 

process was employed to adapt them into the Keras format. 

Dlib constructs a ResNet model designed for facial 

recognition purposes [5], with the Dlib library being 

directly imported for implementation. 

4.3. Face Detectors 

The MtCnn face detector model was developed by Kaipeng 

Zhang et al [14]. Iván de Paz Centeno took the initiative to 

independently re-implement MtCnn from scratch using 

Keras, presenting it as a project [30]. The MtCnn project 

has been directly incorporated into the system. 

The RetinaFace model, created by researchers from Deep 

Insight as part of the InsightFace project [4], is provided 

with both the model and pre-trained weights for PyTorch 

and MXNet on the research group's website. Additionally, 

Stanislas Bertrand undertook the task of re-implementing 

the RetinaFace model using Keras [31]. Following the 

completion of the RetinaFace project repackaging [32], 

this new RetinaFace package was directly imported for use. 

The SSD (Single Shot Multibox Detector) model, designed 

by Wei Liu et al [11], had its Caffe model wrapped by the 

OpenCV community [10]. In practice, SSD was utilized 

through OpenCV. However, SSD itself does not provide 

facial landmarks. To align faces identified by SSD, the eye 

detection module of OpenCV was employed. MediaPipe 

[12] features a face detection module built on BlazeFace 

[13], which is structurally derived from SSD but includes 

facial landmarks. The MediaPipe library was directly 

imported for use. Additionally, Dlib was employed for face 

detection using its HOG model [5], and the Haar Cascade 

module of OpenCV was imported to utilize its face 

detection functionality. 

Re-implementations of certain reference models have been 

undertaken, and as a consequence, experimental results 

will be linked to these re-implementations rather than the 

original studies. It's important to note that even when the 

same facial recognition model and pre-trained weights 

were utilized, discrepancies in pre-processing techniques 

and model implementation may exist compared to those 

employed in the original study. Specifically, a 2D 

discarding approach was implemented, discarding regions 

outside the facial area using commonly available open-

source face detectors, as suggested in the literature [19], to 

prevent the artificial inflation of results. 

4. EXPERIMENTS 

A total of 378 experiments were performed on the LFW 

dataset test set, considering combinations of the four 

dimensions listed in Table 8. This exhaustive approach 

aimed to identify the optimal configuration set for facial 

recognition. Additionally, each module in the pipeline was 

systematically examined to discern its specific impact on 

the overall results. 
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Table 8. Different Configration Sets for Experiments 

Configuration Possible Values 

Facial Recognition 

Models 

FaceNet128d, FaceNet512d, Vgg-Face, 

ArcFace, Dlib, SFace, OpenFace, DeepFace, 
DeepId 

Face Detector 

Models 

OpenCv, Ssd, MtCnn, Dlib, RetinaFace, 

MediaPipe, No Detection 

Distance Metrics Cosine, Euclidean, L2-Norm Euclidean 

Alignment Mode Enabled, Disabled 

Tables 2, 3, 4, 5, 6, and 7 present the performance matrices 

of facial recognition models and face detectors across 

various distance metrics and alignment modes. In these 

tables, columns denote facial recognition models, rows 

represent face detectors, and the cells display 

corresponding accuracy values. Additionally, to enhance 

comprehension of the influence of detection and alignment 

modules, the scores of facial recognition models without 

detection and alignment are also provided. 

As outlined in Section 3, the output of the representation 

module consists of a vector pair, and the subsequent step 

involves measuring the distance between these vectors. A 

pair is classified as the same person if the distance between 

them falls below the specified threshold value. 

Furthermore, ROC curves were generated using distance 

values and corresponding target labels. This approach is a 

conventional practice to assess the model's performance 

from a holistic perspective. 

ROC curves for different models were illustrated in Figure 

7 for FaceNet512d, Figure 8 for VGG-Face, Figure 9 for 

Dlib, Figure 10 for FaceNet128d, Figure 11 for ArcFace, 

and Figure 12 for SFace, focusing specifically on robust 

detectors (RetinaFace, MtCnn, Dlib, and MediaPipe). It is 

recommended to view these figures in color for optimal 

clarity. Additionally, the graphics include area under the 

curve (AUC) values, and the legends are arranged in 

descending order based on these values. In this context, a 

higher AUC value indicates superior model performance. 

The ROC curves presented above highlight that 

FaceNet512d and VGG-Face stand out as the most robust 

models, regardless of the detector used. However, the 

performance of other facial recognition models exhibits 

variations depending on the specific configuration 

employed. 

5. RESULTS 

The experiments examined both context-independent and 

context-dependent conditions. While there is significant 

importance in running facial recognition pipelines in a 

context-independent manner, the results obtained under 

context-dependent conditions may provide a more accurate 

understanding of the direct influence of face detection on 

facial recognition pipelines. The study involved comparing 

these models with human performance, resulting in a 

context-free accuracy of 97.5% and a non-context-free 

accuracy of 99.2% [19]. Finally, the study demonstrated 

the impact of detectors and alignment modules on the 

pipelines. 

Table 9. Comparison of Measured Accuracy Scores in LightFace and 
Declared Accuracy Scores in Their Original Researches 

Model 
Measured 

Accuracy 

Declared 

Accuracy 

Original 

Paper 

FaceNet-512d 98.4 99.6 [2] 

FaceNet-128d 97.0 99.6 [2] 

Dlib 96.8 99.3 [5] 

VGG-Face 96.7 98.9 [3] 

ArcFace 96.6 99.5 [4] 

SFace 93.0 99.5 [6] 

OpenFace 78.7 92.9 [7] 

DeepFace 68.7 97.3 [1] 

DeepId 65.6 97.4 [8] 

As shown in Table 9, the measured accuracies of various 

facial recognition models using the LightFace library offer 

valuable insights into their performance. A comparison 

with the accuracy scores declared in their original papers 

reveals that FaceNet, Dlib, ArcFace, and VGG-Face 

closely approach the declared performances, albeit falling 

slightly below. Notably, for models such as VGG-Face and 

Dlib, the small differences may be a result of the adopted 

normalization techniques in both the original studies and 

the LightFace framework. Additionally, it is noteworthy 

that LightFace employs open-sourced pre-trained weights 

for their re-implementation instead of using the original 

ones, as seen in the case of FaceNet and ArcFace. These 

minor differences are deemed acceptable and do not 

compromise the overall robustness of these models. 

Despite the slight variations, the models remain robust and 

showcase reliable performance. Despite these differences, 

SFace, while exhibiting a performance lower than 

declared, shows a manageable gap, suggesting its 

continued usability. 

In contrast, OpenFace, DeepFace, and DeepId exhibit 

notable disparities from their originally reported 

accuracies, which can be attributed to the utilization of pre-

trained weights retrieved from open-source re-

implementations rather than the original studies' pre-

trained weights. The original pre-trained weights, as 

detailed in Section 4, are not publicly available. This 

distinction highlights the significance of the source of pre-

trained weights, as the use of open-source alternatives may 

lead to differences in model performance. The observed 

disparities underscore the importance of obtaining and 

utilizing the original pre-trained weights when aiming to 

replicate or surpass the accuracies reported in the 

respective original studies. 

5.1. Context Independent Results 

FaceNet512d achieved an accuracy of 98.4%, followed by 

FaceNet128d with 97.0% accuracy. Both models have 

surpassed human-level accuracy. The most satisfactory 

configurations are highlighted in bold within the tables. 

Dlib achieved an accuracy of 96.8%, ArcFace and VGG-

Face demonstrated 96.7% and 96.6% accuracy, 

respectively. These models achieved accuracy levels 

comparable to human performance. SFace, with an 

accuracy of 93.0%, approached human-level accuracy. 
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OpenFace achieved an accuracy of 78.7%, DeepFace 

reached 68.7%, and DeepId attained 65.6% accuracy. 

Consequently, these re-implementations exhibited subpar 

performance, rendering them unsuitable for deployment in 

production pipelines. Notably, FaceNet128d, ArcFace, and 

Dlib displayed significantly reduced performance when the 

detection stage was omitted. It is imperative to execute the 

detection stage for these facial recognition models. 

OpenCv and Ssd detectors exhibit diminished performance 

when the alignment mode is enabled. This limitation arises 

from their inability to pinpoint eye locations with the same 

precision as RetinaFace or MtCnn. Consequently, it is 

advisable to omit the alignment stage when using these 

detectors. RetinaFace, MtCnn, and Dlib, on the other hand, 

showcase a notable performance enhancement when the 

alignment mode is activated, establishing them as robust 

detectors across all considered configurations. The 

performance of MediaPipe experiences a slight decline 

with alignment; even with alignment disabled, it ranks 

below RetinaFace, Dlib, and MtCnn.  

Finally, none of the distance metrics demonstrate 

underperformance, and despite their variances, each 

contributes significantly to the overall performance. 

5.2. Context Dependent Results 

In the presence of contextual information, facial 

recognition models struggle to achieve human-level 

accuracy. Their performance sees a significant boost when 

focusing exclusively on the facial region, likely due to their 

training on context-independent data. FaceNet512d attains 

a 92% score even with detection disabled, marking the 

closest performance to human among facial recognition 

models without detectors. VGG-Face achieves a 90.6% 

score, while SFace scores 83.4% with detection turned off, 

both trailing FaceNet-512d. FaceNet512d stands out as the 

optimal choice for use cases demanding both swift and 

reliable results, such as facial recognition in crowded 

environments. In such scenarios, detection and alignment 

may be skipped, yet the pipeline maintains a commendable 

score. 

5.3. Impact of custom modules in the pipeline 

In optimal conditions, the detection impact for ArcFace is 

41.8%, FaceNet128d is 30.8%, Dlib is 27.3%, OpenFace is 

20.9%, SFace is 9.6%, DeepFace is 7.6%, FaceNet-512d is 

6.6%, VGG-Face is 6.1%, and DeepId is 3.6%. Therefore, 

the inclusion of a detection module is essential for facial 

recognition pipelines. 

Similarly, the alignment impact for SFace is 17.2%, 

DeepFace is 13.7%, ArcFace is 11.7%, FaceNet128d is 

6.5%, VGG-Face is 1.6%, OpenFace is 1.0%, FaceNet-

512d is 0.7%, and DeepId is 0.7% in the best-case 

scenarios. Consequently, alignment serves as a crucial 

enhancement module for facial recognition pipelines. 

Furthermore, identifying the intersections of 

misclassifications for each facial recognition model across 

various configuration sets will aid in comprehending the 

weaknesses inherent in each model. As depicted in Figure 

13, FaceNet512d misclassifies 6 pairs, FaceNet128d 

misclassifies 5 pairs, and both Dlib and ArcFace 

misclassify 3 pairs in all experiments involving Euclidean, 

l2 normalized Euclidean, and Cosine distance metrics, as 

well as RetinaFace, MtCnn, and Dlib face detectors, with 

alignment mode exclusively enabled. 

Predominantly, the common misclassifications for each 

model involve false negatives. It appears that these models 

commonly misclassify pairs when individuals wear 

accessories like sunglasses or caps. Similarly, differences 

in age and emotion within pairs contribute to 

misclassifications. Furthermore, the common 

misclassifications mainly pertain to pairs of the same 

person.  

6. CONCLUSION 

In this study, all configuration alternatives were tested in 

LightFace. To avoid artificially boosting results, the facial 

area in images was focused and the regions outside of the 

facial area were discarded.  

Based on the results of the experiments, it was determined 

that some facial recognition models were capable of 

reaching or exceeding human level accuracy under certain 

configurations. It can be concluded that the facial 

recognition model with dependent face detector, distance 

metric and alignment mode underperform or overperform. 

Based on their best configuration set, facial recognition 

models were classified into four categories: passing human 

level accuracy, reaching human level accuracy, coming 

close to human level accuracy, and underperforming ones. 

AUC and ROC curves also provide opinions about the 

robustness of facial recognition models. 

Additionally, this work discusses the contribution of 

detection and alignment modules to pipeline accuracy. The 

detection module is an essential component of a pipeline as 

it can improve performance by up to 40%. While alignment 

serves as a significant performance booster, improving 

performance by up to 17%. Results found regarding the 

robustness of face detectors. OpenCv, SSD and MediaPipe 

have deteriorated when alignment is enabled, whereas 

RetinaFace, MtCnn and Dlib are always resilient. 

LightFace also features an easy and simple interface. The 

dimensions mentioned in this study are merely input 

arguments for a pipeline. Thus, practitioners are able to 

construct and run facial recognition pipelines with a few 

lines of code. This study can be used as a guide to assist 

practitioners in choosing the most appropriate 

configurations for their facial recognition pipelines 

according to their individual needs. 
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Table 2. Accuracy Metric for Euclidean Distance and Disabled Alignment 

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 92.8 96.1 95.7 84.1 88.3 78.6 70.8 67.4 64.3 

MtCnn 92.5 95.9 95.5 81.8 89.3 76.3 70.9 65.9 63.2 

Dlib 89.0 96.0 94.1 82.6 96.3 73.1 75.9 61.8 61.9 

MediaPipe 87.1 94.9 93.1 71.1 91.9 73.2 77.6 61.7 62.4 

Ssd 94.9 97.2 96.7 83.9 88.6 82.0 69.9 66.7 64.0 

OpenCv 90.2 94.1 95.8 89.8 91.2 86.9 71.1 68.4 61.1 

None 64.1 92.0 90.6 56.6 69.0 81.4 57.4 60.8 60.7 

 

Table 3. Accuracy Metric for L2 Normalized Euclidean Distance and Disabled Alignment 

 FaceNet-128d FaceNet512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 95.9 98.0 95.7 95.7 88.4 90.6 70.8 67.7 64.6 

MtCnn 96.2 97.8 95.5 95.9 89.2 91.1 70.9 67.0 64.0 

Dlib 89.9 96.5 94.1 93.8 95.6 75.0 75.9 62.6 61.8 

MediaPipe 90.0 96.3 93.1 89.3 91.8 74.6 77.6 64.9 61.6 

Ssd 97.0 97.9 96.7 96.6 89.4 93.0 69.9 68.7 64.9 

OpenCv 92.9 96.2 95.8 93.2 91.5 91.7 71.1 68.3 61.6 

None 67.6 91.4 90.6 57.2 69.3 83.4 57.4 62.6 61.6 

 

Table 4. Accuracy Metric for Cosine Distance and Disabled Alignment 

 FaceNet-128d FaceNet512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 95.9 98.0 95.7 95.7 88.4 90.6 70.8 67.7 63.7 

MtCnn 96.2 97.8 95.5 95.9 89.2 91.1 70.9 67.0 64.0 

Dlib 89.9 96.5 94.1 93.8 95.6 75.0 75.9 62.6 61.7 

MediaPipe 90.0 96.3 93.1 89.3 91.8 74.6 77.6 64.9 61.6 

Ssd 97.0 97.9 96.7 96.6 89.4 93.0 69.9 68.7 63.8 

OpenCv 92.9 96.2 95.8 93.2 91.5 91.7 71.1 68.1 61.1 

None 67.6 91.4 90.6 54.8 69.3 83.4 57.4 62.6 61.1 

 

Table 5. Accuracy Metric for Euclidean Distance and Enabled Alignment 

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 93.5 95.9 95.8 85.2 88.9 80.2 69.4 67.0 65.6 

MtCnn 93.8 95.2 95.9 83.7 89.4 77.4 70.2 66.5 63.3 

Dlib 90.8 96.0 94.5 88.6 96.8 66.3 75.8 63.4 60.4 

MediaPipe 88.6 95.1 92.9 73.2 93.1 72.5 78.7 61.8 62.2 

Ssd 85.6 88.9 87.0 75.8 83.1 76.9 66.8 63.4 62.5 

OpenCv 84.2 88.2 87.3 73.0 84.4 81.1 66.4 65.5 59.6 

None 64.5 92.0 90.6 56.6 69.0 81.4 57.4 60.8 60.7 

 

Table 6. Accuracy Metric for L2 Normalized Euclidean Distance and Enabled Alignment 

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 96.4 98.4 95.8 96.6 89.1 92.4 69.4 67.7 64.4 

MtCnn 96.8 97.6 95.9 96.0 90.0 90.5 70.2 66.4 64.0 

Dlib 92.6 97.0 94.5 95.1 96.4 69.8 75.8 66.5 59.5 

MediaPipe 90.6 96.1 92.9 90.3 92.6 75.4 78.7 64.7 63.0 

Ssd 87.5 88.7 87.0 86.2 83.3 84.6 66.8 64.1 62.6 

OpenCv 84.8 87.6 87.3 84.6 84.0 83.6 66.4 63.8 60.9 

None 67.6 91.4 90.6 57.2 69.3 83.4 57.4 62.6 61.6 

 

 

Table 7. Accuracy Metric for Cosine Distance and Enabled Alignment 

 FaceNet128 FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId 

RetinaFace 96.4 98.4 95.8 96.6 89.1 92.4 69.4 67.7 64.4 

MtCnn 96.8 97.6 95.9 96.0 90.0 90.5 70.2 66.3 63.0 

Dlib 92.6 97.0 94.5 95.1 96.4 69.8 75.8 66.5 58.7 

MediaPipe 90.6 96.1 92.9 90.3 92.6 75.4 78.7 64.8 63.0 

Ssd 87.5 88.7 87.0 86.2 83.3 84.5 66.8 63.8 62.6 

OpenCv 84.9 87.6 87.2 84.6 84.0 83.6 66.2 63.7 60.1 

None 67.6 91.4 90.6 54.8 69.3 83.4 57.4 62.6 61.1 
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Figure 7. ROC Curves and AUC Scores for FaceNet512d 

 

 

 

 

 

 
Figure 8. ROC Curves and AUC Scores for VGG-Face 
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Figure 9. ROC Curves and AUC Scores for Dlib 

 

 

 

 

 

 

 
Figure 10. ROC Curves and AUC Scores for FaceNet128d 
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Figure 11. ROC Curves and AUC Scores for ArcFace 

 

 

 

 

 

 

 
Figure 12. ROC Curves and AUC Scores for SFace 
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Figure 13. Common Misclassifications 
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