
BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 95

A Benchmark of Facial Recognition Pipelines

and Co-Usability Performances of Modules
Araştırma Makalesi/Research Article

 Şefik İlkin SERENGİL
1

, Alper ÖZPINAR
2

1 Solution Engineering Department, Vorboss Limited, London, UK

2 Mechatronics Engineering Department, Istanbul Ticaret University, Istanbul, Turkey
sefik.serengil@vorboss.com, alper.ozpinar@ticaret.edu.tr

(Geliş/Received:01.12.2023; Kabul/Accepted:29.03.2024)

DOI: 10.17671/gazibtd.1399077

Abstract— Researchers from leading technology companies, prestigious universities worldwide, and the open-source

community have made substantial strides in the field of facial recognition studies in recent years. Experiments indicate

that facial recognition approaches have not only achieved but surpassed human-level accuracy. A contemporary facial

recognition process comprises four key stages: detection, alignment, representation, and verification. Presently, the focus

of facial recognition research predominantly centers on the representation stage within the pipelines. This study conducted

experiments exploring alternative combinations of nine state-of-the-art facial recognition models, six cutting-edge face

detectors, three distance metrics, and two alignment modes. The co-usability performances of implementing and adapting

these modules were assessed to precisely gauge the impact of each module on the pipeline. Theoretical and practical

findings from the study aim to provide optimal configuration sets for facial recognition pipelines.

Keywords— facial recognition, face verification, deepface, vector models

Yüz Tanıma Üretim Hatlarının ve Modüllerinin

Birlikte Kullanımının Karşılaştırılması

Özet— Son yıllarda, büyük teknoloji şirketleri, dünyanın önde gelen üniversiteleri ve açık kaynak topluluğundan gelen

araştırmacılar, yüz tanıma alanında önemli ilerlemeler kaydetmişlerdir. Yapılan deneyler, yüz tanıma yaklaşımlarının

insan düzeyinde doğruluk sağladığını ve hatta aştığını göstermektedir. Modern bir yüz tanıma süreci genellikle dört

aşamadan oluşur: algılama, hizalama, temsil ve doğrulama. Mevcut yüz tanıma çalışmaları genellikle üretim hatlarındaki

temsil aşamasına odaklanmıştır. Bu çalışmada, dokuz farklı son teknoloji yüz tanıma modeli, altı son teknoloji yüz

dedektörü, üç mesafe ölçümü ve iki hizalama modunun farklı kombinasyonları için çeşitli deneyler gerçekleştirilmiştir.

Bu modüllerin uygulanması ve uyumlu hale getirilmesinin genel performansları, her bir modülün üretim hattındaki

spesifik etkisini belirlemek amacıyla değerlendirilmiştir. Çalışmanın teorik ve pratik sonucu olarak, yüz tanıma hatları

için en iyi konfigürasyon setlerinin paylaşılması hedeflenmektedir.

Anahtar Kelimeler— yüz tanıma, yüz doğrulama, deepface, vektör modeller

https://orcid.org/0000-0002-0345-0088
mailto:sefik.serengil@vorboss.com
mailto:alper.ozpinar@ticaret.edu.tr
https://orcid.org/0000-0003-1250-5949

96 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

1. INTRODUCTION

In recent years, researchers and open-source communities

have made substantial advancements in the field of facial

recognition. This area of research has garnered attention

from major technology companies and top universities

worldwide. Experiments indicate that machine learning-

based facial recognition approaches developed by these

entities have not only achieved but surpassed human-level

accuracy.

A widely accepted perspective among facial recognition

researchers advocates for the incorporation of four

fundamental stages in contemporary facial recognition

pipelines [1]: detection, alignment, representation, and

verification. Notably, the representation stage stands out as

the most crucial phase, tasked with generating vector

embeddings from facial images. Presently, state-of-the-art

models for the representation module predominantly

leverage convolutional neural networks, exemplified by

models like FaceNet [2], VGG-Face [3], ArcFace [4], Dlib

[5], Sface [6], OpenFace [7], DeepFace [1], and DeepId

[8].

Following the representation stage, the verification module

calculates distances between vector embeddings of face

pairs. Experiments reveal that the distribution of distances

for pairs belonging to the same person and different

individuals is discrete, particularly in robust models [9].

Various metrics, such as Euclidean, L2 normalized

Euclidean form, or cosine similarity, can be employed to

compute the distances between vectors.

Prior to the representation stage, both detection and

alignment serve as early modules in the pipeline, aiming to

provide clear inputs. Substantial progress has been made in

recent years in the field of face detection. Noteworthy face

detectors include OpenCV Haar Cascade [10], SSD [11],

MediaPipe [12] [13], MTCNN [14], Dlib HOG [5], and

RetinaFace [15]. Some of these detectors are built on

modern convolutional neural networks, such as MTCNN,

RetinaFace, and SSD, while others adhere to legacy

approaches like OpenCV and Dlib HOG. Additionally,

facial landmarks, including the coordinates of the eyes, are

provided by these detectors, facilitating the horizontal

alignment of faces.

In the realm of facial recognition studies, there is,

regrettably, a lack of uniformity as researchers and model

creators approach the problem from diverse perspectives.

The primary emphasis tends to be on the representation

stage within the pipeline, where various combinations of

face detectors, alignment procedures, and distance metrics

are employed. This variability introduces a challenge in

fairly comparing these models, as a facial recognition

model may demonstrate superior performance when

configured differently, potentially exceeding its initially

reported score. The precise influence of detection,

alignment, and verification modules on the overall pipeline

remains to be fully understood.

This study assesses the efficacy of facial recognition

pipelines across four key dimensions: facial recognition

models, face detectors, distance metrics, and the impact of

enabling or disabling alignment modes. The objective is to

identify optimal configuration settings for the pipeline. The

paper further seeks to elucidate the tangible influence of

each module on the overall pipeline score. Ultimately, the

study compares the performance of human subjects to that

of different models and configurations, determining which

ones surpassed, matched, approached, or fell short of

human-level accuracy.

In this context, LightFace [9] [16] emerges as one of the

most widely used facial recognition libraries for the Python

programming language. Comprehensive in its coverage, it

includes various facial recognition models, face detectors,

distance metrics, and alignment modes, seamlessly

managing all facial recognition procedures in the

background. For the purposes of this study, the LightFace

package was utilized and implemented to execute a range

of experimental setups.

2. DATASET

The Labeled Faces in the Wild (LFW) dataset [17] stands

as the predominant dataset in facial recognition studies,

comprising 13,233 images belonging to 5,749 identities.

For the purpose of this study, the LFW dataset was loaded

using scikit-learn [18]. The dataset includes 2,200 pairs for

training, 6,000 pairs for 10-fold cross-validation, and 1,000

pairs for testing. Each pair is appropriately labeled as either

depicting the same person or different individuals. The

original size of images in LFW is (250, 250, 3). Given the

focus on pre-trained models in this study, attention is

directed solely to the test set.

Half of the pairs of recommended test sets belong to the

same person, whereas another half of the pairs correspond

to different persons. So, the test set has fairly homogeneous

target labels. That is why accuracy scores are mentioned in

the performance results. The raw unaligned LFW images

were used because detection and alignment impact in the

pipeline were evaluated.

There are successful studies in the literature with good

results in capturing information from the context such as

image background or hairstyle. Neeraj Kumar et al [19]

reported the performance of human-beings on LFW

dataset. They collected the classification votes of 10 voters

for each pair in LFW dataset consisting of 6000 instances

via Amazon Mechanical Turk. Besides, voters taken three

different tests: verifying original image pairs, tight crop

images and inverse crops as shown in Figure 1.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 97

Figure 1. Test Tasks

Humans are able to verify uncropped face pairs with 99.2%

accuracy score. They also obtain 94.2% accuracy even for

image pairs on same dataset with blurred or blacked facial

areas. On the other hand, human-beings have 97.5%

accuracy for verifying cropped face pairs. So, people can

find out a lot information from the context such as

background. Regions outside of the facial area is not

strongly recommended to be used not to boost results

artificially. That is why, facial recognition researchers

always compare built model performances with this score.

3. PIPELINE

A modern facial recognition pipeline consists of 4 common

stages: detection, alignment, representation and

verification. This section outlines the current procedures in

place for these modules.

3.1. Detection and Alignment

Only open source face detectors were used in the detection

module. There are five of them: OpenCv, Ssd, MtCnn,

Dlib, and RetinaFace. Their role will be to detect faces and

discard regions outside of the facial area in order to avoid

artificially boosting results.

An alignment step is also performed after detection. The

eye locations can then be used to construct a right-angled

triangle with two corners at eye locations as shown in

Figure 2.

Figure 2. Alignment Procedure

Calculating the cosine of an angle is then done using the

cosine rule in Formula 1. Inverse cosine of this term

returns angle in radian. The angle can then be converted to

degrees using the formula 2. The image will then be

rotated by A degrees until the eyes are horizontal.

cos(𝐴) =
𝑏2+𝑐2−𝑎2

2𝑏𝑐
 (1)

𝐴° = arccos (
𝑏2+𝑐2−𝑎2

2𝑏𝑐
)

180

𝜋
 (2)

3.2. Resizing

The outcomes of the detection and alignment modules

serve as inputs for the representation module. In facial

recognition pipelines, the representation module

predominantly relies on convolutional neural networks

(CNNs). CNNs typically require inputs to have a fixed

shape, yet detected and aligned facial images lack such

uniformity. Table 1 provides an overview of the anticipated

architectures for the facial recognition models discussed in

this study including input shape, embedding dimensions,

total parameters (weights and biases) and number of layers.

Consequently, resizing the detected and aligned faces

becomes imperative before invoking the representation

module.

Table 1. Facial Recognition Model’s Architectures

Model
Input

Shape

Embedding

Dimensions

Total

Params

Num of

Layers

FaceNet-128d 160, 160, 3 128 22M 447

FaceNet-512d 160, 160, 3 512 23M 447

Vgg-Face 224, 224, 3 4096 134M 36

ArcFace 112, 112, 3 512 34M 162

Dlib 150, 150, 3 128 63M 34

SFace 112, 112, 3 128 9M 88

OpenFace 96, 96, 3 128 3M 166

DeepFace 152, 152, 3 4096 102M 9

DeepId 55, 47, 3 160 395K 17

In order to prevent deformation, black padding pixels were

introduced to the images instead of resizing them. Figure 3

visually depicts the outcomes of detection and alignment

using various detectors, along with the addition of black

padding pixels to resize the image to the expected input

shape of VGG-Face.

Figure 3. Detection, Alignment and Resizing

98 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

3.3. Representation

The representation module of all the facial recognition

models discussed in this study is based on convolutional

neural networks. In spite of the fact that CNN structures

have many output nodes, units were not used for

classification tasks. Rather than finding the most dominant

output node to make classification, the probabilities of

output nodes were used. Figure 4 shows how DeepFace [1]

model finding vector embeddings.

Figure 4. Vector Representation with DeepFace [1]

3.4. Verification

The representation module returns vectors for face pairs,

and these vectors are passed to the verification module. The

distance between those vectors was calculated in the

verification module. Formula 3 shows the euclidean

distance formula where p and q are n-dimensional vectors.

Similarly, Formula 4 finds the cosine distance where p and

q are n-dimensional vectors.

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1 (3)

𝑑(𝑝, 𝑞) = 1 −
∑ 𝑝𝑖𝑞𝑖

𝑛
𝑖=1

√∑ 𝑝𝑖
2𝑛

𝑖=1 √∑ 𝑞𝑖
2𝑛

𝑖=1

 (4)

Before feeding the vectors to distance formulas, l2 were

applied for normalization to vectors to have smoother ones

as shown in Formula 5 where q is a n-dimensional vector.

𝑙2(𝑞) =
𝑞

√∑ 𝑞𝑖
2𝑛

𝑖=1

 (5)

Accordingly, this pair would be classified as the same

person if the distance was less than the threshold.

Similarly, this pair could be classified as different persons

if the distance between them exceeds the threshold value.

Figure 5. Distance Distribution

The experiments demonstrate that the distance

distributions for the same person and different persons

classes, as tested with the VGG-Face facial recognition

model using L2 Normalized Euclidean distance and

enabled alignment mode on unit test items of DeepFace,

can be separated, as illustrated in Figure 5. In this context,

the C4.5 algorithm [20] was employed to identify the

threshold that yields the maximum information gain.

3.4. Handling Many Faces Issue

Some instances of the LFW dataset have some problematic

data. For instance, an image may contain many faces and

the one targeted by the label may not be known precisely.

In this case, all pairs of faces were extracted using the

current running detector (e.g. MtCnn), and all candidates

were then represented as vectors using the current running

facial recognition model (e.g. VGG-Face). Following that,

all vector candidates were distanced by using current

running similarity algorithms (e.g. cosine and euclidean).

As a result, the face pair with the minimum distance was

fed into the algorithm. Figure 6 explains how we extract

the right face from these problematic samples. The faces of

the lady are used in both images for this case since the

distance is shorter.

Figure 6. Picking a Face Among Many Faces

4. PRE-TRAINED MODELS

LightFace for python [21] will be used to build facial

recognition pipelines. This library basically wraps the

following models with pre-trained weights.

4.1. Facial Recognition Models

Researchers from the Visual Geometry Group at Oxford

University developed the VGG-Face model. The model's

structure was detailed in their paper [3], and they

generously provided pre-trained weights for the VGG-Face

model in MatLab, Torch, and Caffe on the research group's

website [22]. Subsequently, the MatLab weights were

converted into Keras, and the VGG-Face model was

reconstructed from the ground up using Keras.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 99

Researchers at Google designed the FaceNet model, which

outputs 128 dimensions. The model's structure is outlined

in their paper [2], but the pre-trained weights are not

publicly available. However, David Sandberg undertook

the task of re-training FaceNet with both 128 and 512

dimensional outputs and generously shared the pre-trained

weights in TensorFlow format [23]. These TensorFlow

weights were then converted to Keras format, and a new

model in Keras was constructed from the ground up.

ArcFace, a component of the InsightFace project, was

developed by the Deep Inside research group [4]. The

ArcFace model, along with its pre-trained weights, can be

accessed on the group's website for both PyTorch and

MXNet. Additionally, Leon D. Garse re-trained the

ArcFace model specifically for Keras [24]. The pre-trained

weights from this repository were utilized, and a new

model was constructed from scratch in Keras.

SFace, primarily developed by Yaoyao Zhong [6], includes

shared models and pre-trained weights accessible for both

PyTorch and MXNet. The OpenCV community played a

role in converting the model to a language-independent

ONNX format [25]. Consequently, SFace can be utilized

through OpenCV in this context.

Researchers from Carnegie Mellon University developed

the OpenFace model. Both the model and its pre-trained

weights can be accessed on the research group's website for

Lua Torch. Victor Sy Wang took on the task of converting

the pre-trained weights of the OpenFace model to Keras

[26]. The weights from this re-implementation were

utilized, and the model was then constructed from scratch.

Facebook researchers developed the DeepFace model,

outlining its structure in their paper [1], although they did

not provide the pre-trained weights for the model. Swarup

Ghosh took the initiative to re-train the DeepFace model

using Keras from scratch and shared the resulting pre-

trained weights in his repository [27]. While the original

study utilized the Social Face Classification (SFC) [1]

dataset with 4030 identities, Ghosh re-trained the

DeepFace model using the VGGFace2 [28] dataset with

8631 identities. Consequently, the original DeepFace

model produces 4030-dimensional vectors, whereas

Ghosh's re-implementation generates 8631-dimensional

vectors. The DeepFace model was reconstructed from the

ground up, and the pre-trained weights from this re-

implementation were utilized.

The DeepId model, crafted by researchers from the

Chinese University of Hong Kong, had its model structure

detailed in their paper [8]. However, the pre-trained

weights were not made publicly available. Roy Ran took

on the task of re-training the DeepId model from the

ground up and generously shared the resulting pre-trained

weights specifically for TensorFlow [29]. To facilitate

utilization of these pre-trained weights, a conversion

process was employed to adapt them into the Keras format.

Dlib constructs a ResNet model designed for facial

recognition purposes [5], with the Dlib library being

directly imported for implementation.

4.3. Face Detectors

The MtCnn face detector model was developed by Kaipeng

Zhang et al [14]. Iván de Paz Centeno took the initiative to

independently re-implement MtCnn from scratch using

Keras, presenting it as a project [30]. The MtCnn project

has been directly incorporated into the system.

The RetinaFace model, created by researchers from Deep

Insight as part of the InsightFace project [4], is provided

with both the model and pre-trained weights for PyTorch

and MXNet on the research group's website. Additionally,

Stanislas Bertrand undertook the task of re-implementing

the RetinaFace model using Keras [31]. Following the

completion of the RetinaFace project repackaging [32],

this new RetinaFace package was directly imported for use.

The SSD (Single Shot Multibox Detector) model, designed

by Wei Liu et al [11], had its Caffe model wrapped by the

OpenCV community [10]. In practice, SSD was utilized

through OpenCV. However, SSD itself does not provide

facial landmarks. To align faces identified by SSD, the eye

detection module of OpenCV was employed. MediaPipe

[12] features a face detection module built on BlazeFace

[13], which is structurally derived from SSD but includes

facial landmarks. The MediaPipe library was directly

imported for use. Additionally, Dlib was employed for face

detection using its HOG model [5], and the Haar Cascade

module of OpenCV was imported to utilize its face

detection functionality.

Re-implementations of certain reference models have been

undertaken, and as a consequence, experimental results

will be linked to these re-implementations rather than the

original studies. It's important to note that even when the

same facial recognition model and pre-trained weights

were utilized, discrepancies in pre-processing techniques

and model implementation may exist compared to those

employed in the original study. Specifically, a 2D

discarding approach was implemented, discarding regions

outside the facial area using commonly available open-

source face detectors, as suggested in the literature [19], to

prevent the artificial inflation of results.

4. EXPERIMENTS

A total of 378 experiments were performed on the LFW

dataset test set, considering combinations of the four

dimensions listed in Table 8. This exhaustive approach

aimed to identify the optimal configuration set for facial

recognition. Additionally, each module in the pipeline was

systematically examined to discern its specific impact on

the overall results.

100 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

Table 8. Different Configration Sets for Experiments

Configuration Possible Values

Facial Recognition

Models

FaceNet128d, FaceNet512d, Vgg-Face,

ArcFace, Dlib, SFace, OpenFace, DeepFace,
DeepId

Face Detector

Models

OpenCv, Ssd, MtCnn, Dlib, RetinaFace,

MediaPipe, No Detection

Distance Metrics Cosine, Euclidean, L2-Norm Euclidean

Alignment Mode Enabled, Disabled

Tables 2, 3, 4, 5, 6, and 7 present the performance matrices

of facial recognition models and face detectors across

various distance metrics and alignment modes. In these

tables, columns denote facial recognition models, rows

represent face detectors, and the cells display

corresponding accuracy values. Additionally, to enhance

comprehension of the influence of detection and alignment

modules, the scores of facial recognition models without

detection and alignment are also provided.

As outlined in Section 3, the output of the representation

module consists of a vector pair, and the subsequent step

involves measuring the distance between these vectors. A

pair is classified as the same person if the distance between

them falls below the specified threshold value.

Furthermore, ROC curves were generated using distance

values and corresponding target labels. This approach is a

conventional practice to assess the model's performance

from a holistic perspective.

ROC curves for different models were illustrated in Figure

7 for FaceNet512d, Figure 8 for VGG-Face, Figure 9 for

Dlib, Figure 10 for FaceNet128d, Figure 11 for ArcFace,

and Figure 12 for SFace, focusing specifically on robust

detectors (RetinaFace, MtCnn, Dlib, and MediaPipe). It is

recommended to view these figures in color for optimal

clarity. Additionally, the graphics include area under the

curve (AUC) values, and the legends are arranged in

descending order based on these values. In this context, a

higher AUC value indicates superior model performance.

The ROC curves presented above highlight that

FaceNet512d and VGG-Face stand out as the most robust

models, regardless of the detector used. However, the

performance of other facial recognition models exhibits

variations depending on the specific configuration

employed.

5. RESULTS

The experiments examined both context-independent and

context-dependent conditions. While there is significant

importance in running facial recognition pipelines in a

context-independent manner, the results obtained under

context-dependent conditions may provide a more accurate

understanding of the direct influence of face detection on

facial recognition pipelines. The study involved comparing

these models with human performance, resulting in a

context-free accuracy of 97.5% and a non-context-free

accuracy of 99.2% [19]. Finally, the study demonstrated

the impact of detectors and alignment modules on the

pipelines.

Table 9. Comparison of Measured Accuracy Scores in LightFace and
Declared Accuracy Scores in Their Original Researches

Model
Measured

Accuracy

Declared

Accuracy

Original

Paper

FaceNet-512d 98.4 99.6 [2]

FaceNet-128d 97.0 99.6 [2]

Dlib 96.8 99.3 [5]

VGG-Face 96.7 98.9 [3]

ArcFace 96.6 99.5 [4]

SFace 93.0 99.5 [6]

OpenFace 78.7 92.9 [7]

DeepFace 68.7 97.3 [1]

DeepId 65.6 97.4 [8]

As shown in Table 9, the measured accuracies of various

facial recognition models using the LightFace library offer

valuable insights into their performance. A comparison

with the accuracy scores declared in their original papers

reveals that FaceNet, Dlib, ArcFace, and VGG-Face

closely approach the declared performances, albeit falling

slightly below. Notably, for models such as VGG-Face and

Dlib, the small differences may be a result of the adopted

normalization techniques in both the original studies and

the LightFace framework. Additionally, it is noteworthy

that LightFace employs open-sourced pre-trained weights

for their re-implementation instead of using the original

ones, as seen in the case of FaceNet and ArcFace. These

minor differences are deemed acceptable and do not

compromise the overall robustness of these models.

Despite the slight variations, the models remain robust and

showcase reliable performance. Despite these differences,

SFace, while exhibiting a performance lower than

declared, shows a manageable gap, suggesting its

continued usability.

In contrast, OpenFace, DeepFace, and DeepId exhibit

notable disparities from their originally reported

accuracies, which can be attributed to the utilization of pre-

trained weights retrieved from open-source re-

implementations rather than the original studies' pre-

trained weights. The original pre-trained weights, as

detailed in Section 4, are not publicly available. This

distinction highlights the significance of the source of pre-

trained weights, as the use of open-source alternatives may

lead to differences in model performance. The observed

disparities underscore the importance of obtaining and

utilizing the original pre-trained weights when aiming to

replicate or surpass the accuracies reported in the

respective original studies.

5.1. Context Independent Results

FaceNet512d achieved an accuracy of 98.4%, followed by

FaceNet128d with 97.0% accuracy. Both models have

surpassed human-level accuracy. The most satisfactory

configurations are highlighted in bold within the tables.

Dlib achieved an accuracy of 96.8%, ArcFace and VGG-

Face demonstrated 96.7% and 96.6% accuracy,

respectively. These models achieved accuracy levels

comparable to human performance. SFace, with an

accuracy of 93.0%, approached human-level accuracy.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 101

OpenFace achieved an accuracy of 78.7%, DeepFace

reached 68.7%, and DeepId attained 65.6% accuracy.

Consequently, these re-implementations exhibited subpar

performance, rendering them unsuitable for deployment in

production pipelines. Notably, FaceNet128d, ArcFace, and

Dlib displayed significantly reduced performance when the

detection stage was omitted. It is imperative to execute the

detection stage for these facial recognition models.

OpenCv and Ssd detectors exhibit diminished performance

when the alignment mode is enabled. This limitation arises

from their inability to pinpoint eye locations with the same

precision as RetinaFace or MtCnn. Consequently, it is

advisable to omit the alignment stage when using these

detectors. RetinaFace, MtCnn, and Dlib, on the other hand,

showcase a notable performance enhancement when the

alignment mode is activated, establishing them as robust

detectors across all considered configurations. The

performance of MediaPipe experiences a slight decline

with alignment; even with alignment disabled, it ranks

below RetinaFace, Dlib, and MtCnn.

Finally, none of the distance metrics demonstrate

underperformance, and despite their variances, each

contributes significantly to the overall performance.

5.2. Context Dependent Results

In the presence of contextual information, facial

recognition models struggle to achieve human-level

accuracy. Their performance sees a significant boost when

focusing exclusively on the facial region, likely due to their

training on context-independent data. FaceNet512d attains

a 92% score even with detection disabled, marking the

closest performance to human among facial recognition

models without detectors. VGG-Face achieves a 90.6%

score, while SFace scores 83.4% with detection turned off,

both trailing FaceNet-512d. FaceNet512d stands out as the

optimal choice for use cases demanding both swift and

reliable results, such as facial recognition in crowded

environments. In such scenarios, detection and alignment

may be skipped, yet the pipeline maintains a commendable

score.

5.3. Impact of custom modules in the pipeline

In optimal conditions, the detection impact for ArcFace is

41.8%, FaceNet128d is 30.8%, Dlib is 27.3%, OpenFace is

20.9%, SFace is 9.6%, DeepFace is 7.6%, FaceNet-512d is

6.6%, VGG-Face is 6.1%, and DeepId is 3.6%. Therefore,

the inclusion of a detection module is essential for facial

recognition pipelines.

Similarly, the alignment impact for SFace is 17.2%,

DeepFace is 13.7%, ArcFace is 11.7%, FaceNet128d is

6.5%, VGG-Face is 1.6%, OpenFace is 1.0%, FaceNet-

512d is 0.7%, and DeepId is 0.7% in the best-case

scenarios. Consequently, alignment serves as a crucial

enhancement module for facial recognition pipelines.

Furthermore, identifying the intersections of

misclassifications for each facial recognition model across

various configuration sets will aid in comprehending the

weaknesses inherent in each model. As depicted in Figure

13, FaceNet512d misclassifies 6 pairs, FaceNet128d

misclassifies 5 pairs, and both Dlib and ArcFace

misclassify 3 pairs in all experiments involving Euclidean,

l2 normalized Euclidean, and Cosine distance metrics, as

well as RetinaFace, MtCnn, and Dlib face detectors, with

alignment mode exclusively enabled.

Predominantly, the common misclassifications for each

model involve false negatives. It appears that these models

commonly misclassify pairs when individuals wear

accessories like sunglasses or caps. Similarly, differences

in age and emotion within pairs contribute to

misclassifications. Furthermore, the common

misclassifications mainly pertain to pairs of the same

person.

6. CONCLUSION

In this study, all configuration alternatives were tested in

LightFace. To avoid artificially boosting results, the facial

area in images was focused and the regions outside of the

facial area were discarded.

Based on the results of the experiments, it was determined

that some facial recognition models were capable of

reaching or exceeding human level accuracy under certain

configurations. It can be concluded that the facial

recognition model with dependent face detector, distance

metric and alignment mode underperform or overperform.

Based on their best configuration set, facial recognition

models were classified into four categories: passing human

level accuracy, reaching human level accuracy, coming

close to human level accuracy, and underperforming ones.

AUC and ROC curves also provide opinions about the

robustness of facial recognition models.

Additionally, this work discusses the contribution of

detection and alignment modules to pipeline accuracy. The

detection module is an essential component of a pipeline as

it can improve performance by up to 40%. While alignment

serves as a significant performance booster, improving

performance by up to 17%. Results found regarding the

robustness of face detectors. OpenCv, SSD and MediaPipe

have deteriorated when alignment is enabled, whereas

RetinaFace, MtCnn and Dlib are always resilient.

LightFace also features an easy and simple interface. The

dimensions mentioned in this study are merely input

arguments for a pipeline. Thus, practitioners are able to

construct and run facial recognition pipelines with a few

lines of code. This study can be used as a guide to assist

practitioners in choosing the most appropriate

configurations for their facial recognition pipelines

according to their individual needs.

102 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

Table 2. Accuracy Metric for Euclidean Distance and Disabled Alignment

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 92.8 96.1 95.7 84.1 88.3 78.6 70.8 67.4 64.3

MtCnn 92.5 95.9 95.5 81.8 89.3 76.3 70.9 65.9 63.2

Dlib 89.0 96.0 94.1 82.6 96.3 73.1 75.9 61.8 61.9

MediaPipe 87.1 94.9 93.1 71.1 91.9 73.2 77.6 61.7 62.4

Ssd 94.9 97.2 96.7 83.9 88.6 82.0 69.9 66.7 64.0

OpenCv 90.2 94.1 95.8 89.8 91.2 86.9 71.1 68.4 61.1

None 64.1 92.0 90.6 56.6 69.0 81.4 57.4 60.8 60.7

Table 3. Accuracy Metric for L2 Normalized Euclidean Distance and Disabled Alignment

 FaceNet-128d FaceNet512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 95.9 98.0 95.7 95.7 88.4 90.6 70.8 67.7 64.6

MtCnn 96.2 97.8 95.5 95.9 89.2 91.1 70.9 67.0 64.0

Dlib 89.9 96.5 94.1 93.8 95.6 75.0 75.9 62.6 61.8

MediaPipe 90.0 96.3 93.1 89.3 91.8 74.6 77.6 64.9 61.6

Ssd 97.0 97.9 96.7 96.6 89.4 93.0 69.9 68.7 64.9

OpenCv 92.9 96.2 95.8 93.2 91.5 91.7 71.1 68.3 61.6

None 67.6 91.4 90.6 57.2 69.3 83.4 57.4 62.6 61.6

Table 4. Accuracy Metric for Cosine Distance and Disabled Alignment

 FaceNet-128d FaceNet512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 95.9 98.0 95.7 95.7 88.4 90.6 70.8 67.7 63.7

MtCnn 96.2 97.8 95.5 95.9 89.2 91.1 70.9 67.0 64.0

Dlib 89.9 96.5 94.1 93.8 95.6 75.0 75.9 62.6 61.7

MediaPipe 90.0 96.3 93.1 89.3 91.8 74.6 77.6 64.9 61.6

Ssd 97.0 97.9 96.7 96.6 89.4 93.0 69.9 68.7 63.8

OpenCv 92.9 96.2 95.8 93.2 91.5 91.7 71.1 68.1 61.1

None 67.6 91.4 90.6 54.8 69.3 83.4 57.4 62.6 61.1

Table 5. Accuracy Metric for Euclidean Distance and Enabled Alignment

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 93.5 95.9 95.8 85.2 88.9 80.2 69.4 67.0 65.6

MtCnn 93.8 95.2 95.9 83.7 89.4 77.4 70.2 66.5 63.3

Dlib 90.8 96.0 94.5 88.6 96.8 66.3 75.8 63.4 60.4

MediaPipe 88.6 95.1 92.9 73.2 93.1 72.5 78.7 61.8 62.2

Ssd 85.6 88.9 87.0 75.8 83.1 76.9 66.8 63.4 62.5

OpenCv 84.2 88.2 87.3 73.0 84.4 81.1 66.4 65.5 59.6

None 64.5 92.0 90.6 56.6 69.0 81.4 57.4 60.8 60.7

Table 6. Accuracy Metric for L2 Normalized Euclidean Distance and Enabled Alignment

 FaceNet-128d FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 96.4 98.4 95.8 96.6 89.1 92.4 69.4 67.7 64.4

MtCnn 96.8 97.6 95.9 96.0 90.0 90.5 70.2 66.4 64.0

Dlib 92.6 97.0 94.5 95.1 96.4 69.8 75.8 66.5 59.5

MediaPipe 90.6 96.1 92.9 90.3 92.6 75.4 78.7 64.7 63.0

Ssd 87.5 88.7 87.0 86.2 83.3 84.6 66.8 64.1 62.6

OpenCv 84.8 87.6 87.3 84.6 84.0 83.6 66.4 63.8 60.9

None 67.6 91.4 90.6 57.2 69.3 83.4 57.4 62.6 61.6

Table 7. Accuracy Metric for Cosine Distance and Enabled Alignment

 FaceNet128 FaceNet-512d VGG-Face ArcFace Dlib SFace OpenFace DeepFace DeepId

RetinaFace 96.4 98.4 95.8 96.6 89.1 92.4 69.4 67.7 64.4

MtCnn 96.8 97.6 95.9 96.0 90.0 90.5 70.2 66.3 63.0

Dlib 92.6 97.0 94.5 95.1 96.4 69.8 75.8 66.5 58.7

MediaPipe 90.6 96.1 92.9 90.3 92.6 75.4 78.7 64.8 63.0

Ssd 87.5 88.7 87.0 86.2 83.3 84.5 66.8 63.8 62.6

OpenCv 84.9 87.6 87.2 84.6 84.0 83.6 66.2 63.7 60.1

None 67.6 91.4 90.6 54.8 69.3 83.4 57.4 62.6 61.1

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 103

Figure 7. ROC Curves and AUC Scores for FaceNet512d

Figure 8. ROC Curves and AUC Scores for VGG-Face

104 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

Figure 9. ROC Curves and AUC Scores for Dlib

Figure 10. ROC Curves and AUC Scores for FaceNet128d

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 105

Figure 11. ROC Curves and AUC Scores for ArcFace

Figure 12. ROC Curves and AUC Scores for SFace

106 BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024

Figure 13. Common Misclassifications

REFERENCES

[1] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deep-face:

Closing the gap to human-level performance in face verification”,

In Proceedings of the IEEE conference on computer vision and

pattern recognition, 1701–1708, 2014.

[2] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified

embedding for face recognition and clustering”, In Proceedings of

the IEEE conference on computer vision and pattern

recognition, 815–823, 2015.

[3] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face

recognition”, In British Machine Vision Conference, 2015.

[4] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive

angular margin loss for deep face recognition”, In Proceedings of

the IEEE/CVF conference on computer vision and pattern

recognition, pages 4690–4699, 2019.

[5] D. E. King, “Dlib-ml: A machine learning toolkit”, The Journal of

Machine Learning Research, 10, 1755–1758, 2009.

[6] Y. Zhong, W. Deng, J. Hu, D. Zhao, X. Li, and D. Wen, “Sface:

Sigmoid-constrained hypersphere loss for robust face recognition”,

IEEE Transactions on Image Processing, 30:2587–2598, 2021.

[7] B. Amos, B. Ludwiczuk, M. Satyanarayanan, et al. “Openface: A

general-purpose face recognition library with mobile applications”,

CMU School of Computer Science, 6(2):20, 2016.

[8] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation

from predicting 10,000 classes”, In Proceedings of the IEEE

conference on computer vision and pattern recognition, 1891–

1898, 2014.

[9] S. I. Serengil and A. Ozpinar, “Lightface: A hybrid deep face

recognition framework”, In 2020 Innovations in Intelligent

Systems and Applications Conference (ASYU), 23–27. IEEE,

2020.

[10] G. Bradski, “The opencv library”, Dr. Dobb’s Journal: Software

Tools for the Professional Programmer, 25(11):120–123, 2000.

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, and

A. C. Berg. “Ssd: Single shot multi-box detector”, In European

conference on computer vision, 21–37. Springer, 2016.

[12] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M.

Hays, F. Zhang, C. Chang, M. G. Yong, J. Lee, et al. “Mediapipe:

A framework for building perception pipelines”, arXiv preprint

arXiv:1906.08172, 2019.

[13] V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M.

Grundmann. “Blazeface: Sub-millisecond neural face detection on

mobile gpus”, arXiv preprint arXiv:1907.05047, 2019.

[14] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. “Joint face detection and

alignment using multitask cascaded convolutional networks”,

IEEE signal processing letters, 23(10):1499–1503, 2016.

BİLİŞİM TEKNOLOJİLERİ DERGİSİ, CİLT: 17, SAYI: 2, NİSAN 2024 107

[15] J. Deng, J. Guo, E. Ververas, I. Kotsia, and S. Zafeiriou.

“Retinaface: Single-shot multi-level face localisation in the wild”.

In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 5203–5212, 2020.

[16] S. I. Serengil and A. Ozpinar. “Hyperextended lightface: A facial

attribute analysis framework”, In 2021 International Conference

on Engineering and Emerging Technologies (ICEET), 1–4.

IEEE, 2021.

[17] G. B Huang, M. Mattar, T. Berg, and E. L. Miller, “Labeled faces

in the wild: A database for studying face recognition in

unconstrained environments”, In Workshop on faces in Real-Life

Images: detection, alignment, and recognition, 2008.

[18] O. Kramer, “Scikit-learn”, In Machine learning for evolution

strategies, pages 45–53. Springer, 2016.

[19] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.

“Attribute and simile classifiers for face verification”, In 2009

IEEE 12th international conference on computer vision, 365–

372. IEEE, 2009.

[20] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier,

2014.

[21] S. I. Serengil, Deepface: A lightweight face recognition and facial

attribute analysis (age, gender, emotion and race) library for

python, https://github.com/serengil/deepface, 15.04.2024.

[22] A. Z. Omkar, M. Parkhi, A. Vedaldi, Vgg face descriptor,

https://www.robots.ox.ac.uk/∼vgg/software/vgg_face/,

15.04.2024.

[23] D. Sandberg, Facenet: Face recognition using tensorflow,

https://github.com/davidsandberg/facenet, 15.04.2024.

[24] L. D Garse, Keras insightface,

https://github.com/leondgarse/Keras_insightface, 15.04.2024.

[25] Y. Feng, SFace,

https://github.com/opencv/opencv_zoo/tree/main/models/face_rec

ognition_sface, 15.04.2024.

[26] V. S. Wang, Keras-openface2,

https://github.com/iwantooxxoox/Keras-OpenFace, 15.04.2024

[27] S. Ghosh, Deepface, https://github.com/swghosh/DeepFace, 2019.

15.04.2024.

[28] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman,

“Vggface2: A dataset for recognising faces across pose and age”,

In 2018 13th IEEE international conference on automatic face

& gesture recognition (FG 2018), 67–74. IEEE, 2018.

[29] R. Ran, Deepid implementation,

https://github.com/Ruoyiran/DeepID, 15.04.2024.

[30] I. P. Centeno, Mtcnn, https://github.com/ipazc/mtcnn, 15.04.2024.

[31] S. Bertrand, Retinaface-tf2,

https://github.com/StanislasBertrand/RetinaFace-tf2, 15.04.2024.

[32] S. I. Serengil, Retinaface: Deep face detection library for python,

https://github.com/serengil/retinaface, 15.04.2024.

[33] K. Yildiz, E. Gunes, A. Bas, “CNN-based Gender Prediction in

Uncontrolled Environments”, Duzce University Journal of Science

& Technology, 890-898. 2021.

[34] H. Goze, O. Yildiz, “A New Deep Learning Model for Real-Time

Face Recognition and Time Marking in Video Footage”, Journal

of Information Technologies, 167-175. 2022.

[35] G. Guodong, N. Zhang, “A survey on deep learning based face

recognition”, Computer Vision and Image Understanding, 189,

102805, 2019.

[36] M. Hassaballah, S. Aly, “Face recognition: challenges,

achievements and future directions”, IET Computer Vision, 9(4),

614-626, 2015.

[37] D. Heinsohn, E. Villalobos, L. Prieto, D. Mery, “Face recognition

in low-quality images using adaptive sparse representations”,

Image and Vision Computing, 85, 46-58, 2019.

[38] P. J. Phillips, A. J. O'toole, “Comparison of human and computer

performance across face recognition experiments”, Image and

Vision Computing, 32(1), 74-85, 2014.

[39] E. G. Ortiz, B. C. Becker, “Face recognition for web-scale

datasets”, Computer Vision and Image Understanding, 118, 153-

170, 2014.

