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In this study, Mountain Gazelle Optimization (MGO) and Gazelle Optimization 

Algorithm (GOA) algorithms, which have been newly proposed in recent years, were 

examined. Although MGO and GOA are different heuristic algorithms, they are often 

considered the same algorithms by researchers. This study was conducted to resolve 

this confusion and demonstrate the discovery and exploitation success of both 

algorithms. While MGO developed the exploration and exploitation ability by being 

inspired by the behavior of gazelles living in different groups, GOA model was 

developed by being inspired by the behavior of gazelles in escaping from predators, 

reaching safe environments and grazing in safe environments. MGO and GOA were 

tested on 13 classical benchmark functions in seven different dimensions and their 

success was compared. According to the results, MGO is more successful than GOA 

in all dimensions. GOA, on the other hand, works faster than MGO. Additionally, 

MGO and GOA were tested on three different engineering design problems. While 

MGO was more successful in the tension/compression spring design problem and 

welded beam design problems, GOA achieved better results in the pressure vessel 

design problem. The results show that MGO improves the ability to explore and 

avoid local traps better than GOA. MGO and GOA are also compared with three 

different heuristic algorithms selected from the literature (GSO, COA, and ZOA). 

According to the results, MGO has shown that it can compete with new algorithms 

in the literature. GOA, on the other hand, lags behind comparison algorithms. 

 

1. Introduction 

 

While an optimization problem describes a 

problem that has more than one feasible solution, 

optimization is the process of finding the best 

solution among all available solutions [1]. 

Optimization problems consist of decision 

variables, constraints and objective function [2]. 

Various methods, such as gradient-based 

methods and numerical calculations, have been 

proposed to solve optimization problems [1]. In 

an optimization problem, simply finding a 

solution is not enough. The cost and time 

involved in reaching this solution are important. 

Real-world problems often have multiple 

decision variables and complex nonlinear 

relationships. The inability of analytical methods 

to solve optimization problems has led to the 

emergence of meta-heuristic algorithms. Meta-

heuristic algorithms are stochastic methods 

inspired by nature and its mechanisms, which try 

to send the initial population to the global 

optimum and provide appropriate solutions close 

to the global optimum in a reasonable time [3].  

 

Many new metaheuristic algorithms have been 

proposed in recent years due to their success in 

solving many real-world problems. The most 

important of these are Mountain Gazelle 

Optimization (MGO) [4], Gazelle Optimization 

Algorithm (GOA) [5], Aquila Optimizer (AO) 

[1], Harris Hawks Optimization (HHO) [6], 

Slime Mould Algorithm (SMA) [7], Tunicate 

Swarm Algorithm (TSA) [8], Equilibrium 

Optimizer (EO) [9], SCA, Arithmetic 

Optimization Algorithm (AOA) [10], Marine 
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Predators Algorithm (MPA) [11], Zebra 

Optimization Algorithm (ZOA) [12], Crayfsh 

Optimization Algorithm (COA) [13],  Golden 

Search Optimization Algorithm (GSO) [14], etc.  

 

In recent years, many heuristic algorithms have 

been proposed for continuous optimization in the 

literature. This may also cause the similarities in 

the names of these algorithms. Similarities in the 

names of algorithms often cause confusion 

among researchers. Sometimes they are used 

interchangeably and sometimes cause 

pronunciation errors. For this reason, heuristic 

algorithms, which are often confused, are 

compared one to one in the literature. For 

example, Baş and Ülker proposed a comparison 

between SSA and SSO algorithm inspired in the 

behavior of the social spider for constrained 

optimization in 2021 [15]. SSA and SSO 

heuristic optimization algorithms are two 

different algorithms inspired by spider behavior.  

 

The frequent use of SSO instead of SSA in the 

literature has pushed the SSA algorithm into the 

background and delayed its discovery by 

researchers. At the same time, in many studies, 

SSA was often abbreviated as SSO and 

sometimes SSO was abbreviated as SSA. This 

situation has caused even more complexity 

among algorithms with similar names. Baş and 

Ülker noticed this situation and introduced this 

study to the literature. Baş and Ihsan compared 

the Gray wolf and Kirill herd algorithms, which 

are two herd-based heuristic algorithms that have 

been widely preferred in recent years [16]. Their 

aim is to compare the success of both algorithms 

on CEC-C06 2019 functions in small and large 

sizes. In addition, they compared their success on 

big data optimization problems and drew 

attention to their success in large size problems. 

 

In this study, two newly proposed heuristic 

algorithms, MGO and GOA, were examined in 

recent years. The reason why these heuristic 

algorithms were chosen is that the living groups 

inspired by both algorithms are similar. Both 

heuristic algorithms were inspired by the 

imitation of the social lifestyles of gazelle groups 

existing in nature. Although MGO and GOA are 

often considered the same heuristic algorithms in 

the literature, the discovery and exploitation 

capabilities of both algorithms differ. Four main 

factors in the life of mountain gazelles are used 

in the MGO mathematical model. These are 

single male herds, natal herds, solitary, territorial 

males and migrate in search of food [4]. MGO 

realizes its exploration and exploitation abilities 

with these four groups of mountain gazelles. The 

GOA model was inspired by the behavior of 

gazelles to escape from predators, reach safe 

environments and graze in safe environments. 

While the grazing behavior of gazelles in safe 

environments was used for the exploitation 

ability of the GOA, the behavior of escaping 

from predators was used for the exploration 

ability of the GOA. 

 

When the literature was examined, it was noticed 

that a one-to-one comparison of these two 

similar algorithms was not given. In this study, 

these two algorithms are examined in detail and 

their success is shown in 13 classical benchmark 

functions in sizes 10, 20, 30, 50, 100, 500, and 

1000. Both algorithms were compared according 

to best, worst, average, standard deviation, and 

time. The discovery and exploitation abilities of 

the algorithms are compared with each other. 

Wilcoxon signed rank test was performed on the 

results to determine whether there were semantic 

differences between MGO and GOA results. 

MGO and GOA were then compared on three 

different engineering design problems. 

According to the results, MGO explores the 

search space better than GOA and is less likely 

to get caught in local traps. MGO and GOA were 

compared with three different heuristic 

algorithms in recent years (GSO, COA, and 

ZOA) and it was examined whether they fell 

behind the literature. 

 

The rest of the paper follows: In Section 2, MGO 

and GOA are explained in detail. Additionally, 

classical benchmarks used in comparisons are 

shown. In Section 3, MGO and GOA are 

compared on classical benchmarks in three low 

dimensions and four high dimensions. Statistical 

tests were performed on the results. In Section 4, 

MGO and GOA comparison results are 

interpreted and discussed. 
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2. General Methods 

 

2.1. Mountain gazelle optimization algorithm 

(MGO) 
 

Mountain gazelle is one of the gazelle species. It 

was a source of inspiration in the mathematical 

formation of MGO. Mountain gazelles are social 

creatures that live territorially and run very fast. 

Mountain gazelle territories consist of three 

groups. These are the mother-offspring herds, 

young male herds, and single males’ territory 

[17]. Young male gazelles are in a constant 

struggle over the environment.   

 

Mathematical model of MGO: 

 

MGO is an optimization algorithm based on the 

social behavior and lifestyle of mountain 

gazelles. While modeling the MGO algorithm 

mathematically, basic concepts related to the 

social and group life of mountain gazelles are 

used. Four main factors in the life of mountain 

gazelles are used in the MGO mathematical 

model. These are single male herds, natal herds, 

solitary, territorial males, and migrate in search 

of food [4]. In MGO, each gazelle must be a 

member of one of the maternity herds, bachelor 

male herds, or solitary, territorial males. A new 

gazelle may also be born from these herds. In 

MGO, the best individuals are adult male 

gazelles. In MGO, candidate solutions added to 

the population are considered as gazelles in natal 

herds. In order to maintain the population 

number in each repetition, strong gazelles, that 

is, gazelles with quality solutions, remain in the 

population, while sick and old gazelles, that is, 

gazelles with poor quality solutions, are removed 

from the population. Thus, the herd population 

number is maintained [4]. 

 

In MGO, exploration and exploitation are carried 

out in four parallel mechanisms. 

 

a- Territorial Solitary Males (TSM): 

 

Male mountain gazelles are highly territorial. 

When they reach adulthood, that is, when they 

become strong enough, they create a territory. 

Regions are separated by large distances. Adult 

male gazelles fight for territory or possession of 

females. While young male gazelles try to 

occupy the territory or the female, adult males try 

to protect their environment. Adult male 

individuals are shown in Equations 1-5 [4]. 

 

𝑇𝑆𝑀 = 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 − |(𝑟𝑖1 × 𝐵𝐻 − 𝑟𝑖2 ×

𝑋(𝑡)) × 𝐹| × 𝐶𝑜𝑓𝑟                                                 (1) 

 

𝐵𝐻 = 𝑋𝑟𝑎 × ⌊𝑟1⌋ + 𝑀𝑝𝑟 × ⌈𝑟2⌉,     𝑟𝑎 =

{⌈
𝑁

3
⌉…  𝑁}                                                                     (2) 

 

𝐹 = 𝑁1(𝐷) × exp (2 − 𝐼𝑡𝑒𝑟 × (
2

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
))     (3) 

 

𝐶𝑜𝑓𝑖 =

{
 
 

 
 (𝑎 + 1) + 𝑟3,

𝑎 × 𝑁2(𝐷),

𝑟4(𝐷),

𝑁3(𝐷) × 𝑁4(𝐷)
2 × 𝑐𝑜𝑠((𝑟4 × 2) × 𝑁3(𝐷)),

  

                                                                        (4) 

 

𝑎 = −1 + 𝐼𝑡𝑒𝑟 × (
−1

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)                           (5) 

 

where 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the position of the best 

global gazelle (adult male). 𝑟𝑖1 and 𝑟𝑖2 are 

random integers  1 or 2. BH is the young male 

herd coefficient vector. 𝐶𝑜𝑓𝑟 is a randomly 

selected coefficient vector updated in each 

iteration. 𝑋(𝑡) is the position of the gazelle in the 

tth iteration.  𝑋𝑟𝑎 is a random gazelle (young 

male). 𝑀𝑝𝑟 is the average number of search 

gazelles. They are chosen randomly. N is 

population size and 𝑟1, 𝑟2, 𝑟3, and 𝑟4 are random 

values between 0 and 1. D is the problem 

dimension.  𝑒𝑥𝑝 is exponential 

function. 𝐼𝑡𝑒𝑟𝑚𝑎𝑥   is the number of the maximum 

iteration and 𝐼𝑡𝑒𝑟 is the number of the current 

iteration. 𝑁1  is a random number from the 

standard distribution. 𝑁2(𝐷), 𝑁3(𝐷), and 𝑁4(𝐷) 
are random numbers in the normal range and the 

dimensions of the problem [4]. 

 

a- Maternity Herds (MH): 

 

Maternity herds have a significant impact on the 

life of mountain gazelles. Maternity herds can 

give birth to male gazelles. The formation of 

maternal herds is shown in Equation 6 [4]. 
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𝑀𝐻 = (𝐵𝐻 + 𝐶𝑜𝑓2,𝑟) + (𝑟𝑖3 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 −

𝑟𝑖4 × 𝑋𝑟𝑎𝑛𝑑) × 𝐶𝑜𝑓3,𝑟                                      (6) 

 

where BH is the young male herd coefficient 

vector. 𝐶𝑜𝑓2,𝑟 and 𝐶𝑜𝑓3,𝑟 are a randomly selected 

coefficient vectors. 𝑟𝑖3 and 𝑟𝑖4 are random 

integers  1 or 2. 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the position of the 

best global gazelle (adult male). 𝑋𝑟𝑎𝑛𝑑 is s the 

vector position of a random gazelle in the gazelle 

population [4]. 

 

b- Bachelor Male Herds (BMH): 

 

As male gazelles mature, they tend to establish 

territories. They also want to capture female 

gazelles. This situation is shown in Equations 7-

8. 

 

𝐵𝑀𝐻 = (𝑋(𝑡) − 𝐷) + (𝑟𝑖5 ×𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 −

𝑟𝑖6 × 𝐵𝐻) × 𝐶𝑜𝑓𝑟                                                     (7) 

 

𝐷 = (|𝑋(𝑡)| + |𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒|) × (2 × 𝑟6 − 1)       (8) 

where 𝑋(𝑡) is the position of the gazelle in the tth 

iteration. 𝑟𝑖5 and 𝑟𝑖6 are random integers  1 or 

2. 𝑚𝑎𝑙𝑒𝑔𝑎𝑧𝑒𝑙𝑙𝑒 is the position of the best global 

gazelle (adult male). BH is the young male herd 

coefficient vector. 𝐶𝑜𝑓𝑟 are a randomly selected 

coefficient vectors. 𝑟6 is also a random number 

between 0 and 1[4]. 

 

c- Migration to Search for Food (MSF): 

 

Mountain gazelles constantly search for food 

sources in the search space, this situation is 

formulated by Equation 9 [4]. 

 

𝑀𝑆𝐹 = (𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑢𝑝𝑝𝑒𝑟 −

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟) × 𝑟7 + 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟      (9) 

 

where 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑢𝑝𝑝𝑒𝑟 and 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟 are 

the upper and lower bounds of the problem. 𝑟7 is 

a random number between 0 and 1.  Figure 1 

shows the pseudo-code of MGO and Figure 2 

shows the flowchart of MGO [4].

 

Figure 1. The pseudo-code of MGO [4]. 
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Figure 2. The flowchart of MGO [4] 

.

2.2.Gazelle optimization algorithm (GOA) 
 

Gazelles are creatures that can live in many areas, 

including arid areas and deserts. There are 

approximately 19 different species of gazelles 

worldwide [18]. They are mostly prey for other 

predators. Gazelles are light and fast and have a 

strong sense of hearing, sight and smell. These 

distinctive features are what allow them to escape 

predators. Gazelles are herbivores. They mostly 

socialize by living in groups. This situation is 

usually due to security. The more members there 

are in the group, the more secure the herd is. 

Sometimes groups of gazelles can group together 

depending on gender. Gazelles give birth once or 

twice a year. Reproduction generally occurs in 

seasons when water and food resources are 

abundant [5]. GOA was modeled on some 

characteristics of gazelles. These features can be 

listed as follows:  
 

• The most notable aspects are grazing and 

escaping from predators. 

• The grazing feature of gazelles can be 

used for exploitation. This should occur 

when there are no predators around. 

• The situation of gazelles escaping from 

predators and reaching a safe 

environment has been used for 

exploration. 
 

In GOA, initially all gazelles are randomly 

positioned in the search space. This situation is 

shown in Equations 10-11. Here D indicates the 

problem size (D=1, 2, …, d) and N indicates the 

population size (N=1, 2, …, n). X represents the 

gazelle population (X=1, 2, …, N). The X matrix 

is created at the lower and upper limits where the 

problem is defined. 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑢𝑝𝑝𝑒𝑟 and 

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟 are the upper and lower bounds 

of the problem. 𝑟𝑎𝑛𝑑 is a random number [5]. 

 

𝑋 =

[
 
 
 
 
 
𝑥1,1 𝑥1,2 … 𝑥1,𝑑−1 𝑥1,𝑑
𝑥2,1 𝑥2,2 … 𝑥2,𝑑−1 𝑥2,𝑑
. . . . .
. . 𝑥𝑖,𝑗 . .
. . . . .

𝑥𝑛,1 𝑥𝑛,2 … 𝑥𝑛,𝑑−1 𝑥𝑛,𝑑]
 
 
 
 
 

           (10) 

𝑥𝑖,𝑗 = 𝑟𝑎𝑛𝑑 × (𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑢𝑝𝑝𝑒𝑟,𝑗 −

𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟,𝑗) + 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑜𝑤𝑒𝑟,𝑗         (11) 

 

In each iteration, search agents produce a 

solution in a candidate. The 𝐸𝑙𝑖𝑡𝑒 matrix is 

formed as best solution so far. This matrix is used 

in the displacement equations of gazelles in later 

stages. The 𝐸𝑙𝑖𝑡𝑒 matrix is shown in Equation 12 

[5]. The elite will be updated at the end of each 

iteration if a better gazelle replaces the best 

gazelle. 𝑥′𝑖,𝑗 represents the position vector of the 

top gazelle [5]. 
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(12) 

 

The Brownian motion: 

 

Equation 13 shows the standard brownian motion 

at point x (𝜇 = 0 and 𝜎2 = 1) [19].  

 

𝑓𝐵(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2
) =

1

√2𝜋
𝑒𝑥𝑝 (−

𝑥2

2
)                                                           (13) 

 

The Le´vy flight: 

 

A random walk is performed using le'vy flight. 

Le'vy flight is shown in Equations 14-17 [20]. 

 

𝐿(𝑥𝑗) ≈ |𝑥𝑗|
1−𝛼

                                                  (14) 

 

where α represents power-law exponent 

(α=(1,2]). xj represents the flight distance [20]. 

 

𝑓𝐿(𝑥; 𝛼, 𝛾) =
1

𝜋
∫ 𝑒𝑥𝑝(−𝛾𝑞𝛼) 𝑐𝑜𝑠(𝑞𝑥)𝛿𝑞
∞

0
  (15) 

 

where 𝛾 represents the scale unit [20]. 

 

𝐿𝑒𝑣𝑦(𝛼) = 0.05 ×
𝑥

|𝑦|
1
𝛼

                                    (16) 

 

where  𝑥 = 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑥
2)  and 𝑦 =

𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑦
2)  [20]. 

 

𝜎𝑥 = [
Γ(1+𝛼)sin (

𝜋𝛼

2
)

Γ(
(1+𝛼)

2
)𝛼2

(𝛼−1)

2

]

1
𝛼⁄

, 𝜎𝛾 = 1, 𝑎𝑛𝑑 𝛼 = 1   

                                                                       (17)                

Exploitation: 
 

In the exploitation phase of GOA, it is assumed 

that gazelles graze without predators or that the 

hunter follows the gazelles. At this stage, 

brownian motion was used in gazelle walks. This 

movement is shown in Equation 18 [5]. 
 

𝑋𝑖+1 = 𝑋𝑖 + 𝑠. 𝑅 ∗. 𝑅𝐵 ∗. (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐵 ∗. 𝑋𝑖)(18)                                                                                            
 

where  𝑋𝑖+1 shows the position of the gazelle at 

the next iteration. 𝑋𝑖 shows the position of the 

gazelle at the current iteration. 𝑠 shows grazing 

speed of the gazelles. R is a vector of uniform 

random numbers [0,1]. 𝑅𝐵 shows a vector 

containing random numbers representing the 

Brownian motion [5]. 
 

Exploration: 

 

The exploration phase begins when gazelles see 

a predator. Gazelles start running and hunters 

chase them. Levy flight was used at this stage. 

Gazelles can make sudden changes in direction. 

With each iteration, a direction change was made 

in the GOA. The mathematical model of the 

gazelle's behavior when it detects the predator is 

as shown in Equation 19 [5]. 

𝑋𝑖+1 = 𝑋𝑖 + 𝑆. 𝜇. 𝑅 ∗. 𝑅𝐿 ∗. (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐿 ∗. 𝑋𝑖)    (19)                                                                                 

 

where S shows the top speed. 𝑅𝐿 shows a vector 

of random numbers based on Le´vy distributions. 

The movement of a gazelle being chased by a 

predator is shown in Equations 20-21 [5]. 

 

𝑋𝑖+1 = 𝑋𝑖 + 𝑆. 𝜇. 𝑅 ∗. 𝐶𝐹 ∗. 𝑅𝐵 ∗. (𝐸𝑙𝑖𝑡𝑒𝑖 − 𝑅𝐿 ∗
. 𝑋𝑖)                                                                  (20) 

 

𝐶𝐹 = (1 −
𝑖𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)
(2×

𝑖𝑡𝑒𝑟

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
)
                         (21) 

 

where 𝐶𝐹 shows the cumulative effect of the 

predator [5].  

 

The 𝑃𝑆𝑅 value expresses the success rate of the 

predator. It affects the gazelle's ability to escape, 

which means the algorithm avoids getting stuck 

in the local minimum. The 𝑃𝑆𝑅 effect on the 

algorithm is shown in Equations 22-23 [5]. 

Figure 3 shows the pseudo-code of GOA and 

Figure 4 shows the flowchart of GOA [5].  

 
𝑋𝑖+1 =

{
𝑋𝑖 + 𝐶𝐹[𝐵𝑙𝑜𝑤𝑒𝑟 + 𝑅 ∗. (𝐵𝑢𝑝𝑝𝑒𝑟 − 𝐵𝑙𝑜𝑤𝑒𝑟)] ∗. 𝑈 𝑖𝑓 𝑟 ≤ 𝑃𝑆𝑅

𝑋𝑖 + [𝑃𝑆𝑅(1 − 𝑟) + 𝑟](𝑋𝑟1 − 𝑋𝑟2)             𝑒𝑙𝑠𝑒
    

                 (22) 

 

𝑈 = {
0,                     𝑖𝑓 𝑟 < 0.34
1,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                       (23) 
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Figure 3. The pseudo-code of GOA 

 

 
Figure 4. The flowchart of GOA 

 

2.3. Classical benchmark functions 

 

In this study, comparisons of MGO and GOA 

algorithms were compared on 13 classical test 

functions. These test functions are taken from 

https://www.sfu.ca/~ssurjano/optimization.html 

[1]. The classic test function consists of 7 

unimodel and 6 multimodel test functions. Table 

1 and Table 2 shows unimodel and multimodel 

test functions, respectively. Two different groups 

of benchmark functions were selected in this 

study. The reason for choosing these function 

groups is to test the performance of MGO and 

GOA from different aspects.  

 

The first group of functions, single-mode 

benchmark functions, has a single minimum and 

thus the utilization and convergence rates of 

MGO and GOA are tested. The second group of 

functions, multimodal benchmark functions, 

have multiple minima, making them more 

challenging than single-mode benchmarks. Thus, 

the exploration and exploitation capabilities of 

MGO and GOA can be tested by multimodal 
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benchmark functions. Figures 5-7 show 3D plots 

of F1 function, F9 function, and F11 function ([1, 

21, 22]). 
 

Table 1. The unimodal benchmark test functions of 

the mathematical formulations [1] 
No Range Fmin Formulation 

F1 [−100,100] 0 𝑓1(𝑥⃗) = ∑𝑥𝑖
2

𝐷

𝑖=1

 

F2 [-10, 10] 0 𝑓2(𝑥⃗) = ∑  

𝐷

𝑖=1

|𝑥𝑖| +∏  

𝐷

𝑖=1

|𝑥𝑖| 

F3 [−100,100] 0 𝑓3(𝑥⃗) = ∑  

𝐷

𝑖=1

(⌊𝑥𝑖 + 0.5⌋)
2 

F4 [−100,100] 0 𝑓4(𝑥⃗) = 𝑚𝑎𝑥
𝑖
 {|𝑥𝑖|, 1 ⩽ 𝑖 ⩽ 𝐷} 

F5 [−30,30] 0 
𝑓5(𝑥⃗) =  ∑  

𝐷−1

𝑖=1

[100(𝑥𝑖+1 − 𝑥𝑖
2)
2

+ (𝑥𝑖 − 1)
2] 

F6 [−100,100] 0 𝑓6(𝑥⃗) =  ∑  

𝐷

𝑖=1

([𝑥𝑖 + 0.5])
2 

F7 [−1.28,1.28] 0 𝑓7(𝑥⃗) =  ∑  

𝐷

𝑖=1

i𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1) 

 
 
 

 

Table 2. The multimodal benchmark test functions 

of the mathematical formulations [1] 
No. Range Fmin Formulation 

F8 
[-500, 

500] 

-

418,9829×5 
𝑓8(𝑥⃗) = ∑  

𝑛

𝑖=1

− 𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|) 

F9 
[-5.12, 

5.12] 
0 

𝑓9(𝑥⃗) =  ∑  

𝐷

𝑖=1

[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)

+ 10] 

F10 [−32,32] 0 

𝑓10(𝑥⃗)

=  −20 exp

{
 

 
−0.2√

1

𝑛
∑  

𝐷

𝑖=1

𝑥𝑖
2

}
 

 

− exp {
1

𝐷
∑  

𝐷

𝑖=1

cos(2𝜋𝑥𝑖)} + 20 + 𝑒 

F11 
[-600, 

600] 
0 

𝑓11(𝑥⃗)

=  
1

4000
∑  

𝐷

𝑖=1

𝑥𝑖
2 −∏  

𝐷

𝑖=1

cos (
𝑥𝑖

√𝑖
) + 1 

 

 

 

 

F12 

 

 

 

 

[−50,50] 

 

 

 

 

0 

𝑓12(𝑥⃗)

=  
𝜋

𝐷
{10 sin2(𝜋𝑦1)

+ ∑  

𝐷−1

𝑖=1

(𝑦𝑖 − 1)
2[1 + 10 sin2(𝜋𝑦𝑖+1)]

+ (𝑦𝐷 − 1)
2} +∑  

𝐷

𝑖=1

𝑢(𝑥𝑖 , 10,100,4) 

𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1)𝑢𝑥𝑖,𝑎,𝑘,𝑚

= {
𝑘(𝑥𝑖 − 𝑎)

𝑚    𝑥𝑖 > 𝑎
0    − 𝑎 ⩽ 𝑥𝑖 ⩽ 𝑎

𝑘(𝑥𝑖 − 𝑎)
𝑚    𝑥𝑖 < −𝑎

 

 

 

F13 

 

 

[−50,50] 

 

 

0 

𝑓13(𝑥⃗)

=  
1

10
{sin2(𝜋𝑥1)

+ ∑  

𝐷−1

𝑖=1

(𝑥𝑖 − 1)
2[1 + sin2(3𝜋𝑥𝑖+1)]

+ (𝑥𝑛 − 1)
2[1 + sin2(2𝜋𝑥𝑖+1)]}

+∑  

𝐷

𝑖=1

𝑢(𝑥𝑖 , 5,100,4) 

 

 
Figure 5.  3D plots of F1 function ([1], [21], 

[22]) 

 

 
Figure 6.  3D plots of F9 function ([1], [21], 

[22]) 

 
Figure 7.  3D plots of  F11 function ([1], 

[21], [22]) 

 

3. Results and Discussion 

 

3.1. The comparison of MGO and GOA on 13 

classical benchmark functions 

 

In this section, the results of MGO and GOA 

algorithms on 13 classical benchmarks in seven 

different dimensions are compared. The codes of 

the MGO and GOA algorithms were obtained 

from the mathworks library 

(https://ww2.mathworks.cn/en/). MGO and 
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GOA algorithms were run on a PC with 

Windows 10 Home with 64 bits operating 

system, Intel(R) Core(TM) i5 1.19 GHz CPU, 

and 12 GB RAM.  Comparisons were made 

under equal conditions to ensure fairness. 

Parameter settings for both algorithms are shown 

in Table 3.  

 
Table 3. The parameter settings for MGO and GOA 
Parameters Values 

Population size (N) 30 

Maximum iterations  200 (𝐼𝑡𝑒𝑟𝑚𝑎𝑥) 

Dimension (D) 10, 30, 50, 100, 500, 1000 

GOA PSRs = 0.34;  S=0.88 

 

There is no need for special fixed parameter 

tuning for MGO. The PSRs and S parameter 

settings used in GOA are determined as 0.34 and 

0.88, respectively. These parameter settings were 

determined by the authors who proposed the 

GOA algorithm in the literature [5]. In this paper, 

PSRs and S parameters are used at similar values.  

Both algorithms were run independently 20 times 

on 13 classical benchmarks. Best, worst, average 

(Mean), standard deviation (Std), and average 

time (Time) statistical evaluations were made on 

the results obtained. The results are shown for 

seven different sizes in Tables 4-10. Wilcoxon 

signed rank test was performed on the results to 

determine whether there were semantic 

differences between the MGO and GOA results. 

p and h values are shown in Table 11. The 

Wilcoxon signed rank test is a statistical test used 

to compare two samples of data to detect 

significant differences between them [23]. In this 

test, p value or h value are the criteria that 

determine the superiority of one algorithm over 

another. If the p value is equal to or above 0.05, 

there is no semantic difference and the h value is 

0. If the p value is below 0.05, there is a semantic 

difference and the h value is 1.  

 

Table 4. The results of the MGO and GOA on classical benchmark functions (D=10) 
F_ID MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 2.88e-52 6.80e-46 7.01e-47 1.70e-46 0.727 2.0e-38 1.76e-17 8.85e-19 3.83e-18 0.511 

F2 8.65e-30 1.29e-25 2.27e-26 3.98e-26 0.751 6.93e-23 2.81e-11 1.42e-12 6.12e-12 0.721 

F3 2.25e-17 5.99e-09 3.46e-10 1.30e-09 1.365 7.870e-16 1.55E-04 8.03e-06 3.38e-05 0.950 

F4 1.01e-20 1.36e-15 6.96e-17 2.97e-16 1.069 1.90e-14 1.05E-03 6.06e-05 2.29E-04 0.722 

F5 1.75e-12 1.68e-04 8.44e-06 3.66e-05 1.292 4.00E+00 5.85 e+00 5.19 e+00 0.48 e+00 0.712 

F6 7.01e-19 7.56e-14 9.51e-15 2.04e-14 1.335 8.84e-05 1.70 E-03 5.98E-04 3.89E-04 0.724 

F7 2.64e-05 1.18e-03 5.09e-04 3.39e-04 1.281 6.01E-04 6.24E-03 2.52e-03 1.26 e-03 0.758 

F8 -4.19e+03 -4.19e+03 -4.19e+03 7.37e-12 1.401 -4.00E+03 -3.14E+03 -3.60E+03 2.42E+02 0.751 

F9 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.378 0.00e+00 2.02e+00 0.15e+00 0.48e+00 0.712 

F10 8.88e-16 4.44e-15 1.78e-15 1.54e-15 1.384 4.44e-15 5.02e-09 2.53e-10 1.09e-09 0.750 

F11 0.00e+00 0.00e+00 0.00e+00 0.00e+00 1.178 0.00e+00 8.45E-02 1.04E-02 2.27E-02 0.784 

F12 6.14e-24 1.53e-18 1.51e-19 3.40e-19 1.530 5.84e-06 3.52E-04 1.26E-04 9.14E-05 0.955 

F13 7.72e-26 2.45e-20 1.41e-21 5.30e-21 1.529 1.71E-04 3.20E-03 1.03E-03 7.89E-04 0.980 

 

Table 5. The results of the MGO and GOA on classical benchmark functions (D=20) 
F_ID MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 1.93E-36 7.18E-29 4.62E-30 1.60E-29 0.760 1.40E-25 8.46E-10 4.84E-11 1.85E-10 0.481 

F2 4.45E-22 2.95E-18 3.79E-19 7.41E-19 1.054 2.05E-16 1.45E-05 7.27E-07 3.16E-06 0.455 

F3 1.78E-11 2.08E-04 4.76E-05 6.99E-05 2.097 1.26E-05 1.16E+02 6.49E+00 2.53E+01 0.720 

F4 1.31E-13 1.11E-10 1.43E-11 2.76E-11 1.082 1.03E-08 3.35E-02 3.18E-03 9.38E-03 0.468 

F5 2.27E-14 3.75E-09 2.33E-10 8.21E-10 1.178 1.54E+01 1.86E+01 1.67E+01 6.37E-01 0.474 

F6 1.46E-08 3.21E-06 7.31E-07 1.03E-06 1.342 8.62E-03 2.24E-01 9.06E-02 6.09E-02 0.467 

F7 7.41E-05 3.12E-03 8.36E-04 7.02E-04 1.363 8.68E-04 2.69E-02 6.76E-03 5.86E-03 0.562 

F8 -8.38E+03 -8.38E+03 -8.38E+03 1.18E-06 1.271 -6.02E+03 -4.64E+03 -5.23E+03 3.94E+02 0.477 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.333 0.00E+00 1.52E+01 3.08E+00 5.23E+00 0.489 

F10 8.88E-16 4.44E-15 3.73E-15 1.42E-15 1.515 1.15E-14 6.46E-03 3.37E-04 1.41E-03 0.480 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.435 0.00E+00 7.65E-02 8.14E-03 2.00E-02 0.495 

F12 1.01E-18 2.60E-13 4.25E-14 6.03E-14 1.769 1.73E-03 1.54E-02 5.59E-03 3.22E-03 0.614 

F13 8.01E-19 1.56E-15 1.65E-16 3.42E-16 1.622 1.18E-02 1.97E-01 7.63E-02 4.62E-02 0.642 
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Table 6. The results of the MGO and GOA on classical benchmark functions (D=30) 
F_ID MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 3.99e-37 1.52e-27 8.630e-29 3.31e-28 1.089 1.02E-22 2.94E-04 2.40E-05 7.4E-05 0.508 

F2 5.43e-19 1.57e-16 2.38e-17 4.04e-17 1.424 5.49E-14 4.30E-07 2.17E-08 9.36E-08 0.713 

F3 5.27e-07 2.84E-02 2.87E-03 6.64E-03 2.816 3.85E-02 7.13E+02 4.93E+01 1.55E+02 1.336 

F4 3.25e-13 3.85e-10 9.14e-11 1.05e-10 1.290 8.45E-07 6.10E-01 5.02E-02 1.38E-01 0.750 

F5 3.60e-16 8.37e-10 7.48e-11 1.94e-10 1.530 2.65E+01 2.91E+01 2.73E+01 6.35E-01 0.907 

F6 6.10e-08 8.42e-05 2.03e-05 2.43e-05 1.372 3.29E-01 1.42E+00 7.91E-01 2.92E-01 0.822 

F7 7.77e-05 2.10E-03 8.18E-04 5.89E-04 1.491 3.75E-03 1.95E-02 7.68E-03 3.96E-03 0.867 

F8 -1.26E+04 -1.26E+04 -1.26E+04 2.32E-04 1.431 -8.64E+03 -5.23E+03 -6.84E+03 7.55E+02 0.814 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.542 0.00E+00 3.25E+01 2.66E+00 7.33E+00 0.827 

F10 8.88e-16 4.71e-14 6.22e-15 9.50e-15 1.559 6.07E-12 5.12E-04 2.56E-05 1.11E-04 0.798 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.514 0.00E+00 2.65E-02 2.08E-03 6.50E-03 0.842 

F12 3.52e-15 4.47e-12 6.00e-13 1.09e-12 2.017 1.24E-02 5.70E-02 3.51E-02 1.30E-02 1.082 

F13 7.53e-17 4.6e-14 7.93e-15 1.20e-14 2.045 2.70E-01 9.37E-01 5.48E-01 1.68E-01 1.054 

 

Table 7. The results of the MGO and GOA on classical benchmark functions (D=50) 

F_ID 
MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 1.11E-30 2.55E-23 1.35E-24 5.55E-24 1.212 1.54E-17 4.24E-10 3.91E-11 1.12E-10 0.560 

F2 1.58E-18 3.13E-14 2.76E-15 6.75E-15 1.476 6.92E-12 2.57E-03 1.31E-04 5.59E-04 0.793 

F3 2.17E-06 1.62E+00 8.25E-02 3.53E-01 3.603 3.37E+01 3.32E+03 8.27E+02 8.84E+02 1.755 

F4 4.76E-13 4.27E-09 4.50E-10 9.97E-10 1.341 2.77E-05 6.47E-01 5.05E-02 1.55E-01 0.72 

F5 1.17E-12 1.09E-08 1.04E-09 2.48E-09 1.390 4.66E+01 4.87E+01 4.81E+01 6.37E-01 0.938 

F6 3.83E-07 5.49E-03 6.81E-04 1.21E-03 1.325 2.30E+00 4.88E+00 3.57E+00 6.65E-01 0.812 

F7 7.99E-05 3.43E-03 1.10E-03 8.33E-04 1.608 3.02E-03 8.15E-02 1.55E-02 1.77E-02 0.998 

F8 -2.09E+04 -2.09E+04 -2.09E+04 3.85E-03 1.38 -1.04E+04 -7.54E+03 -8.47E+03 8.69E+02 0.836 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.364 0.00E+00 8.82E+01 1.09E+01 2.63E+01 0.878 

F10 8.88E-16 1.15E-13 1.40E-14 2.55E-14 1.381 2.47E-10 2.05E-02 1.11E-03 4.46E-03 0.888 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.387 0.00E+00 6.53E-01 3.56E-02 1.42E-01 0.928 

F12 6.32E-14 3.19E-11 4.15E-12 7.80E-12 2.458 7.24E-02 2.07E-01 1.24E-01 3.15E-02 1.219 

F13 1.52E-15 5.08E-13 9.82E-14 1.24E-13 2.316 1.69E+00 5.03E+00 2.61E+00 6.91E-01 1.229 

 

Table 8. The results of the MGO and GOA on classical benchmark functions (D=100) 
F_ID MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 3.43E-31 1.98E-24 2.73E-25 5.13E-25 1.021 6.53E-14 8.38E+01 4.20E+00 1.83E+01 0.849 

F2 7.48E-17 6.56E-14 9.33E-15 1.71E-14 0.961 7.11E-10 2.13E-01 1.06E-02 4.64E-02 1.085 

F3 1.89E-05 5.07E+00 9.08E-01 1.58E+00 6.223 7.51E+02 2.17E+04 8.43E+03 6.36E+03 3.278 

F4 1.71E-12 2.22E-08 2.49E-09 5.03E-09 1.761 6.17E-04 5.55E-01 6.17E-02 1.22E-01 0.657 

F5 2.47E-12 2.56E-08 2.48E-09 5.89E-09 1.831 9.78E+01 6.09E+04 3.14E+03 1.32E+04 0.986 

F6 1.13E-05 2.83E-02 3.67E-03 7.58E-03 1.651 1.10E+01 1.70E+01 1.39E+01 1.31E+00 1.281 

F7 2.42E-04 4.25E-03 1.56E-03 1.08E-03 2.331 4.67E-03 6.14E-02 1.59E-02 1.54E-02 1.649 

F8 -4.19E+04 -4.19E+04 -4.19E+04 1.83E-02 1.778 -2.28E+04 -1.02E+04 -1.22E+04 2.77E+03 1.365 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.591 2.50E-12 2.94E+01 1.72E+00 6.44E+00 1.338 

F10 4.44E-15 7.61E-13 1.32E-13 2.18E-13 1.416 3.77E-08 4.27E+00 3.35E-01 1.05E+00 1.383 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.715 4.77E-14 1.37E+00 7.61E-02 2.98E-01 1.439 

F12 2.60E-14 2.61E-11 3.51E-12 7.04E-12 2.764 2.54E-01 4.42E-01 3.37E-01 5.86E-02 2.230 

F13 1.86E-14 2.31E-12 6.56E-13 6.61E-13 2.82 7.88E+00 1.03E+02 1.70E+01 2.27E+01 2.267 

 

Table 9. The results of the MGO and GOA on classical benchmark functions (D=500) 
F_ID MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 1.88e-27 1.19e-19 7.00e-21 2.59e-20 2.892 1.79E-09 1.81E+00 9.09E-02 3.94E-01 1.737 

F2 7.12e-17 2.80e-11 1.68e-12 6.06e-12 3.147 5.85E-07 5.70E+80 2.85E+79 1.24E+80 2.597 

F3 5.54E-01 1.23E+04 1.56E+03 2.90E+03 33.232 6.04E+04 5.56E+05 3.10E+05 1.55E+05 18.250 

F4 2.20e-11 9.30e-08 8.12e-09 2.01e-08 2.718 1.04E-01 4.08E+01 1.19E+01 1.40E+01 2.585 

F5 5.75e-12 3.78e-07 4.70e-08 8.35e-08 2.555 4.98E+02 5.39E+05 3.05E+04 1.17E+05 2.605 

F6 2.16e-05 3.18E-01 5.26E-02 8.94E-02 2.791 1.04E+02 5.78E+02 1.33E+02 1.02E+02 2.502 

F7 9.76e-05 9.15E-03 2.35E-03 2.09E-03 5.476 5.87E-03 1.31E-01 3.37E-02 3.17E-02 4.294 

F8 -2.09E+05 -2.09E+05 -2.09E+05 6.13E-01 3.149 -3.76E+04 -2.26E+04 -2.72E+04 3.91E+03 2.431 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.573 3.52E-10 3.95E+03 2.18E+02 8.62E+02 2.706 

F10 1.87E-14 2.26E-11 2.75E-12 5.88E-12 2.887 3.65E-06 1.06E+01 1.13E+00 2.99E+00 2.795 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.767 8.25E-10 3.51E+02 1.75E+01 7.64E+01 2.805 

F12 2.54E-15 3.18E-11 4.16E-12 9.29E-12 8.111 7.85E-01 3.36E+01 2.82E+00 7.16E+00 6.266 

F13 9.36E-14 5.53E-10 4.74E-11 1.21E-10 9.073 4.91E+01 2.05E+02 5.84E+01 3.39E+01 5.880 
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Table 10. The results of the MGO and GOA on classical benchmark functions (D=1000) 

F_ID 
MGO GOA 

Best Worst Mean Std Time Best Worst Mean Std Time 

F1 4.04e-26 8.78e-17 4.42e-18 1.91e-17 4.525 1.40E-07 1.51E+05 1.24E+04 3.81E+04 1.860 

F2 5.20e-14 1.09e-11 2.32e-12 2.820e-12 5.260 5.27E+02 2.30E+163 1.15E+162 null 1.925 

F3 2.43E+00 6.37E+04 1.41E+04 1.83E+04 82.032 3.87E+05 3.54E+06 1.58E+06 8.21E+05 26.34 

F4 2.82e-12 2.98e-08 5.11e-09 9.04e-09 4.585 6.67E-01 9.97E+01 3.18E+01 3.00E+01 1.858 

F5 1.99e-09 2.90e-06 2.54e-07 6.18e-07 4.778 9.98E+02 8.80E+07 4.44E+06 1.92E+07 1.947 

F6 3.70e-06 1.04E+00 1.89E-01 2.91E-01 4.669 2.28E+02 4.94E+02 2.47E+02 5.67E+01 1.885 

F7 1.12E-04 8.41E-03 2.14E-03 2.29E-03 9.406 1.00E-02 2.05E+00 1.63E-01 4.42E-01 3.577 

F8 -4.19E+05 -4.19E+05 -4.19E+05 3.70E-01 5.281 -4.12E+04 -3.23E+04 -3.61E+04 2.28E+03 2.181 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.977 6.52E-09 4.68E+02 2.80E+01 1.02E+02 2.029 

F10 7.99E-15 2.72E-11 3.58E-12 6.75E-12 5.136 1.15E-05 8.73E+00 4.40E-01 1.90E+00 2.099 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.125 1.20E-08 4.90E+02 2.45E+01 1.07E+02 2.121 

F12 1.03E-16 2.19E-11 4.24E-12 6.16E-12 14.966 8.99E-01 2.28E+01 2.11E+00 4.74E+00 5.634 

F13 1.77E-12 2.01E-09 1.91E-10 4.41E-10 15.096 9.90E+01 2.26E+03 2.24E+02 4.69E+02 5.605 

 

Table 11. The wilcoxon signed rank test results of the MGO and GOA on classical benchmark functions 

(D={10, 20, 30, 50, 100, 500, 1000}) (p-value) (h-value) 

F_ID 

MGO-GOA 

D=10 D=20 D=30 D=50 D=100 D=500 D=100 

p h p h p h p h p h p h p h 

F1 0.0002 1 0.00049 1 0.00049 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F2 0.0049 1 0.00049 1 0.00049 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F3 0.00097 1 0.00024 1 0.00024 1 0.00049 1 0.000244 1 0.000244 1 0.000244 1 

F4 0.0048 1 0.00024 1 0.00024 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F5 0.00098 1 0.00024 1 0.00024 1 0.00098 1 0.000244 1 0.000244 1 0.000244 1 

F6 0.00024 1 0.00049 1 0.00049 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F7 0.0068 1 0.00024 1 0.00024 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F8 0.00049 1 0.00049 1 0.00049 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F9 0.00049 1 0.00049 1 0.00049 1 0.00049 1 0.000244 1 0.000244 1 0.000244 1 

F10 0.00049 1 0.00024 1 0.00024 1 0.00049 1 0.000244 1 0.000244 1 0.000244 1 

F11 0.00098 1 0.00049 1 0.00049 1 0.00049 1 0.000244 1 0.000244 1 0.000244 1 

F12 0.00489 1 0.00024 1 0.00024 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

F13 0.00342 1 0.00098 1 0.00098 1 0.00024 1 0.000244 1 0.000244 1 0.000244 1 

Figures 8-13 show the convergence graphs of 

MGO and GOA on classical benchmark 

functions for dimension=30. Figures 14-17 show 

the boxplot graphs of MGO and GOA for D={10, 

20, 30, 50, 100, 500, and 1000}, respectively. 

Boxplots show five features of a data set: 

minimum value, first (25%) quartile, median, 

third (75%) quartile, and maximum value. 

Minimum value is the lowest value, excluding 

outliers (shown at the end of the left). First 

quarter (25%) shows the twenty-five percent of 

the scores.  

 

Median is the median marks the midpoint of the 

data and is represented by the line dividing the 

box into two parts. Third quarter (75%) is shows 

the seventy-five percent of the scores. Hence, 

25% of the data is above this value. Maximum 

value shows the highest value excluding outliers. 

Box plots allow one to quickly identify mean 

values, distribution of the data set, and signs of 

variability (https://yalin-

dunya.com/2020/06/19/kutu-grafigi-boxplot/). 

According to Table 4, MGO achieved superior 

results than GOA in all classical functions in the 

best, Mean, and Std comparison criteria. When 

the time results are examined, it is seen that GOA 

works in a shorter time than MGO. Worst results 

are given for informational purposes only and do 

not mean anything when comparing MGO and 

GOA. The results obtained in Table 4 are similar 

in different dimensions (in Tables 5-10).  When 

Table 11 is examined, it is seen that there is a 

semantic difference between MGO and GOA 

results in all classical benchmark functions and 

in all different dimensions. According to Figures 

8-13, MGO converged much faster than GOA in 

all classical benchmark functions.  
 

When Figures 14 - 17 are examined, it is seen that 

the data distributions are generally not 

symmetrical. Additionally, the five values 

(minimum value, first quartile, median, third 

quartile, maximum value) shown by the box plots 

are very close to each other. Outliers are 

observed in some dimension datasets.  

https://yalin-dunya.com/2020/06/19/kutu-grafigi-boxplot/
https://yalin-dunya.com/2020/06/19/kutu-grafigi-boxplot/
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Figure 8. The convergence graphs of MGO and 

GOA for dimension=30 (F1) 
 

 
Figure 9. The convergence graphs of MGO and 

GOA for dimension=30 (F2) 

 

 
Figure 10. The convergence graphs of MGO and 

GOA for dimension=30 (F3) 

 
Figure 11. The convergence graphs of MGO and 

GOA for dimension=30 (F9) 

 

 
Figure 12. The convergence graphs of MGO and 

GOA for dimension=30 (F10) 
 

 
Figure 13. The convergence graphs of MGO and 

GOA for dimension=30 (F11) 
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Figure 14. Boxplot graph of MGO for D={10, 20, 30, 50, 100, 500, and 1000} 

 

 
 

 
Figure 15. Boxplot graph of MGO for D={10, 20, 30, 50, 100, 500, and 1000} 
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Figure 16. Boxplot graph of GOA for D={10, 20, 30, 50, 100, 500, and 1000}

 

 

 
Figure 17. Boxplot graph of GOA for D={10, 20, 30, 50, 100, 500, and 1000}

  

3.2. The comparison of MGO and GOA on 

engineering design problems 

 

Algorithms that are successful in classical 

benchmark functions can often fail to solve real-

world problems. That's why MGO and GOA 

have been shown to be successful in three 

different engineering problems. The range of all 

variables in these problems is known and can be 

controlled [12, 13]. Every problem can be created 

as a mathematical model [12, 13].  These 

problems are often difficult to solve due to a lot 

of calculations and many variables that need to 

be processed [12, 13].  Three engineering 

problems are selected in this subsection to 

measure the success of MGO and GOA 

algorithms in solving engineering problems. 
 

3.2.1. The comparison of MGO and GOA on 

pressure vessel design problem 

 

The aim of the pressure vessel design problem is 

to minimize the total cost of cylindrical pressure 

vessels [12, 13]. Problem variables: shell 

thickness (Ts), head thickness (Th), inner radius 

(R), and container length (L) [12, 13].  The 
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mathematical equations of the problem are 

shown in Equations 24-30 [12, 13].  MGO and 

GOA were run independently 20 times under 

equal conditions. The population size was 

determined as 30 and the maximum number of 

iterations was determined as 200. Best, worst, 

average (Mean), standard deviation (Std), and 

average time (Time) statistical evaluations were 

made on the results obtained. The statistical 

results are shown in Table 12. The values of the 

variable values (Ts, Th, R, and L) in the case of 

the best cost result are shown in Table 13. Figure 

18 shows the schematic view of the the pressure 

vessel design problem [12, 13]. Figure 19 shows 

the convergence graphs of MGO and GOA for 

the pressure vessel design problem.  

 

According to Table 12, while MGO achieved the 

best results, GOA also achieved the best results 

in terms of mean and standard deviation. 

Additionally, GOA worked in a shorter time. 

According to Table 13, in 20 independent 

studies, MGO achieved a better result than GOA 

and obtained the corresponding problem 

variables. Thus, MGO ranked first in the rank 

order. According to Figure 19, although MGO 

achieved a worse fitness at first, it converged to 

the best result with a faster convergence than 

GOA. GOA, on the other hand, achieved slower 

convergence in each iteration. 

Variables: 

            
 

  

Subject to: 

 

Variable range: 

        

 
Table 12. The statistical results of MGO and GOA for the pressure vessel design problem 

Algorithm Best Worst Mean Std Time 

MGO 5888.0874 7318.982 6422.1588 506.88686 2.765137 

GOA 5901.282591 6226.880046 5966.696622 73.00917999 0.699607 

 

Table 13. The comparison results of MGO and GOA for the pressure vessel design problem 

Algorithm 𝑻𝒔 𝑻𝒉 𝑹 𝑳 Best cost Rank 

MGO 0.77977687 0.38544411 40.4029465 198.8433 5888.0874 1 

GOA 0.778731 0.389645 40.34135 199.7133 5901.282591 2 

 

 
Figure 18. The The schematic view of the pressure 

vessel design problem [12, 13] 

 
Figure 19. The convergence graphs of MGO and 

GOA for the pressure vessel design problem

3.2.2. The comparison of MGO and GOA on 

welded beam design problem 

 

The goal of this problem is to obtain the 

minimum weight under four constraint 

conditions [12, 13]. Problem variables: weld 

width h, connecting beam length l, beam height 

t, and connecting beam thickness b [12, 13].  The 

mathematical equations of the problem are 

shown in Equations 31-46 [12, 13]. MGO and 

GOA were run independently 20 times under 

equal conditions. The population size was 



Emine Baş  

 

625 
 

determined as 30 and the maximum number of 

iterations was determined as 200.  

 

Best, worst, average (Mean), standard deviation 

(Std), and average time (Time) statistical 

evaluations were made on the results obtained. 

The statistical results are shown in Table 14. The 

values of the variable values (h, l, t, and b) in the 

case of the best cost result are shown in Table 15. 

Figure 20 shows the schematic view of the the 

welded beam design problem [12, 13]. Figure 21 

shows the convergence graphs of MGO and 

GOA for the welded beam design problem.  

 

According to Table 14, while GOA achieved the 

best results, MGO also achieved the best results 

in terms of mean and standard deviation. GOA 

worked in a shorter time than MGO. According 

to Table 15, in 20 independent studies, GOA 

achieved a better result than MGO and obtained 

the corresponding problem variables. Thus, GOA 

ranked first in the rank order. According to 

Figure 21, GOA converged to the best result with 

a faster convergence than MGO.  

 

Variables: 

 

 

 

 

 

 

Subject to: 

                                                  

 

where: 

        

                                          

                
                                                                          

Variable range: 

 

 
Table 14. The statistical results of MGO and GOA for the welded beam design problem 

Algorithm Best Worst Mean Std Time 

MGO 2.397591 2.903343 2.507813 0.141959 1.97952 

GOA 2.386234 3.334676 2.569828 0.255182 0.754791 

 

Table 15. The comparison results of MGO and GOA for the welded beam design problem 

Algorithm 𝒉 𝒍 𝒕 𝒃 Best cost Rank 

MGO 0.243847 6.026648 8.517861 0.243909 2.397591 2 

GOA 0.243791 6.216256 8.324413 0.244319 2.386234 1 
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Figure 20. The schematic view of the the welded 

beam design problem [12, 13] 

 
Figure 21. The convergence graphs of MGO and 

GOA for the welded beam design problem 
 

3.2.3. The comparison of MGO and GOA on 

tension/compression spring design 

problem 

 

The aim of the problem is to obtain the minimum 

spring mass with the existing variables and 

constraints [12, 13]. Problem variables: coil 

diameter d, average coil diameter D, and efective 

coil number N [12, 13].  The mathematical 

equations of the problem are shown in Equations 

47-53 [12, 13]. MGO and GOA were run 

independently 20 times under equal conditions. 

The population size was determined as 30 and the 

maximum number of iterations was determined 

as 200. Best, worst, average (Mean), standard 

deviation (Std), and average time (Time) 

statistical evaluations were made on the results 

obtained.  

The statistical results are shown in Table 16. The 

values of the variable values (d, D, and N) in the 

case of the best cost result are shown in Table 17. 

Figure 22 shows schematic view the 

tension/compression spring design problem [12, 

13]. Figure 23 shows the convergence graphs of 

MGO and GOA for the tension/compression 

spring design problem.  

 

According to Table 16, MGO achieved the best 

results in terms of best, mean, and standard 

deviation. GOA worked in a shorter time than 

MGO. According to Table 17, in 20 independent 

studies, MGO achieved a better result than GOA 

and obtained the corresponding problem 

variables. Thus, MGO ranked first in the rank 

order. According to Figure 23, MGO converged 

to the best result with a faster convergence than 

GOA.  

Variables: 

                              

 

        

 

Subject to: 

                                    

 

Variable range: 

 

 

 

Table 16. The statistical results of MGO and GOA for the tension/compression spring design problem 
Algorithm Best Worst Mean Std Time 

MGO 0.012682 0.017774 0.013348 0.001234 1.290039 

GOA 0.01269 0.017423 0.013678 0.001482 0.617529 

 

Table 17. The comparison results of MGO and GOA for the tension/compression spring design problem 
Algorithm 𝒅 𝑫 𝑵 Best cost Rank 

MGO 0.051513 0.352257 11.56701 0.012682 1 

GOA 0.052776 0.383432 9.882135 0.01269 2 
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Figure 22. The schematic view of the 

tension/compression spring design problem [12, 13] 

 
Figure 23. The convergence graphs of MGO and 

GOA for the tension/compression spring design 

problem 

 

3.3.The comparisons of the MGO, GOA, and 

other algorithms on classical test 

Functions 

 

In this subsection, three different heuristic 

algorithms newly proposed in recent years, MGO 

and GOA, are compared. Thus, the success of 

MGO and GOA was compared with the 

literature. Algorithms selected from the literature 

are as follows: Golden Search Optimization 

algorithm (GSO) [14], Crayfsh Optimization 

Algorithm (COA) [13], and Zebra Optimization 

Algorithm (ZOA) [12]. The codes of the MGO, 

GOA, GSO, COA, and ZOA algorithms were 

obtained from the mathworks library 

(https://ww2.mathworks.cn/en/).  

 

All algorithms were compared under equal 

conditions on 13 classical benchmarks. The 

population size was determined as 30, the 

maximum iteration was determined as 200, and 

the dimension was determined as 30. Each 

algorithm was run independently 20 times. Best, 

mean, standard deviation (Std), and average time 

(Time) calculations were made on the results. 

The results are shown in Tables 18-19. 

Convergence graphs of the algorithms are shown 

in Figures 24-31.  

 

When the average results are examined 

according to Table 18, the most successful 

algorithms are MGO and COA. Both algorithms 

showed superior success in 7 out of 13 functions. 

MGO and COA are followed by ZOA and GSO, 

respectively. The most unsuccessful algorithm 

was GOA. When Table 19 is examined, a similar 

situation can be seen. While MGO was especially 

successful in the F5, F6, F8, F9, F10, F11, F12, 

and F13 functions, COA was especially 

successful in the F1, F2, F3, F4, F9, F10, and F11 

functions. Total average time results are listed in 

Table 19.  

 

In this case, the fastest running algorithm was 

ZOA. It was followed by GSO and COA. The 

longest running algorithm was MGO. When the 

convergence graphs are examined, it is observed 

that GOA and GSO converge slowly, while 

MGO and COA converge faster. 

 
Table 18. The comparisons results of the MGO, GOA, and other algorithms (D=30) 

F_ID 
MGO GOA GSO COA ZOA 

Mean Std Mean Std Mean Std Mean Std Mean Std 

F1 8.630e-29 3.31e-28 2.40E-05 7.4E-05 3.00E-111 9.86E-111 0.00E+00 0.00E+00 4.10E-95 1.53E-94 

F2 2.38e-17 4.04e-17 2.17E-08 9.36E-08 4.40E-57 1.33E-56 8.51E-156 0.00E+00 1.50E-51 4.10E-51 

F3 2.87E-03 6.64E-03 4.93E+01 1.55E+02 8.21E-108 3.56E-107 0.00E+00 0.00E+00 1.06E-58 3.12E-58 

F4 9.14e-11 1.05e-10 5.02E-02 1.38E-01 5.23E-46 2.27E-45 1.34E-160 0.00E+00 5.29E-44 1.33E-43 

F5 7.48e-11 1.94e-10 2.73E+01 6.35E-01 2.42E+01 1.92E+01 2.84E+01 4.43E-01 2.87E+01 1.65E-01 

F6 2.03e-05 2.43e-05 7.91E-01 2.92E-01 2.07E+00 1.94E+00 1.94E+00 6.55E-01 3.63E+00 5.29E-01 

F7 8.18E-04 5.89E-04 7.68E-03 3.96E-03 4.11E-04 4.82E-04 2.41E-04 2.46E-04 2.19E-04 1.57E-04 

F8 -1.26E+04 2.32E-04 -6.84E+03 7.55E+02 -1.03E+04 5.58E+02 -6.96E+03 9.87E+02 -6.26E+03 5.98E+02 

F9 0.00E+00 0.00E+00 2.66E+00 7.33E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 6.22e-15 9.50e-15 2.56E-05 1.11E-04 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

F11 0.00E+00 0.00E+00 2.08E-03 6.50E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 6.00e-13 1.09e-12 3.51E-02 1.30E-02 5.93E-02 8.34E-02 1.24E-01 1.16E-01 2.44E-01 9.99E-02 

F13 7.93e-15 1.20e-14 5.48E-01 1.68E-01 2.52E-01 2.82E-01 2.56E+00 2.32E-01 2.26E+00 3.08E-01 
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Table 19. The comparisons results of the MGO, GOA, and other algorithms (D=30) 

F_ID 
MGO GOA GSO COA ZOA 

Best Time Best Time Best Time Best Time Best Time 
F1 3.99e-37 1.089 1.02E-22 0.508 5.43E-170 0.094 0.00E+00 0.454 3.72E-102 0.053 

F2 5.43e-19 1.424 5.49E-14 0.713 2.91E-86 0.096 2.04E-236 0.512 9.39E-55 0.061 

F3 5.27e-07 2.816 3.85E-02 1.336 1.59E-158 0.311 0.00E+00 1.189 5.22E-68 0.568 

F4 3.25e-13 1.290 8.45E-07 0.750 3.93E-69 0.122 1.26E-211 0.767 2.14E-46 0.115 

F5 3.60e-16 1.530 2.65E+01 0.907 1.37E+00 0.323 2.73E+01 0.711 2.84E+01 0.133 

F6 6.10e-08 1.372 3.29E-01 0.822 4.69E-04 0.422 5.00E-01 0.497 2.30E+00 0.104 

F7 7.77e-05 1.491 3.75E-03 0.867 6.19E-06 0.471 1.17E-05 0.518 1.96E-05 0.182 

F8 -1.26E+04 1.431 -8.64E+03 0.814 -1.10E+04 0.207 -8.36E+03 0.574 -7.39E+03 0.107 

F9 0.00E+00 1.542 0.00E+00 0.827 0.00E+00 0.198 0.00E+00 0.748 0.00E+00 0.125 

F10 8.88e-16 1.559 6.07E-12 0.798 8.88E-16 0.186 8.88E-16 0.860 8.88E-16 0.160 

F11 0.00E+00 1.514 0.00E+00 0.842 0.00E+00 0.193 0.00E+00 0.576 0.00E+00 0.159 

F12 3.52e-15 2.017 1.24E-02 1.082 2.99E-04 0.300 3.30E-02 0.777 7.26E-02 0.400 

F13 7.53e-17 2.045 2.70E-01 1.054 7.44E-03 0.306 2.06E+00 0.860 1.62E+00 0.411 

Total Time: 2.11E+01  1.13E+01  3.23E+00  9.04E+00  2.58E+00 

Rank: 5  4  2  3  1 

 

 
Figure 24. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F1) 

 

 
Figure 25. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F2) 

 

 
Figure 26. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F3) 

 

 

 

 
Figure 27. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F4) 

 

 
Figure 28. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F5) 

 

 
Figure 29. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F6) 
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Figure 30. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F7) 

 
Figure 31. The convergence graphs of MGO, GOA, 

GSO, COA, and ZOA for dimension=30 (F8) 

 

3.4. The parameter analysis for GOA and 

MGO algorithm 

 

In this subsection, a population analysis was 

performed for MGO and GOA algorithms. In 

addition, PSRs and S parameters, which are fixed 

parameters of GOA, were analyzed. There are no 

special fixed parameters for MGO. The 

discovery and exploitation abilities of these 

parameters on the algorithms are discussed. 

 

To analyze the effect of population size on MGO 

and GOA, ten different values were examined 

(N={10, 20, 30, 40, 50, 60, 70, 80, 90, and 100}) 

on the classic benchmarks. MGO and GOA were 

run independently 20 times, with a dimension of 

30 and a maximum iteration of 200. Average 

calculations were made on the results obtained. 

The results are shown in Tables 20-21. 

According to the results, as the population size 

increased, the performance of MGO and GOA 

increased. Inversely proportional to this, working 

time has also increased. 

 

In this subsection, two fixed parameter analyzes 

that affect GOA's exploration and exploitation 

capabilities have been carried out. The first of 

these is the PSRs parameter setting. The effect of 

nine different values on GOA (PSRs= {0.10, 

0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 

0.50}) for the PSRs parameter was examined. 

GOA was run independently 20 times, with a 

dimension of 1000, a maximum iteration of 200, 

and a population size of 30.  The mean of the 

results obtained are calculated and the results are 

shown in Table 22. According to Table 22, the 

most successful results were obtained when the 

PSRs value was 0.50. It was later followed by 

0.35. The PSRs value was taken as 0.34 by 

Agushaka et al. in their original paper [5]. The 

findings obtained are parallel to the original 

paper. In this study, the PSRs parameter value 

was taken as 0.34 in the experimental part of the 

study.  

 

The second parameter analysis performed on 

GOA is the S parameter value. the effects of nine 

different values for the S parameter on GOA were 

examined. The mean of the results obtained are 

calculated and the results are shown in Table 23. 

According to Table 23, the most successful 

results were obtained when the S value was 0.10. 

It was later followed by 0.90. The S value was 

taken as 0.88 by Agushaka et al. in their original 

paper. It has been observed that there is no full 

agreement between the value suggested in the 

original paper and the value found for the S value. 

In this study, in order to remain faithful to the 

original structure of GOA, the S parameter value 

was taken as 0.88 in the experimental part of the 

study. 

 

4. Conclusion 

 

In this study, two newly proposed heuristic 

algorithms in recent years were examined. These 

algorithms are mountain gazelle optimization 

(MGO) and gazelle optimization algorithm 

(GOA). both algorithms were inspired by the 

social lifestyle of gazelles. Due to this similarity, 

they are often confused in the literature and seen 

as the same algorithms. This study was carried 

out to eliminate this confusion. Four main factors 

in the life of mountain gazelles are used in the 

MGO mathematical model.  

These are single male herds, natal herds, solitary, 

territorial males and migrate in search of food. 

MGO realizes its exploration and exploitation 

abilities with these four groups of mountain 

gazelles. The GOA model was inspired by the 

behavior of gazelles to escape from predators, 

reach safe environments and graze in safe 

environments. While the grazing behavior of 

gazelles in safe environments was used for the 
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exploitation ability of the GOA, the behavior of 

escaping from predators was used for the 

exploration ability of the GOA. MGO and GOA 

were run on 13 classical unimodal and 

multimodal benchmark functions in seven 

different dimensions (10, 20, 30, 50, 100, 500, 

1000) and their success was compared. 

According to the results, MGO is more 

successful than GOA in all dimensions. GOA, on 

the other hand, works faster than MGO. Then, 

MGO and GOA were tested on 3 different 

engineering design problems.  

While MGO was more successful in the 

tension/compression spring design problem and 

welded beam design problems, GOA achieved 

better results in the pressure vessel design 

problem. The success of MGO and GOA has 

been compared with 3 different algorithms 

(GSO, COA, and ZOA) that have been proposed 

in the literature in recent years. While MGO 

competes with literature algorithms, GOA lags 

behind the literature. 

 

In future studies, it is planned to hybridize MGO 

and GOA (modified MGO-GOA) to obtain a 

more successful heuristic algorithm. It is planned 

to combine the superior aspects of both heuristic 

algorithms and eliminate the negative aspects. 

 
 

 

Table 20. The population size analysis for MGO on classical benchmark functions (D=30, Itermax= 200, 

PSRs = 0.34, and S=0.88) (Mean) 

F_ID 

MGO 

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100 

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean 

F1 3.68E-20 5.76E-26 8.630e-29 2.46E-32 3.09E-34 1.96E-34 1.15E-36 1.14E-38 3.07E-39 7.36E-41 

F2 4.15E-14 2.36E-15 2.38e-17 6.38E-19 1.17E-19 3.70E-21 1.74E-21 4.47E-22 3.82E-23 1.11E-23 

F3 6.90E-01 2.36E-02 2.87E-03 1.57E-04 3.30E-04 1.71E-03 3.28E-05 3.15E-05 6.76E-06 1.75E-06 

F4 4.45E-07 3.84E-10 9.14e-11 1.57E-11 3.95E-12 3.76E-13 1.19E-13 1.15E-13 1.12E-14 1.65E-14 

F5 2.46E-06 2.02E-08 7.48e-11 4.91E-11 6.80E-12 1.38E-11 3.50E-11 1.95E-13 1.92E-12 8.12E-14 

F6 3.16E-03 2.36E-04 2.03e-05 5.45E-06 3.18E-07 3.72E-08 2.19E-07 1.22E-08 5.13E-09 1.31E-09 

F7 2.17E-03 1.37E-03 8.18E-04 7.43E-04 5.26E-04 6.18E-04 6.02E-04 3.76E-04 3.31E-04 3.06E-04 

F8 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 -1.26E+04 

F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 2.13E-11 4.85E-14 6.22e-15 2.84E-15 2.31E-15 2.31E-15 1.60E-15 1.60E-15 1.60E-15 8.88E-16 

F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 5.75E-09 9.54E-12 6.00e-13 8.76E-14 6.01E-15 1.34E-15 7.88E-16 2.32E-16 8.11E-17 4.37E-17 

F13 1.26E-10 2.17E-13 7.93e-15 2.75E-16 1.35E-16 3.73E-18 2.00E-18 2.61E-19 1.21E-19 1.60E-19 

Total: -12599.30 -12599.97 -12600.00 -12600.00 -12600.00 -12600.00 -12600.00 -12600.00 -12600.00 -12600.00 

Rank: 10 9 7 8 5 6 4 3 2 1 

 

Table 21. The population size analysis for GOA on classical benchmark functions (D=30, Itermax = 200, 

PSRs = 0.34, and S=0.88) (Mean) 

F_ID 

GOA 

N=10 N=20 N=30 N=40 N=50 N=60 N=70 N=80 N=90 N=100 

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean 

F1 1.19E-03 8.25E-07 2.40E-05 6.64E-06 1.36E-06 1.24E-14 9.35E-10 2.80E-08 6.63E-08 4.95E-08 

F2 1.97E-04 1.55E-05 2.17E-08 1.13E-08 5.37E-06 3.57E-06 1.03E-06 2.91E-06 3.24E-06 2.02E-06 

F3 4.07E+01 5.13E+01 4.93E+01 5.87E+01 8.86E+01 6.49E+01 5.86E+01 5.40E+01 5.08E+01 1.35E+01 

F4 3.77E-01 4.37E-01 5.02E-02 2.80E-02 3.83E-02 1.02E-01 2.05E-04 1.36E-04 9.45E-04 7.32E-02 

F5 2.92E+01 2.73E+01 2.73E+01 2.68E+01 2.66E+01 2.68E+01 2.62E+01 2.64E+01 2.61E+01 3.01E+01 

F6 2.03E+00 8.48E-01 7.91E-01 4.58E-01 4.82E-01 4.03E-01 4.83E-01 3.64E-01 3.38E-01 2.72E-01 

F7 2.25E-02 7.53E-03 7.68E-03 4.88E-03 5.81E-03 5.62E-03 3.82E-03 5.26E-03 2.91E-03 3.93E-03 

F8 -6.04E+03 -6.42E+03 -6.84E+03 -7.04E+03 -6.85E+03 -6.96E+03 -7.12E+03 -7.30E+03 -7.57E+03 -7.17E+03 

F9 1.09E+01 4.92E+00 2.66E+00 4.09E+00 4.32E+00 2.62E+00 4.57E+00 1.57E+00 2.94E+00 6.09E+00 

F10 2.99E-05 2.01E-06 2.56E-05 5.33E-05 1.36E-04 8.64E-06 8.27E-07 2.11E-04 9.00E-06 7.29E-06 

F11 1.01E-02 1.25E-03 2.08E-03 5.52E-04 7.29E-05 9.40E-04 1.19E-03 7.17E-04 5.02E-04 3.25E-03 

F12 8.57E-02 4.01E-02 3.51E-02 2.81E-02 2.96E-02 2.50E-02 2.12E-02 2.20E-02 1.99E-02 1.40E-02 

F13 1.36E+00 8.68E-01 5.48E-01 4.49E-01 4.08E-01 3.78E-01 3.24E-01 2.58E-01 3.27E-01 2.74E-01 

Total: -5.96E+03 -6.33E+03 -6.76E+03 -6.95E+03 -6.73E+03 -6.86E+03 -7.03E+03 -7.22E+03 -7.49E+03 -7.12E+03 

Rank: 5 10 8 6 9 7 4 2 1 3 
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Table 22. The PSRs parameter analysis for GOA algorithm on classical benchmark functions  

(N=30, D=1000, Itermax = 200, and S = 0.88) 

F_I

D 

GOA 

PSRs=0.

10 

PSRs=0.

15 

PSRs=0.

20 

PSRs=0.

25 

PSRs=0.

30 

PSRs=0.

35 

PSRs=0.

40 

PSRs=0.

45 

PSRs=0.

50 

Mean Mean Mean Mean Mean Mean Mean Mean Mean 

F1 2.66E+03 3.70E+02 1.12E-01 5.98E-01 1.38E+01 1.09E+02 3.48E+01 2.55E+01 4.58E+01 

F2 2.07E+88 2.94E+166 1.57E+122 1.26E+110 6.10E+225 8.54E+02 4.49E+142 4.50E+202 5.73E+02 

F3 9.46E+05 9.47E+05 1.03E+06 1.18E+06 8.81E+05 1.47E+06 1.50E+06 1.64E+06 2.42E+06 

F4 9.47E+00 1.98E+01 2.14E+01 2.00E+01 2.59E+01 2.05E+01 2.83E+01 2.71E+01 3.92E+01 

F5 6.95E+05 2.20E+03 8.46E+05 3.29E+05 7.45E+03 5.89E+05 3.83E+04 1.08E+03 6.10E+04 

F6 6.55E+03 2.34E+02 3.15E+03 6.34E+03 2.72E+02 2.88E+02 2.36E+02 2.37E+02 1.80E+03 

F7 2.68E+01 2.64E-01 1.68E+01 7.21E-02 6.57E-02 1.18E-01 1.41E+01 9.14E+00 8.06E+01 

F8 -3.47E+04 -3.67E+04 -3.86E+04 -3.98E+04 -4.06E+04 -3.62E+04 -4.07E+04 -3.69E+04 -3.92E+04 

F9 1.70E+00 5.16E+01 1.60E+02 1.94E+01 1.86E+01 1.58E+02 1.58E+01 1.67E+02 3.19E+02 

F10 2.66E-01 7.02E-01 1.71E-01 2.70E-03 2.12E-01 7.21E-01 3.67E-01 3.50E-02 1.50E-01 

F11 2.05E+00 9.27E-01 3.90E+01 2.78E+01 2.19E+01 2.40E+01 5.37E+01 6.14E+01 2.17E+00 

F12 1.50E+00 1.01E+00 5.31E+04 2.94E+03 1.33E+00 1.49E+00 2.99E+04 2.15E+00 7.79E+01 

F13 1.19E+02 1.13E+05 1.07E+02 1.15E+02 1.07E+02 8.50E+05 3.09E+06 4.98E+05 1.35E+02 

Total: 2.07E+88 2.94E+166 1.57E+122 1.26E+110 6.10E+225 2.87E+06 4.49E+142 4.50E+202 2.44E+06 

Rank: 3 7 5 4 9 2 6 8 1 

 

Table 23. The S parameter analysis for GOA algorithm on classical benchmark functions  

(N=30, D=1000, Itermax = 200, and PSRs = 0.34) 

F_ID 

GOA 

S=0.10 S=0.20 S=0.30 S=0.40 S=0.50 S=0.60 S=0.70 S=0.80 S=0.90 

Mean Mean Mean Mean Mean Mean Mean Mean Mean 

F1 3.32E+03 1.98E+02 4.11E+03 3.25E+03 3.04E-04 9.38E+03 1.05E+03 1.62E+02 4.25E-02 

F2 8.90E+02 1.09E+29 1.14E+79 6.50E+142 3.41E+131 1.79E+161 1.58E+10 3.99E+67 8.15E+02 

F3 1.14E+06 9.67E+05 9.64E+05 1.16E+06 1.16E+06 1.24E+06 1.47E+06 1.35E+06 1.29E+06 

F4 6.40E+00 2.25E+01 1.59E+01 1.92E+01 1.53E+01 2.62E+01 1.90E+01 3.30E+01 3.54E+01 

F5 2.37E+03 9.98E+02 1.33E+03 1.11E+04 6.83E+06 1.29E+03 1.05E+03 1.17E+03 3.36E+05 

F6 2.52E+02 2.32E+02 2.51E+02 3.19E+03 1.62E+03 5.16E+02 2.34E+02 1.91E+03 5.63E+03 

F7 2.06E-02 4.41E-01 7.11E-02 7.66E-02 1.23E-01 1.19E+01 8.69E-02 4.21E+01 3.24E+01 

F8 -3.89E+04 -4.12E+04 -3.86E+04 -3.89E+04 -4.09E+04 -3.78E+04 -3.88E+04 -3.78E+04 -3.95E+04 

F9 4.67E+00 4.88E+02 2.88E+02 4.66E+01 2.26E+02 5.46E+00 1.68E+02 7.81E+01 5.52E+00 

F10 2.48E-01 4.00E-01 1.77E-01 7.17E-01 4.55E-01 3.22E-01 1.73E-01 8.70E-03 1.06E+00 

F11 5.46E-02 1.14E-01 5.40E+01 1.92E+00 2.79E+01 9.49E-02 7.72E+01 2.88E+00 1.89E+00 

F12 1.22E+00 5.38E+04 2.67E+00 1.08E+00 1.04E+00 1.68E+00 1.06E+00 1.61E+05 1.23E+00 

F13 1.68E+02 4.96E+02 1.71E+02 1.15E+02 4.80E+02 1.06E+02 2.15E+03 3.07E+06 1.14E+04 

Total: 1.11E+06 1.09E+29 1.14E+79 6.50E+142 3.41E+131 1.79E+161 1.58E+10 3.99E+67 1.60E+06 

Rank: 1 4 6 8 7 9 3 5 2 
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