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ABSTRACT Chaos, comprehended characteristically, is the mathematical property of a dynamical system which is a deterministic
mathematical model in which time can be either continuous or discrete as a variable. These respective models are investigated as
mathematical objects or can be employed for describing a target system. As a long-term aperiodic and random-like behavior manifested
by many nonlinear complex dynamic systems, chaos induces that the system itself is inherently unstable and disordered, which requires
the revealing of representative and accessible paths towards affluence of complexity and experimental processes so that novelty, diversity
and robustness can be generated. Hence, complexity theory focuses on non-deterministic systems, whereas chaos theory rests on
deterministic systems. These entailments demonstrate that chaos and complexity theory provide a synthesis of emerging wholes of
individual components rather than the orientation of analyzing systems in isolation. Therefore, mathematical modeling and scientific
computing are among the chief tools to solve the challenges and problems related to complex and chaotic systems through innovative
ways ascribed to data science with a precisely tailored approach which can examine the data applied. The complexity definitions need to
be weighed over different data offering a highly extensive applicability spectrum with more practicality and convenience owing to the fact
that the respective processes lie in the concrete mathematical foundations, which all may as well indicate that the methods are required to
be examined thoroughly regarding their mathematical foundation along with the related methods to be applied. Furthermore, making use
of chaos theory can be considered to be a way to better understand the internal machinations of neural networks, and the amalgamation
of chaos theory as well as Artificial Intelligence (AI) can open up stimulating possibilities acting instrumental to tackle diverse challenges,
with AI algorithms providing improvements in the predictive capabilities via the introduction of adaptability, enabling chaos theory to
respond to even slight changes in the input data, which results in a higher level of predictive accuracy. Therefore, chaos-based algorithms
are employed for the optimization of neural network architectures and training processes. Fractional mathematics, with the application
of fractional calculus techniques geared towards the problems’ solutions, describes the existence characteristics of complex natural,
applied sciences, scientific, engineering related and medical systems more accurately to reflect the actual state properties co-evolving
entities and patterns of the systems concerning nonlinear dynamic systems and modeling complexity evolution with fractional chaotic
and complex systems. Complexity entails holistic understanding of various processes through multi-stage integrative models across
spanning scales for expounding complex systems while following actuality across evolutionary path. Moreover, Fractional Calculus (FC),
related to the dynamics of complicated real-world problems, ensures emerging processes adopting fractional dynamics rather than the
ordinary integer-ordered ones, which means the related differential equations feature non-integer valued derivatives. Given that slight
perturbation leads to a significantly divergent future concatenation of events, pinning down the state of different systems precisely can
enable one to unveil uncertainty to some extent. Predicting the future evolution of chaotic systems can screen the direction towards
distant horizons with extensive applications in order to understand the internal machinations of neural and chaotic complex systems.
Even though many problems are solvable and have been solved, they remain to be open constantly under transient circumstances.
Thus, fields with a broad range of spectrum range from mathematics, physics, biology, fluid mechanics, medicine, engineering, image
analysis, based on differing perspectives in our special issue which presents a compilation of recent research elaborating on the related
advances in foundations, theory, methodology and topic-based implementations regarding fractals, fractal methodology, fractal spline,
non-differentiable fractal functions, fractional calculus, fractional mathematics, fractional differential equations, differential equations
(PDEs, ODEs), chaos, bifurcation, Lie symmetry, stability, sensitivity, deep learning approaches, machine learning, and so forth through
advanced fractional mathematics, fractional calculus, data-intensive schemes, algorithms and machine learning applications surrounding
complex chaotic systems.
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INTRODUCTION, PRELIMINARY REMARKS AND
OVERVIEW

Theory of chaos, as having been referred to the qualitative explo-
ration of unstable aperiodic behaviors in deterministically non-
linear dynamical complex systems, bears a plenus of definitions
where unstability means the system does not settle into a form of
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behavior resisting small disturbances, while aperiodic behavior
signifies the variables’ description of a state of a system that does
not go through an iteration of values, which comes to mean that
the system in question does not repeat itself at all continuing to
manifest the impacts of any slight perturbation. Notwithstand-
ing, these conditions render exact predictions impossible, yielding
a series of measurements that are apparent randomly on small
disturbances, which is a situation more commonly known as the
‘butterfly effect’ referring to the fact that even a very minor and
remote factor can produce disruptions with a large-scale magni-
tude; and thus, sensitive dependence on initial conditions marks
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the chaotic systems’ distinctive features among which being topo-
logically mixing and having dense periodic orbit happen to be
the other ones. The indication of time-chaos, on the other hand,
referring to sensitivity to initial conditions means that when one
has you have two sets of initial conditions or as another option two
points in phase space, extremely in proximity with each other, the
two ensuing trajectories, are close to each other at the beginning,
will show eventual and exponential divergence away from each
other. The other principle chaos theory lies on is uncertainty that
interdicts accuracy while the third principle belongs to strange
attractors showing that complex systems are inclined to settle in
one specific situation. When the situation is dynamic, it is known
as “strange attractor”, whereas it is referred to as attractor when
it is static. Given all these, small perturbations bring about chaos
in a chaotic system, and chaos theory is involved with the way
order irrupts into chaos, whereas complexity theory, suggesting
the conception that there is order within chaos, emphasizes self-
organization related to chaos into order. With a plethora of diverse
independent variables and constituents in nonlinear interaction
with one another, complex systems exhibiting a unique characteris-
tic known as emergence, with interactions among subcomponents
producing novel properties surpassing individual capabilities can
be stated to provide balance in order and chaos (Farsi 2017).

Key Constructs of Complexity Theory, Complex versus Chaotic
Systems, and Chaos

Complex systems are said to be more coherent compared to chaotic
systems, with uncertainty arising differently in both systems. Com-
plexity theory, providing the implications of analysis and explana-
tion of complex systems, addresses the emergence of order in com-
plex systems at the edge of chaos which signifies a point across the
boundary oscillating between randomness and determinism. Thus,
complexity theory focuses on non-deterministic systems, whereas
chaos theory rests on deterministic systems (Karaca 2022b). Fur-
thermore, uncertainty in chaotic systems results from the inability
of knowing the initial condition of the system, whereas uncertainty
arises from the notion of emergence in a complex system (Lartey
et al. 2020). Concerning the uncertainty quantification, which is
the quantitative characterization and estimation of uncertainties
in both computational and real-world applications, attempts to
determine the degree of likelihood regarding certain outcomes
if certain aspects of the system are not know in an exact sense.
Aleatoric uncertainty refers to a sort of uncertainty that is peculiar
to a problem or to an experimental setup in which it is not possible
to do reduction to additional experimental knowledge or physical
lineage (Barbano et al. 2022). As Pierre Simon Laplace put forth,
the theory regarding probabilities lies at the bottom of common
sense that is reduced to calculus, which enables one to appreciate
the exactness an accurate mind can feel based on a kind of instinc-
tive hunch that cannot often be accounted for (Pierre-Simon 1986).
Chaos-based applications in science, engineering and other rele-
vant domains require the understanding that some chaotic systems
display a unique feature by having two or more coexisting attrac-
tors with every attractor being achieved due to the same range
of parameters which depend on the initial condition at stake. In
these respects, multistable chaotic systems are equipped with the
potential applications correspondingly with several parameters
of multistable dynamical systems that have sensitivity to initial
conditions, noise as week as system parameters. The appearance of
hidden attractors, associated with multistability, demonstrates the
existence of self-excited attractors in multistable systems with the
employment of computational processes. Yet, it is not possible to

predict the hidden attractors by typical computational approaches,
and thus, the growing level of complexity in physical problems
requires more complex and advanced mathematical differential
operators. Fractal-fractional operator provides the combination
of fractional differentiation with fractal derivative for performing
a single differentiation. All these physical processes exhibit at-
tributes characterized by a fractal nature (Khan et al. 2023). Both
complexity and chaos, being deeply rooted in physics, display the
endeavor through an attempt to observe similar systematics across
an extensive varying range of phenomena so that a more profound
and precise understanding thereof can be achieved. Comprised
of a set of mathematical concepts, chaos and complexity theory
provides the description of the way systems change over time.
Mathematical modeling, oriented towards describing multiple and
diverse facets of the real world, reciprocal interactions and dy-
namics of them from the lenses of mathematics, needs to tackle
universal concepts efficiently, promptly and accurately. From this
point of view, mathematical models are unique in that they enable
the control, mechanization and automation of intellectual activities
as well as processes. Mathematical models depending on spe-
cialized knowledge are those which with inherent mathematical
nature encompass the process of determining the properties of a
model with rigor elucidating the different multiple components
being identified, revised, designed, organized, formulated and ar-
ranged in harmony. Given all these, chaos and complexity theory
provide a synthesis of emerging wholes of individual components
unlike some of the traditional scientific approaches that analyze
systems in isolation.

Both mathematical modeling and scientific computing are con-
sidered to be amongst the chief tools for the purpose of solving
the challenges and problems related to complex systems by means
of innovative ways attributable to data science with a precisely-
tailored approach so that sense can be derived from chunks of big
data. This kind of tailor-made customized approach can only real-
ize the opportunity of examining data applied, which heavily relies
on the capacity of the computer at work as different capacities of
computers can have impact on the computational outputs, and
thus, the application of the method in question is based on the code
by step to be taken into account. Therefore, the complexity defi-
nitions needs to be weighed over different data offering a highly
extensive applicability spectrum endowed with more practicality,
convenience and availability due to the fact that the respective
processes lie in the concrete mathematical foundations, which all
may as well indicate that the methods are required to be examined
thoroughly regarding their mathematical foundation in conjunc-
tion the methods to be applied. This is the sole manner which can
make foreseeability possible as regards what level of complexity
will emerge concerning any data chosen to be employed.

Key Constructs of Nonlinearity, Complex Dynamics Systems,
Chaos and Order

Nonlinearity, being a required condition for chaos, with almost
all nonlinear systems whose phase space having three or more
dimensions, display chaotic features in at least part of the phase
space. Exhibiting complex dynamics, complex systems which span
across several scales, display order and chaos in a simultaneous
way, operating at the critical “edge of chaos”, which provides
maximization of emergence, spanning from micro-level to macro-
level to illustrate the propagation of critical decisions ranging from
lower to higher levels, adaptability, creativity and evolvability.
While complex systems may have several scales, chaos may reign
upon scale n, with the coarser scale above it (scale n-1) which
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might be self-organizing, which indicates that it is the opposite of
chaos in some sense. When there is the case of the edge of chaos,
the precise value of the control manifests a switching dynamics,
which happens to be a critical point in phase transitions where the
long-range correlations are significant. At this point, adaptability
with memory, the capability of modifying the environment to be
able to operate appropriately at the edge of chaos, becomes evident
and it is this place where self-organization becomes likely to occur.
Consequently, the interplay between chaos that producing new
possibilities and order coupled with them ensures self-organization
and open-ended evolution (Baranger 2000). As a dynamical sys-
tem dependent on diverse parameters, complex systems manifest
themselves in a constant sort of evolution formed by a huge num-
ber of unities and distances along trajectories increase or decrease
in a polynomial way not exponential way. Furthermore, fractal
structures are to be seen in many complex systems (Palis 2002).

Sharing fundamental features with chaos theory, complexity
theory encompasses nonlinearity, dynamism, feedback, loops, and
so forth. Both being sensitive to initial conditions result in un-
predictable outcomes, and self-organization, in this regard, is em-
phasized with global patterns emerging from local reciprocal in-
teractions. As a compelling challenge, chaotic systems are ones
belonging to the unknown unknowns with chaotic motion being
almost impossible or very challenging to forecast. Thus, the chaotic
behaviors of correlations in chaotic systems prove the hardships
concerning prediction of the chaotic systems, while the identified
state transitions of correlations can lend a quantitative rule for the
selection of appropriate methods. Systems that are determinis-
tic, made up of simple differential equations, are not attributed
to reference points to implicit chance mechanisms. Complex sys-
tems ofttimes display self-organization which arises when systems
spontaneously order themselves optimally or in a more stable way
without the external adjustment of any control parameters, which
is a feature not found in chaotic systems. This situation is often
referred to as anti-chaos in chaotic systems that are inclined to be
out of equilibrium, meaning that the system does not settle into
a steady state of behavior, which refers to the notion of openness.
Most of the real-world systems are open, which poses problems in
terms of modeling and experimentation. One other feature related
to complex systems is the notion of feedback where the output of
a process in the system is exposed to being recycled, as a result of
which the output becomes the new input of the system. Feedback
occurrences in complex systems are seen to be across the levels of
organization, which are micro levels and macro levels. Between
the subunits of micro level interactions, some patterns are gener-
ated, reacting back again which is a global o local positive feedback
known as coevolution which is a concept originating from evolu-
tionary biology for the description of how organisms create their
environments and how they are in return molded by the environ-
ment they exist in (Rickles et al. 2007), (Ruhl 1995). Chaotic systems
do not depend on their history unlike the complex systems which
rely on their history. Across this line, chaotic behaviors push a sys-
tem acting in equilibrium into chaotic order out of order. Complex
systems, on the other hand, evolve distantly from the equilibrium
at the edge of chaos.

Chaos theory posits that even the most seemingly random pro-
cesses can be described and predicted through the use of a set of
complex mathematical equations. Concerning nonlinearity and
complex dynamics with chaos, it was noticed by French mathemati-
cian Henri Poincaré that nonlinear deterministic systems could
behave in an apparently chaotic and unpredictable way. Despite
this important contribution, the significance of chaos was accred-

ited with full appreciation after the extensive availability and expo-
nential growth of computational processes through digitalization
employed for numerical simulations as well as for the demonstra-
tion of chaos in various physical systems. Figure 1 depicts the
Poincaré section in z = 0 along with the return maps having three
associated elements and the scaled axis system, demonstrating the
sensitivity to changes in initial conditions, which is an important
characteristic of chaotic systems.

Figure 1 3D perspective segment of a typical chaotic attractor
system having a hyperbolic equilibrium.

Given these notions, facts and considerations, the role of math-
ematical modeling and scientific computation comes to the fore-
ground in processes, including analyses, decision-making, solu-
tion of real-world problems, prediction and simulation. These
processes entail the definition of which level of detail needs to be
introduced in different parts of a mode along with which simplifi-
cations are to be conducted to achieve its integration into different
models emulating highly complex problems while considering
uncertainty as well.

Key Constructs of Bifurcation Theory, Control, Strange Attractors
in Complex Chaotic Systems
Bifurcation theory is concerned with the examination of changes in
topological or qualitative structure of a given family of curves in-
cluding the integral curves of vector fields as well as the solutions
concerning differential equations. Bifurcation theory is generally
applied to the mathematical study of dynamical systems with bi-
furcation introduced by Henri Poincaré in 1885 occurring both in
continuous, characterized by ordinary, delay or partial differential
equations, and in discrete systems, described by maps, when a
slight smooth change made to the parameter values of a given
system brings about an abrupt change in its behavior (Poincaré
1885), (Blanchard et al. 2006). Local bifurcations can be analyzed
by changes in local stability of equilibrium, periodic orbits and
other sets which are invariant as parameters across critical thresh-
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olds, whereas global bifurcations often occur as larger invariant
system sets collide with one another, which cannot be detected by
fixed points. Causing sudden changes in the system’s direction,
outcomes and characteristics, bifurcation points are those in the
system being unstable, leading the system to change structure,
character or direction in a dramatic way (Lartey et al. 2020). If
these unstable points are known, prediction of a bifurcation can be
ensured, however, the outcome of the bifurcation or the next state
of the system remains unpredictable.

Control theory, in these regards, are concerned with the ques-
tions of how the behavior of a system is influenced through the
inputs appropriately chosen in order that the output of the system
adopts a desired final state or trajectory. Feedback process happens
to be the key notion of control theory, with the difference between
actual and desired output is implemented as feedback into the
input of the system so that the output of the system is completed
to converge into the output desired. Correspondingly, bifurcation
is used to describe significant qualitative changes occurring in the
trajectories of a generally nonlinear dynamical system, considering
that the key system parameters are varied. Since a control input
and feedback are involved in a nonlinear control system, its nature
is very complex as a dynamical system (Chen and Moiola 1994).
Even though control input is given and fixed, the controlled system
is a non-autonomous dynamical system. Therefore, control input
is necessary to be determined to achieve a certain performance con-
sidering the combination of the design and dynamics of controllers,
which is challenging. All in all, bifurcation equilibrium, oscillation
and therefore chaos is found in many systems and new kinds of
attractors representing a new sort of behavior entails the under-
standing that nonrandom chaotic behavior enables the handling of
the system. Demonstrating the repetitive abilities, chaotic systems
may enable the identification of strange patterns, and although
dynamic systems are unpredictable, they still keep the boundaries
where they operate their transformations. This creates patterns
which are referred to as strange attractors which have different
shapes and forms characterizing chaotic systems (Murphy 1996).
It is these strange attractors which define the dynamic systems’
boundaries since such systems show progress towards chaos ow-
ing to their constant growth, and they are identifiable as well as
measurable through the use of fractals.

Key Constructs of Fractal Methodology, Real Data Interpolation
and Applications in Complex Chaotic Systems

In mathematics, fractal, signifying any of a class of complex geo-
metric shapes with a common attribute of fractional dimension was
first introduced as a concept by mathematician Felix Hausdorff in
1918. Distinctive from the simple figures pertaining to Euclidean
or classical geometry, fractals are endowed with the capability of
describing diverse irregularly shaped objects or spatially nonuni-
form phenomena in nature from cliffs to seashores, coastlines to
mountain ranges. The term fractal, as derived from fractus meaning
fragmented or broken in Latin was coined by Benoit B. Mandelbrot.
A fractal system, as a complex, nonlinear interactive system, has
the ability of adapting to a changing environment, and it is marked
by the self-organization potential existent within a nonequilibrium
setting. Fractal theory, on the other hand, has sought to compre-
hend seeks to complexity in order to ensure an innovative way for
the identification of irregularity and complex dynamical systems.
The applications that deal with fractal geometry concern various
subject matters from turbulence to errors, word frequencies to
aggregation and fragmentation-related processes. The growth of
the use of fractals in application areas has spawned not only new

directions but also new methodological issues. Furthermore, mul-
tifractals, arising as a more complex form of fractals, have paved
the way of multifractal analysis with the assignment of fractal spec-
trum to an object, while fractal analysis provides the assignment
to a single fractal value. Consequently, multifractal algorithms
have been proposed to be employed for practical applications to
characterize the signals in medicine, clinical research, biology, and
so forth (Karaca 2022a), (Karaca et al. 2022).

These developments challenge the prescriptions of reduction-
ism, which assumes that the resultant component behavior and
dynamics provide the representation of the entire system behavior
by synthesizing approaches and showing that in most complex
systems, there is a high level of interconnectivity, dynamic aspects
and reasons attributed to nonlinear behaviors (Gowrisankar and
Banerjee 2021). While complexity theory explores the way indi-
vidual components generate simple outcomes by nonlinear and
intense interactions, chaos theory explores the possible ways sim-
ple systems generate complex outcomes which cannot be described
through the components per se (Watt and Willey 2005). Fractals,
as very complex, having symmetry of scale and being infinitely
detailed geometric shapes show the direction of a procedure that
describes the way of constructing and defining a small section in
which their small sections resemble the large ones. For a function,
one can consider fractal as follows: f(x) to x, g(x), g(g(x)), g(g(g(x))),
g(g(g(g(x)))), g(g(g(g(g(x))))), etc. Given all these aspects, fractals
are related to chaos as they both are complex systems with similar
properties (Meta 2016). By assessing the fractal characteristics of
data, fractal analysis is made up of different methods for assigning
a fractal dimension to a dataset, whether it be pattern or signal,
which makes it helpful in understanding the functions, structures
as well as spatial and temporal complexity of various systems, and
thus, facilitation is provided quantifying patterns in nature and
identifying deviations from such natural sequences.

As the process of using known data values for the estimation
of the unknown data values or a missing value, data interpolation
is used as a method to predict the future based on the past trends
and data, which improves the way to collect data and work on it
(Karaca and Cattani 2018). Among some of the elements interpo-
lated are dense evenly space points, extreme changes in terrains,
obstacles, and increase or decrease amount of sample points which
influence cell values. The values of non-sampled data from a set
of discrete sensory data are measured by interpolation which is
required in different fields as sensors cannot constantly cover the
region under study. Natural systems include complex dynamics
which extend across multiple spatiotemporal scales, and efforts
to understand and forecast the dynamics of these systems have
brought about advances in large-scale simulations along with the
dimensionality reduction techniques and a multitude of comple-
menting forecasting methods. High dimensionality and chaotic
behavior of the systems reveals a convergence of different ap-
proaches as a result of the advances in innovations in algorithms,
computing power and ample data accessibility.

Key Constructs of Fractional Mathematics, Fractional Calculus
and Data-intensive Computational Application Processes in Com-
plex Chaotic Systems

Fractional mathematics along with the application of fractional
calculus techniques oriented towards the solution of problems can
describe the existence characteristics of complex natural, scien-
tific and engineering-related as well as medical systems in a more
accurate way to reflect the actual state properties, besides the co-
evolving entities observations and patterns of such systems truly
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concerning the nonlinear dynamic systems and modeling complex-
ity evolution in combination with order of fractional chaotic as
well as complex systems (Karaca 2022a). Notwithstanding, Frac-
tional calculus (FC), deeply related to the dynamics of complicated
real-world problems, allows emerging processes in various fields
adopting fractional dynamics rather than the ordinary integer-
ordered ones, which means the respective differential equations
feature non-integer valued derivatives (Jacob et al. 2020), (Karaca
2023).

Fractal patterns, albeit in an array of scales rather than in an
infinite manner, having been modeled extensively due to the time
and space-related limits concerning practice-wise elements (Karaca
and Cattani 2017), (Karaca et al. 2020). It is possible that the mod-
els might simulate theoretical fractals or natural phenomena with
fractal features, and the results derived from modeling processes
can be employed as benchmarks for fractal analysis purposes.
Fractional calculus, which emerged as a formulation extending or-
dinary calculus, procures a constructive and algorithmic approach
towards the smooth differentiable-structured modeling of natural
processes through fractals. Fractal calculus procures a constructive
approach towards the smooth differentiable-structured modeling
of natural processes through fractals which are perplexing to solve,
while differential equations concerning fractals congregate a pro-
found understanding of analysis along with different constructions.
The models constructed accordingly can be applied to processes
that occur in fractal time and spaces, which propounds the di-
mensionality aspects as well as the endless patterns at temporal
and spatial scales. To put differently, the application of calculus
concepts as well as techniques can be beneficial for analyzing and
describing the behavior of not fractal objects only but also systems.

With the inherent feature of fractional derivatives in terms of
spatiotemporal memory as well as the capability of expressing
phenomena occurring in a naturally complex way, machine learn-
ing, as a powerful tool, has also come to the foreground in an
integrated way owing to its learning behavior and patterns based
on historical data lending upper hand in analyzing data, solving
problems, modeling, prediction, and so forth by providing new
genesis and points of view. The potential of the combination of
these approaches facilitates the description process of complex
dynamics based on the schemes relying on fractional derivatives
and machine learning with novel and innovative corresponding
techniques. Furthermore, with its differentiation and integration
of non-integer order, FC provides the representation of the gen-
eralization of classical differential and integral calculus, provid-
ing an amalgam of computational methods concerning various
complex systems in tandem with fractional derivatives, fractional
differential equations, fractional wavelet, fractional entropy, frac-
tional neural networks, fractional fuzzy, and so on to open the
frontiers towards systematic optimized solutions, tackling the sys-
temic properties holistically by seeing through the spontaneous
processes (Karaca and Baleanu 2022b), (Karaca and Baleanu 2022a).

Data, being at the center of many compelling challenges in sys-
tem design, modeling and other related processes, require the need
of figuring out reliability, efficiency, consistence, maintainability,
scalability. The real-life applications of data-intensive systems and
applications make an intensive use of data in all their heteroge-
neous forms, and computational problems can be solved in this sort
of a nested network with concurrent or distributed systems paying
attention to operational processes, memory, communication be-
tween nodes, machine instructions, among many other processes
and elements. Based on the voluminous amounts of data produced
by experiments as well as high-throughput technologies dissemi-

nated by cyberinfrastructures, data-intensive research comprises
a rich variety of scientific methodology that shares the common
feature of relying on the accumulation and sharing of evidences
across an extensive scale and research contexts, ranging from au-
tomated data analysis and automated reasoning to extraction of
significant patterns in exact sciences based on data through compu-
tational means with human intervention as minimized as possible.
With these amenities, applications of data-driven methods have
demonstrated that computational methods are empowered with
transforming research substantially in terms of how it is performed
and the ways by which experiments are set up, conducted and ver-
ified. Considering that slight perturbation leads to a significantly
divergent future concatenation of events, pinning down the state
of different systems in a precise way can to some extent unveil
uncertainty. Predicting the future evolution of chaotic systems can
show the direction to distant horizons with extensive applications
to understand the internal machinations of neural and chaotic
complex systems.

Key Constructs of Machine Learning, Algorithmic and Artificial
Intelligence-related Application Processes in Complex Chaotic
Systems

Chaos theory evolved from a niche mathematical field into a trans-
formative force, demonstrated that quite simple mathematical
equations were able to model systems with each bit as violent as a
waterfall (Gleick 2008) Rooted in the exploration and investigation
of dynamic systems with extreme sensitivity to initial conditions,
the world of chaos theory has projected an exponential impact
on the realm of Artificial Intelligence (AI) by empowering it in
terms of tackling complex problems and providing enhancement
in adaptability and learning capabilities related to the AI algo-
rithms. Besides sensitivity to initial conditions, chaos also arises in
nonlinear systems with relationships across variables may not be
proportional, which is known as nonlinearity that presents intricate
and unpredictable behaviors. Another characteristic is the strange
attractors as chaotic systems are known to exhibit randomly ap-
pearing but deterministic and self-similar complex patterns in a
related system’s behavior, known as strange attractors. Random-
ness abruptly becomes an orderly disorder, both in existential
terms and in the real-world scenarios where there is a hidden or-
der to chaos. The incorporation of chaos theory and AI provides
other improvements in the predictive capabilities of AI algorithms
through the introduction of adaptability, which makes chaos the-
ory respond to even slight changes in the input data bringing about
a higher level of predictive accuracy. Furthermore, chaos-based
algorithms are employed for the optimization of neural network
architectures and training processes. That being said, chaos theory
also provides facilitation in feature selection, namely the identifica-
tion of significant attributes in complex and big datasets, leading
to more efficient AI models and more streamlined in the meantime.
Sensitivity to initial conditions make chaos theory a significant
one in the detection of anomalies, which allows the AI systems to
identify critical deviations from normal behaviors or those which
are unexpected. Besides these, chaos-based data augmentation
techniques host controlled perturbations, which improves the gen-
eralization capabilities concerning the AI models. Last but not
least, reinforcement learning attribute in chaos theory is applied to
enhance the AI agents to discover the related environments in a
more effective way, which also results in coming up with optimal
policies.

Referring to models employed to find patterns within data, a
wide variety of advanced machine learning methods, including su-
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pervised, unsupervised and reinforcement learning, can be utilized
effectively for prediction and classification with a nested hierar-
chy of features. As for deep learning, it is utilized for solving the
same kind of problems as in conventional machine learning means,
yet the difference lies in the models’ architecture to comprehend
the way the decisions are made. Machine learning means are run
through the estimation of parameters bringing about the optimal
outcome possible, with parameters being existent for each input
feature in simple linear cases of models. Deep learning models also
exhibit corresponding parallelism, and yet, they integrate more fea-
tures compared to conventional means oriented towards making
predictions. Generating new features from the input features as
integral to the training process, deep learning does not use the com-
bination of input features for direct prediction. Machine learning,
as the prediction state evolution of chaotic systems, is considered
to be an emerging paradigm along with reservoir computing that
has a core with dynamical network made up of artificial neurons,
which can provide facilitation in predicting unexpected situations
like system collapse and chaotic transients linked with crisis situa-
tions as well as bifurcation points and asymptotic behaviors (Kong
et al. 2021). Managing uncertainties and changes in processes can
happen on machine learning level with pattern recognition in ad-
dition to algorithmic processes which lends applicable processes
to solve mathematical problems in a finite set of steps involving
recurrence broadly. Artificial Neural Networks (ANNs) and AI
systems, in that regard, have their applications with overlapping
fields concerning process modeling, adaptive control issues and
tool condition monitoring with a focus on learning abilities with
the recognition that it is not possible to treat learning separate from
other points like signal processing, fusion abilities, critical decision
making and self-calibration, among others (Monostori 2003). Thus,
different machine learning techniques have significant impacts on
building effective models in various application terrains based on
the learning capabilities, the particular nature of data as well as
the targeted outcome.

The rest of the Editorial for our special issue is organized as
follows: Section 2 presents the Work in Progress providing the
overview information and inputs of the accepted papers compiled
and published. Finally, Section 3 is comprised of Concluding
Remarks, Challenges and Future Directions.

WORK IN PROGRESS

Comprising of a set of mathematical concepts, chaos and com-
plexity theory propounds the description of the way particular
systems evolve over time, and in this context, chaos-based ap-
plications in engineering, science, applied sciences, mathematics,
physics, medicine, biology, and other related realms require the
reflective, holistic and accurate comprehension, which unveils a
rigorous attempt to observe similar systematics spanning across
a broad varying range of phenomena. Mathematical modeling
and scientific computing also serve these purposes while describ-
ing, analyzing and interpreting multiple aspects of the real-world
problems blended with the dynamics, complexities and reciprocal
interactions in addressing universal concepts effectively. Thus, the
integration of mathematical modeling and computational meth-
ods empower solution-oriented approaches related to chaotic and
complex systems based on innovative ways that can be ascribed to
data science from a precisely customized perspective while deal-
ing with large chunks of big data. With reference to the content
of accepted papers, the aim of our special issue has been to pro-
vide novel directions based on advanced mathematical modeling
and computational practicalities in conjunction with chaos-driven

model training as well as optimization methods.

Across these strands of thought and aspects, deep learning
approaches, deep neural networks, fractional calculus, approxima-
tion theory, medical imaging, image denoising, machine learn-
ing methods, learning algorithms, complexity, wave propaga-
tion, Newtonian mechanics on fractals subset, bifurcation, PDEs,
ODEs, wave equations with different models as Nonlinear Cou-
pled Konno-Oono model, Jaulent–Miodek, Korteweg–de Vries
(KdV) equation, peak signal-to-noise ratio, Cantor sets, n-Term
Klein-Gordon equations, local fractional Laplace equation related
to complexity and chaos in electromagnetic fields, fractal method-
ology, fractal spline, non-differentiable fractal functions and linear
fractal function have been addressed, explained and exemplified
through the schemes of different areas including physics, math-
ematics, fluid dynamics, medicine engineering, science, control,
optimization geared towards applicable solutions. The theoreti-
cal and applied dimensions of nonlinear dynamics and complex
systems, merging mathematical analysis, advanced methods and
computational technologies have been presented for exhibiting the
implications of applicable approaches in real systems and other
related domains. Accordingly, the main contributions, novelties
and contents of the seven papers accepted for our special issue are
provided herein.

Deep learning and machine learning have had a pivotal im-
pact in healthcare systems owing to their capability of handling
large complex data with as minimal human intervention as pos-
sible, and thus, the applications of deep learning and machine
learning are geared towards the achievement of a higher level of
service quality besides the quality of health concerning patients,
doctors, researchers, practitioners and healthcare professionals.
Among the critical tasks deep learning and machine learning have
proven to be effective are acute disease detection, disease diagno-
sis, classification, image analysis, signal analysis, drug discovery
and delivery as well as smart health monitoring, among others.
Accordingly, The first manuscript in our special issue entitled “Un-
veiling the Complexity of Medical Imaging through Deep Learning
Approaches” presents a comprehensive review of deep learning
methodologies which are applied to different healthcare aspects
with a focus on various tasks among which disease segmentation,
classification and detection are included (Rasool and Iqbal Bhat
2023). The study provides contributions in terms of the intricate
nature of medical imaging, revealing the hidden patterns by the
application of deep learning-related approaches. Furthermore,
the authors of the manuscript provide the discussion of the key
features and characteristics of deep learning approaches and sig-
nificant contributions made by different deep learning techniques
in the field of medicine, highlighting the classification approaches
and advancements in medical imaging, with a specific emphasis
placed on the Convolutional Neural Network (CNN) as a pop-
ular method in computer vision tasks. The merits and demerits
of various deep learning methods are also depicted through an
evaluation in tabular format. The findings indicated through the
study reveal the immense potential and benefits belonging to deep
learning technology in healthcare, which can empower researchers
and practitioners while navigating through the complexities of
medical imaging with enhanced diagnostics and interpretation.

Wave propagation is one of the cornerstones in the study of
linear and nonlinear Partial Differential Equations (PDEs) where a
wave is referred to as a recognizable signal transferred from one
part of the medium to another part of it at an identifiable speed
of propagation. In this regard, the transfer of energy occurs as the
wave propagates, yet, for the matter, it may not be the case. A trav-
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elling wave, advancing in a particular direction with the addition
of retaining a fixed shape is associated with a constant velocity
throughout its related propagation course. It is possible to observe
these kinds of waves in various scientific areas such as in combus-
tion occurring after a chemical reaction. In addition, PDEs are one
result of the mathematical modeling of dynamical systems, and
phenomena such as conservation, reaction and diffusion, to name
some can be expressed by means of PDEs which owing to their
quintessence are examined profusely in science and engineering.
In this regard, Lie symmetry analysis is known to be a robust tool
to mathematically analyze PDEs, and it can be employed to secure
analytic solutions or to converge PDEs into solvable ordinary dif-
ferential equations (ODEs). Correspondingly, Nonlinear Coupled
Konno-Oono model (NCKOM) represents a current-field string in-
teraction with an external magnetic field, whereas Jaulent–Miodek
(JM) equation is a kind of evolution equation possible to be identi-
fied in physics, remarkably fluid dynamics, matter physics as well
as optics to describe these aspects. The next research paper with
the title “Novel Traveling Wave Solutions of Jaulent-Miodek Equa-
tions and Coupled Konno-Oono Systems and Their Dynamics”
provides the contributions with regard to deriving of some novel
variety of solutions for Jaulent-Miodek equations (JMEs) and cou-
pled Konno-Oono equations (CKOEs) (Kumar et al. 2023a). (1+1)
coupled Jaulent-Miodek system of equations is associated with
the energy-dependent Schrödinger potential, while the coupled
Konno-Oono system related to complexity and chaos in electro-
magnetic fields are solved analytically in the research in question.
Similarity reductions via Lie-symmetry analysis is carried out for
the systems to derive their analytical solutions. The authors sup-
plement the analytical solutions graphically to shed light on the
dynamical behavior of the solutions. The research paper, which
has dealt with the Lie-symmetry analysis as explored, provides the
obtaining of seven analytic solutions for the CKOEs and two ana-
lytic solutions for the JMEs. Similarity reductions are conducted
by the authors via Lie-symmetry analysis so that it can be possible
to derive the related analytical solutions. As another contribution,
traveling wave profiles are obtained and solution for CKOEs are
shown to different from the one obtained by an earlier research.

As a prototypical example of an exactly solvable nonlinear sys-
tem, the Korteweg–de Vries (KdV) equation aims at describing
shallow water waves which are in nonlinear and weak interac-
tions, concerning long internal waves in a density-stratified fluid,
ion acoustic waves in a plasma as well as acoustic waves on a
crystal lattice. As a model for many physical phenomena includ-
ing the propagation of small-amplitude large-wavelength waves
in plasma physics and shallow waters, the Korteweg–de Vries
(KdV) equation is considered to be an extensively-employed model.
On the other hand, bifurcation in dynamical system happens in
the case a slight smooth change exerted to the parameter values,
namely bifurcation parameters, of a system leads to an abrupt topo-
logical or qualitative change in its behavior. Within this regard,
the authors of the subsequent work “Study of Fixed Points and
Chaos in Wave Propagation for the Generalized Damped Forced
KdV (GDFKdV) Equation using Bifurcation Analysis” consider
the Generalized Damped Forced KdV (GDFKdV) equation given
by Ut + PUnUx + QUxxx + SU = γF(U, x, t, vi) with P, Q and
S denoting non-linear, dispersion, damping coefficients, respec-
tively (Chadha and Tomar 2023). The authors also investigate the
behavior of the fixed points evaluated for the corresponding dy-
namical system of their model problem. In addition, the effects
of significant parameters involved in the model, which are the
free parameters v1 and v2, the nonlinear, dispersion and damping

coefficients denoted by P, Q and S respectively, are analyzed using
the bifurcation tools. Another input to note is the obtaining of
the plots for the critical values of the nonlinear and dispersion
coefficients for which the system becomes unstable and exhibit
chaotic behavior. The chaos in the related dynamical system under
various conditions is confirmed with the help of the Lyapunov
exponents.

Approximation theory having a significant role in machine
learning regarding its tasks like classification or regression plays
a key role with its techniques in terms of learning from the data.
Via a learning algorithm, many machine learning methods approx-
imate a function or a mapping between the inputs and outputs,
and a typical example of models approximating functions in classi-
fication tasks is one that belongs to neural networks which are as a
whole assumed to be able to approximate a true function mapping
the inputs to the class labels. Deep neural networks, on the other
hand, own the same order of computational complexity as deep
convolutional neural networks. Across these lines, another pa-
per entitled "Different variants of Bernstein Kantorovich operators
and their applications in Sciences and Engineering field" aims to
highlight the different variants of Bernstein-Kantorovich operators
which are used extensively for the approximation of functions in
Lp spaces (Bhardwaj and Bawa 2023). The authors put forth the
benefit of employing Kantorovich variants over discrete operators
that are not suitable for approximating functions which are not
continuous. Thus, the operators are generalized into operators
of integral type, Kantorovich being one technique which helps
to approximate integral functions. The study provides the other
inputs addressing the discussion of the important applications
of Kantorovich operators that depict the pragmatic and theoret-
ical aspects of approximation theory which concerned with the
approximation of complicated quantities by simpler functions.

Having become more significant over the recent times in dif-
ferent fields including but not limited to medical imaging, defect
detection, machine vision, image processing provides practical ben-
efits like making the digital image available in any wanted format
which improves the images for human interpretation and enables
the processing and extracting of information for machine inter-
pretation. Likewise, the process of denoising aims at enhancing
the quality of the image through noise reduction while preserving
the significant structures and details. Image denoising removes
noise from a noisy image so that the true image can be restored,
yet, due to factors such as edge, texture, noise, sharp structures
and texture pose difficulties in these processes. It is possible that
denoised images cause to lose some details, so when an image
is being denoised, it is of importance to keep the visual details
and components mentioned above. The peak signal-to-noise ratio
(PSNR) is the one of the frequently emplpyed objective measure
to assess perceptual image quality in tasks related to images and
video compression. In the next paper entitled “Weighted and well-
balanced non linear TV based time-dependent model for image
denoising”, the authors address image denoising and deblurring
issues which require the adoption of a time-dependent model as
a fundamental idea (Kumar et al. 2023b). The aim of the research
is to enhance the image formation process, and weighted well-
balanced flow as a total variation-based time-dependent model is
utilized by the authors for the purpose of removing additive noise
while preserving the edges successfully. As another contribution,
the authors apply the new variation of the flow in the TV-based
time-dependent model. The weighted model is said to improve
the quality of the restored images and preserve the edges better.
The numerical results, which are expressed as a static known as
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the peak signal-to-noise ratio (PSNR), demonstrate that the scheme
proposed yields better results compared to the previous model.

As a method used to solve for a broad range of problems that
have mathematical models yielding equations or systems thereof,
the differential transform scheme is effective. The Cantor set, cre-
ated by repeatedly deleting the open middle thirds of a set of line
segment, is a closed set that entirely consists of boundary points,
which is a noteworthy counterexample in the fields of set theory
and general topology. The local fractional calculus is applied for
modeling and processing non-differentiable phenomena in differ-
ent fractal physical phenomena, with some local fractional models
being wave equations on the Cantor sets, local fractional mechan-
ics of elastic materials, Newtonian mechanics on fractals subset
of real-line, local fractional Laplace equation, and so forth. The
subsequent paper named “Analysis of the n-Term Klein-Gordon
Equations in Cantor Sets” aims at demonstrating the effectiveness
of the local fractional reduced differential transformation method
(LFRDTM) in approximating the solution of the extended n-term
local fractional Klein-Gordon equation (Goswami et al. 2023). For
this aim, the authors use the fractional complex transform and the
local fractional derivative, in combination, to analyze the n-term
Klein-Gordon equations and in cantor sets. The method proposed
by the paper is said to provide a powerful mathematical instru-
ment for solving fractional linear differential equations. As the
other contributions, the authors address the existence of the solu-
tion followed by some examples. Ultimately, the study provides an
effective and accurate method for modeling complex physical sys-
tems displaying fractal or self-similar behavior at various length
scales. The authors conclude that the fractional complex transform
with the local fractional differential transform method proves to
be a powerful and flexible approach for obtaining effective approx-
imate solutions of local fractional partial differential equations. By
demonstrating the effectiveness of the LFRDTM in approximating
the solution of the local fractional Klein-Gordon equation of term n,
the authors also expect to encourage its use in an extensive range
of applications in fields like physics and engineering.

Providing a general setting and context to understand real-
world phenomena, fractal methodology provides the generaliza-
tion of real-data interpolation by means of fractal techniques. Nu-
merous mathematical models developed and which can generate
free-form shapes show two varieties which are known to be de-
terministic and stochastic. With deterministic qualities, spline
models have established themselves to be powerful and conve-
nient to model smooth shapes. On the other hand, fractal models
are used to recreate different shapes which are found in nature,
and most fractal models are endowed with stochastic components,
which render them appropriate to generate irregular, nonsmooth
shapes. In this regard, a fractal spline is a function which is made
of spline functions having different sclaes maintaining the self-
similarity attribute. Consequently, the last study in our special
issue “Fractalization of Fractional Integral and Composition of
Fractal Splines” is concerned with the perturbation of fractional
integral of a continuous function f defined on a real compact inter-
val, namely (Iv f ) by means of a family of fractal functions (Iv f )α

reliant upon the scaling parameter α (Apulprakash 2023). The
authors of the study propose a fractal operator within the space of
continuous functions, an analogue to the existing fractal interpola-
tion operator perturbing f, which results with α-fractal function f α

to elicit the phenomenon. The composition of differentiable fractal
function h(k) with a non-differentiable fractal function g yields
a non-differentiable fractal function g(h(k)), which satisfies the
end point conditions that are necessary. Furthermore, the study

provides the discussion regarding the composition of α-fractal
function with the linear fractal function besides the extension of
the composition operation on the fractal interpolation functions to
the case of differentiable fractal functions.

CONCLUDING REMARKS, CHALLENGES AND FUTURE
DIRECTIONS

Chaos theory is capable of offering an alternative that describes
and explains the particular behavior of some nonlinear systems,
fundamentally almost in all naturally occurring physical, biolog-
ical, chemical or social systems or structures. This qualitative
exploration of unstable aperiodic behaviors in deterministically
nonlinear dynamical complex systems also holds a plethora of
definitions in which unstability means the system resists small
disturbances and does not settle into a form of behavior whereas
aperiodic behavior denotes the variables in a state of a system
which does not go through an iteration of values. These particu-
lar conditions can make exact predictions not possible; and thus,
generates a series of measurements appearing randomly on small
disturbances. Butterfly effect, uncertainty and strange attractors
are some of the most notable features chaotic systems, whereas
more coherence is attributed to complex systems where complexity
theory addresses the emergence of order there at the edge of chaos,
signifying a boundary point between randomness and determin-
ism. Chaos-based applications in engineering, science and other
related trajectories entail the profound and precise comprehension
revealing a rigorous attempt to observe similar systematics over
an extensive varying range of phenomena. Made up of a set of
mathematical concepts, chaos and complexity theory grants the
description how particular systems evolve over time. Mathemati-
cal modeling geared towards the description of diverse multiple
aspects of the real world in addition to the dynamics and recipro-
cal interactions tackles universal concepts in a prompt, accurate
and efficient way. As they are unique in enabling the mechaniza-
tion, automation and control of intellectual activities and processes,
mathematical models are acknowledged to be unique. The inte-
gration of mathematical modeling and scientific computing are
the principles that empower means to solve challenges pertaining
to complex systems through innovative ways attributable to data
science with a precisely customized approach plausible sense can
be derived from large chunks of big data.

Fractional mathematics encompassing the application of frac-
tional calculus techniques can be used to solve problems that de-
scribe the existence characteristics of complex natural, scientific,
engineering-related and medical systems accurately. FC is pro-
foundly concerned with the dynamics of real-world problems,
which allows emerging processes in diverse trajectories by adopt-
ing fractional dynamics rather than the ordinary integer-ordered
ones. Fractal patterns, in an array of scales rather than in an infinite
manner, have been modeled extensively owing to the time and
space-related limits concerning practice-wise elements. It is possi-
ble that the models might simulate theoretical fractals or natural
phenomena with fractal features, and the outcomes derived from
modeling processes can be employed as benchmarks for fractal
analysis purposes. As a result, the application of calculus concepts
as well as techniques are highly beneficial to describe and analyze
both behavior of fractal objects and that of systems. Owing to the
inherent feature of fractional derivatives in terms of spatiotem-
poral memory and the capability of expressing phenomena that
occur in a naturally complex way, machine learning is an inte-
grated way through its learning behavior and patterns based on
historical data, which provides benefits in analyzing data, solving
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problems, modeling, forecasting, prediction, and so forth by pro-
viding new genesis and perspectives. The coherent combination
of these approaches facilitates the description process of complex
dynamics based on the schemes relying on fractional derivatives
and machine learning with novel corresponding techniques. Fur-
thermore, with its differentiation and integration of non-integer
order, FC provides the representation of the generalization of clas-
sical differential and integral calculus, providing an amalgam of
computational methods concerning various complex systems in
tandem with fractional derivatives, fractional differential equa-
tions, fractional wavelet, fractional entropy, fractional neural net-
works, fractional fuzzy, and so on to open the frontiers towards
systematic optimized solutions, tackling the systemic properties
holistically by seeing through the spontaneous processes. Data,
while causing compelling challenges in system design, modeling
and other related processes, also require the need of sorting out ef-
ficiency, reliability, consistence, maintainability and scalability. The
real-life applications of data-intensive systems and applications
make an intensive use of data in all their heterogeneous forms,
and computational problems can be solved in this sort of a nested
network with concurrent or distributed systems paying attention
to operational processes, memory, communication between nodes,
machine instructions, among many other processes and elements.

Challenges also become evident considering the asymptomatic,
chaotic, complex, dynamic and nonlinear systems. If one has the
aim of managing chaos and complex systems, it is important to
identify the correct level of the system and consider it within its
particular setting adopting vigilance by interpreting and analyzing
the system. Therefore, the related challenge and wrongdoing is
identifying individual agents as the agents of the system. Another
compelling issue is the dependent components regarding the sys-
tem’s complexity as the result is coupled systems in a tight way if
multiple components depend on each other, while the other one
is managing work in progress with common delays in a certain
workflow concerning feedback and making use of the related infor-
mation. This causes somehow overload leading to problems and
challenges due to highly chaotic and complex issues. To solve this
challenge, tasks need to be managed constantly on track with no
delays if possible. One more challenge worthy of mentioning has
to do with predicting changes that are possible to occur. This chal-
lenge can be sorted out by managing chaos and complex systems
by using advanced technologies and probing the trends as well as
establishing forecasting models so that the evolutions of complex
systems can be predicted with a relatively strong precision.

Based on these aspects, trends and challenges, the following
points can be provided as future directions to unlock new frontiers
in research and application terrains: novel and solution-oriented
avenues can be explored for the ultimate the medical, clinical im-
pacts of machine learning in imaging and signal processing. In
addition to deep learning methods and parallel training implemen-
tation techniques, having become dominant in computer vision-
related tasks, Convolutional Neural Networks (CNNs), made up
of multiple building blocks, can be oriented for automatic and
adaptive learning in spatial hierarchies. Another direction is re-
lated to large medical datasets and enhancing of the potential in
minimizing overfitting and providing generalizability through bet-
ter pre-trained sets of unis so that deep learning research can be
fostered. Moreover, experiments with high dimensional or multi-
modal data to represent and analyze them through the selection
of powerful tools. All these challenges and directions show that
further research may be carried out so that it can be figured out
how it could be possible to control and manage the chaotic be-

havior of different systems for the purpose of expanding validity,
coherence and reliability concerning future plans, schemes and
models. Chaos theory, in this regard, provides an alternative to
explain and describe the behavior of nonlinear systems, and the
rationale behind the use of chaos theory is to better understand
the internal machinations of neural networks. As a matter of fact,
being profoundly rooted in physics, complexity and chaos attempt
to observe comparable similar systematics over a broad range of
phenomena. Taken together, chaos and complexity theory provide
a version synthesis comprising emerging wholes of individual
components unlike some traditional scientific approaches which
handle the analysis of systems in isolation. Unpredictability, be-
ing at the pedestal of some challenges, this approach is one way
which can render foreseeability possible concerning what level of
complexity will emerge related to the data chosen to be employed.
As a last resort, what needs to be endowed with is the ability to
see deep relationships and how they can fit in a whole coherently,
which can be put differently as the simplicity on the other side of
complexity.
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