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 With the escalating need for alternative energy sources due to economic crises and fossil fuel 
shortages in Lebanon, solar photovoltaic (PV) panels have emerged as an attractive solution. This 
study examines the capacity and efficacy of rooftop-installed PV solar panels. Using geospatial 
technologies, including Digital Surface Models drone-based photogrammetry, the study assesses 
geometric and solar characteristics, seasonal solar radiation, solar duration, and power for 40 PV 
units installed in the study area. This research presents specific quantitative values for optimal 
orientations that result in high solar radiation across various seasons and identifies varying slopes 
influencing the performance of PV solar panels. Employing the Agglomerative Hierarchical 
Clustering (AHC) technique, PV units are systematically classified into clusters labeled as 
Moderate, High, Low, and Very Low solar power, offering quantitative metrics regarding the 
effectiveness of distinct panels. The high-efficiency Cluster exhibits an average solar power of 
1868.114 kWh/m² during the summer season, whereas the Very Low Cluster, comprising panels 
with minimal solar power output, averages 150.578 kWh/m² in the same season. In conclusion, 
the most effective PV solar panels within the study area are those oriented between 195 and 225 
degrees, with shallow inclination angles and larger surface areas contributing to enhanced 
performance in capturing solar radiation and generating power. These precise quantitative 
insights contribute to informed decision-making for optimizing the placement of PV panels to 
enhance energy generation. The study's recommendations are substantiated by specific numerical 
data, guiding future solar installations to maximize solar energy generation. 
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1. Introduction  

 
Due to the economic crisis that struck Lebanon in late 

2019, coupled with power outages caused by fossil fuel 
shortages and high prices, the depletion of global fossil 
fuel resources has prompted a critical search for 
alternative energy sources to meet contemporary 
demands. Once considered an expensive and inefficient 
method of generating electricity, solar PV panels have 
become increasingly affordable and appealing when 
compared to rising energy prices from non-renewable 
sources. Solar power has also grown more accessible to 
homeowners. 

Individuals have installed solar panels on building 
roofs to generate electricity for their household needs. 
Certain residents have achieved energy independence 
and reduced reliance on the public electricity grid. PV 
technology directly converts solar energy into electricity 
based solely on the availability and quality of renewable 

resources, technical system performance, topographic 
limitations, and environmental and land-use constraints 
[1]. 

PV technology stands as one of the fastest-growing 
technologies worldwide. It boasts independence and 
adaptability to various scenarios, making it versatile. It 
can seamlessly integrate with smart grid networks and 
can also be tailored for small-scale applications like 
stand-alone PV power systems on rooftops [2,3]. 

Numerous solar radiation estimation models, such as 
remote sensing, geo-statistics, and Geographic 
Information Systems (GIS), have been developed to 
provide a more cost-effective and convenient way of 
measuring radiation, as opposed to deploying multiple 
sensors to the area for direct measurement. 

Using GIS has gained momentum in renewable energy 
across various regions of the world. It has proven 
invaluable in developing spatial decision support 
systems, aiding decision-makers in resolving spatially 
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related issues by leveraging geographical controlling 
factors [4]. 

On a global scale, the primary controlling factors 
include latitude, distance from the sun, and the time of 
the year. On a local scale, significant sources of spatial 
variation encompass elevation above sea level, surface 
inclination, surface orientation, and the shadowing 
effects of nearby terrain features [5]. 

In this study, weather conditions were excluded due 
to their instability, unpredictability, and the challenges 
associated with modeling cloud patterns. Atmospheric 
conditions can span from overcast skies and clear skies 
to partly cloudy skies, direct sunlight, and uniform skies. 
The solar radiation for the study area was calculated 
under clear-sky conditions. 

As interest in solar power generation continues to 
rise, the number of published studies evaluating the 
photovoltaic (PV) potential of different regions has 
steadily increased for more than a decade. 

The Energy Sector Management Assistance Program 
(ESMAP) has identified the theoretical, practical, and 
economic potential of PV in each country, presented 
through maps and summary tables. This resource could 
serve as a foundation for global study [6]. 

One area of research is dedicated to precisely 
estimating the power production of photovoltaic (PV) 
systems installed on building roofs and identifying 
potential locations for solar energy harvesting [6].  

The research conducted by [7] assessed the solar 
energy potential across Europe. On a more localized 
level, individual country and regional studies strive to 
pinpoint and suggest viable solar energy project 
opportunities. These studies utilize methodologies such 
as multiple-criteria decision-making (MCDM), the 
analytic hierarchy process (AHP), and fuzzy logic, to 
establish recommendations for solar energy 
development. 

Choi et al. [8] reviewed geographic information 
system (GIS)-based methods and their applications in the 
planning and design of solar power systems. They 
categorized GIS-based studies into three main groups: 1) 
solar radiation mapping, 2) site evaluation, and 3) 
potential assessment. The review involved classifying 
previous GIS-based studies into subtopics based on 
factors such as the complexity of the GIS methods 
employed, the solar power conversion technology, or the 
scale of the study area. 

The majority of GIS research and its applications in 
solar power have focused on identifying the potential for 
solar panels [9-11], suitability for PV farms [12], and 
feasibility of PV implementation [13,14]. There has been 
a lack of research examining the capacity of PV solar 
panels after installation using geospatial technologies. 

Our study introduces a fourth category to the three 
groups identified by [8]. This category will delve into the 
efficacy of rooftop-installed PV solar panels, specifically 
focusing on their capacity to generate electricity. 
However, to our knowledge, no such assessment has 
been published at the micro level. This research gap 
underscores the significance of our study within the local 
solar industry, we analyze the capacity of rooftop PV 
solar panels within a small area of the El Meten region in 
Lebanon. 

There are three primary causes of spatial variability 
in radiation at the land surface: (1) the orientation of the 
Earth relative to the sun, (2) clouds and other 
atmospheric inhomogeneities, and (3) topography. The 
first cause influences latitudinal gradients and seasons. 
The second cause is linked to local weather and climate, 
but it will not be addressed in this study. The third cause, 
including spatial variability in elevation, slope, aspect, 
and shadowing, can give rise to pronounced local 
gradients in solar radiation. These gradients support our 
study [15].  

Topographic effects on direct radiation were 
calculated for each grid node in a Digital Surface Model 
(DSM) using the spatial analysis tool within ArcGIS Pro, 
over Fall, Winter, Spring, and Summer. Sun elevation and 
azimuth were factored in. 

Digital Surface Models (DSM) and Ortho mosaics, 
generated through drone photogrammetry and 
Geographic Information System (GIS) technology, were 
utilized for analyzing the capacity and efficacity of the 
pre-installed rooftop PV solar panels. 

The utilization of drones was preferred over 
previously available digital elevation data due to their 
higher precision and ability to identify rooftop solar 
panels accurately. 

The surface model was also employed to calculate 
panel slopes and aspects, aiding in identifying the 
optimal locations and orientations for the installed 
photovoltaic solar cells. Solar radiation duration and 
power were computed for each of the four seasons: Fall, 
Winter, Spring, and Summer 

This study serves as an initial step toward developing 
a plan by assessing the solar potential and power 
generation capacity of rooftop solar panels. Leveraging 
geospatial data enables the calculation of a more precise 
estimation of solar capacity for structures across the 
entire region. Traditional methods have often relied on 
less accurate datasets like bare earth Digital Elevation 
Models or time-consuming individual property 
assessments. Through the utilization of drone 
photogrammetry to generate high-resolution elevation 
data, the Digital Surface Model (DSM) can influence solar 
energy specifically on the Earth's surface [16]. 

It's important to note that not all rooftop PV systems 
are installed uniformly. Evaluating the efficacy of these 
solar panels can be achieved through manual surveys 
conducted by experts in the field. However, this approach 
is highly impractical for estimating PV efficacity over a 
larger region with numerous rooftops. 

This study aims to address these questions: 
1. What are the geometrical and solar characteristics 

of the installed PV units that exhibit high solar radiation 
and power? 

2. How can PV solar panels be categorized based on 
their efficacity? 

 
2. Materials and method 

 
In Lebanon, a Middle Eastern country, there is an 

urbanized area of 5 hectares in the El Meten region. 
According to the Global Solar Atlas 2.0, the long-term 
yearly average of potential photovoltaic electricity 
production, covering the period between 1999 and 2018, 
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was 1583 kWh. This value is promising for conducting 
solar energy experiments [17]. 

The experiment area is relatively small due to 
restrictions on drone flights in urban areas and the 
limited endurance of drone batteries. 

The study area in Figure 1 is characterized by its 
urban structure, which includes a variety of small private 
homes and large residential buildings suitable for the 
installation of PV solar panels. 

 

 
Figure 1. Study area. 

 

 
Figure 2. a) Ortho mosaic with the numbers of PV solar panels, b) The DSM with the PV solar panels. 
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For the photogrammetry mission, a DJI Phantom 4 
with a 20-megapixel camera was employed. The drone 
was flown at a height of 100 meters from the take-off 
point, capturing 46 aerial frames with an 80% overlap 
and 70% side lap. These overlaps would generate a dense 
point cloud for Ortho mosaic and DSM production. 

To ensure accuracy, 10 control points were 
strategically placed on the ground and surveyed using a 
differential Global Navigation Satellite System receiver. 
This receiver boasted a horizontal accuracy of 0.5 cm and 
a vertical accuracy of 2 cm, which proved to be more than 
adequate for solar study purposes. 

The resulting Ortho mosaic, with a spatial resolution 
of 4 cm, was employed to digitize the PV solar panels in 
Figure 2a. Figure 2 depicts 40 PV units, each of which 
could consist of 2 or more panels. 

Concurrently, a DSM was generated with a spatial 
resolution of 7 cm to be used for solar radiation and solar 
duration calculations. 

Figure 2a of the Ortho mosaic showcases the 40 
digitized PV units composed of solar panels with varying 
areas and orientations. These panels were installed 
without prior studies and are predominantly oriented 
towards the East-South direction. 

Figure 2b of the DSM illustrates elevation intervals 
above sea level, ranging from 441 to 507 meters, 
effectively displaying building and tree heights. 

Solar radiation received from the sun stands as the 
primary energy source for PV panels, rendering an 
understanding of its significance at landscape scales 
crucial for comprehending an array of natural processes 
and human activities. 

Within landscape scales, topography emerges as a 
pivotal determinant of the spatial fluctuations in solar 
radiation. These fluctuations evolve with the progression 
of the day and the shifting of seasons, contributing to the 
variations in microclimates. These microclimatic 
differences encompass elements like air and soil 
temperatures, evapotranspiration, patterns of snowmelt, 
soil moisture, and light accessible for photosynthesis. 

The computation of solar radiation was executed 
through the utilization of the area solar radiation tool 
within ArcGIS Pro, aligned with the DSM derived from 
drone-based photogrammetry as the primary input. 
However, this study did not delve into investigating the 
accuracy and quality of the resulting DSM. 

The ArcGIS Pro Spatial Analyst extension facilitates 
the mapping and analysis of solar effects employing 
techniques rooted in the hemispherical viewshed 
algorithm [5]. This approach incorporates 
considerations for atmospheric influences, site latitude 
and elevation, slope steepness, compass direction 
(aspect), daily and seasonal variations in solar angles, 
and the impacts of shadows cast by surrounding 
topography, as expressed by the DSM grid. 

The latitude (33.9304) at the center of the study area 
is employed in calculating solar declination and solar 
positioning. Given that the analysis is tailored for micro 
scales, the practice of utilizing a single latitude value for 
the entire DSM is generally acceptable. However, for 
global scales, insolation outcomes would notably diverge 
across distinct latitudes, necessitating division into zones 
characterized by different latitudes. 

Solar effects are computed based on distinct seasonal 
periods—Fall, Winter, Summer, and Spring. When 
determining the most suitable orientation for 
installations, it is crucial to account for the sun's relative 
angular position throughout the year and day. 

During Summer in the Northern Hemisphere, the 
region is inclined towards the sun, leading to more direct 
solar rays striking the ground from the first of June until 
the first of September. Conversely, in Winter, spanning 
from the first of December till the first of March, the 
Northern Hemisphere is oriented away from the sun 
[18]. 

Considering these factors, for installations within the 
Northern Hemisphere, a southern exposure is typically 
considered optimal for capturing the highest intensity of 
sunlight overall [19,20].  

The solar radiation output raster data in Figure 3 are 
of the floating-point type and are measured in units of 
Kilowatt hours per square meter (kWh/m²). 

In the SAGA GIS software, the seasonal average solar 
duration was computed using the DSM derived from 
drone data. The resulting solar duration output, 
presented as an integer raster, represents the mean value 
across Fall, Winter, Spring, and Summer, measured in 
hours. 

It's worth noting that the performance of PV solar 
power plants is generally not significantly impacted by 
temperature [12]. The value of solar radiation estimates 
the potential electricity generation within each PV unit. 

The seasonal solar energy production is determined 
by the dimensions of the PV solar panels, which are 
outlined in a shape file digitized from the Ortho mosaic. 
The unit of solar electricity power (UP) is calculated 
following the method [21] outlined by Equation 1. 
 

𝑈𝑃 = 𝐴 × 𝑆𝑅𝑆𝑒𝑎𝑠𝑜𝑛 × 0.163 × 0.8592 (1) 
 

UP = Unit Power (kWh) 
r = 16.3% PV solar panel efficiency of PV modules  
PR = 85.92% performance ratio (PV Watts Calculator: 
14.08% system losses) 
SR is the mean solar radiation received per unit area 
(kWh/m2) each season,  
A is PV solar panel unit area (m2),  

 
The value of the efficiency (r) used is adopted from 

the National Renewable Energy Laboratory of the USA 
[21]. 

To accurately estimate solar radiation across the 
study area throughout the four seasons, a high-resolution 
solar radiation raster was computed using the solar 
radiation module within ArcGIS Pro. This module 
considers a variety of factors, including atmospheric 
influences, site latitude and elevation, slope steepness, 
compass direction (aspect), daily and seasonal shifts in 
the sun angle, and the impacts of shadows cast by 
surrounding topography. It provides the flexibility to 
adjust the coefficient of atmospheric transmissivity, as 
detailed by [12]. 

The model's calculations encompass the summation 
of direct and diffuse radiation across all sectors of both 
sun maps and sky maps. The primary input parameters 
employed in this model were derived from the DSM 
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generated through drone-based photogrammetry, as 
depicted in Figure 2b. 

Following the GIS processing steps for generating 
slopes, aspect, SR, SD, and UP values, a zonal statistics 
analysis was conducted for the PV units. This analysis 
facilitated the extraction of the geometric and solar 
characteristics of the 40 photovoltaic units. 

 
3. Results and Discussion 
 

The 40 PV units of solar panels were delineated from 
the ortho mosaic generated. Then utilizing the integrated 
DSM within ArcGIS Pro, the seasonal Solar Radiation (SR) 
depicted in Figure 3 was produced. 

Four raster data displaying the average solar 
duration for each season—Fall, Winter, Spring, and 

Summer were generated. These raster data were 
developed by considering the elevations from the DSM 
data, utilizing SAGA software. 

The Unit Power of the solar panels was calculated 
according to equation number 1. 

In the fall season, the maximum solar radiation 
reaches 338.208 kWh/m², and this value declines to 
252.428 kWh/m² during the winter period, as illustrated 
in Figure 3b. These calculations do not consider the 
influence of atmospheric conditions. Moving into the 
spring season, solar radiation increases to 473.158 
kWh/m², further reaching an average of 537.235 
kWh/m² during the summer. This increase is 
pronounced on rooftops and in open areas, exemplified 
by the red regions in Figure 3d. 

 

 
Figure 3. Seasonal solar radiation, a) Fall, b) Winter, c) Spring, and d) Summer. 
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The geometry of the PV solar panel units is defined by 
the area they cover, their orientation angle regarding the 
North direction (measured in degrees), and the slope of 
the installed panels (also in degrees).  

The areas of the PV unit solar panels vary, ranging 
from 1.5 m² to 32.7 m². More than 20 PV solar panels 
among the 40 units under study have areas exceeding 20 
m². 

Figure 4 provides insights into the seasonal 
characteristics of the solar panels as determined by this 

study. These include the mean solar radiation (SR), the 
mean solar duration in hours, and the solar unit power 
(UP) measured in kWh.  

Determining the optimal placement for photovoltaic 
(PV) panels involves a multitude of factors, 
encompassing geographical location, climate, available 
space, and the specific objectives of the PV system. The 
key considerations of the most suitable orientation for 
PV placement are listed in Table 1: 
 

 

Table 1. Factors affecting the optimal PV panel orientations. 
Factors Affections 

Solar Angle and Latitude The angle of the sun and the latitude of the location affect the optimal panel orientation. 
Direction The cardinal direction (north, south, east, west) affects the exposure of the panels to sunlight. 
Tilt Angle The tilt angle of the panels can affect their efficacy in capturing sunlight. 
Shading Avoiding shading from nearby structures or vegetation is crucial to maximize energy production. 

Energy Consumption Patterns Aligning panel production with peak energy consumption times can optimize system 
performance. 

Climate Weather patterns, temperature, and cloud cover influence panel orientation choices. 
Economic Factors The costs associated with installations and potential energy savings play a role in orientation 

decisions. 

 
 

In our study area, the PV panel units were installed 
with roof-oriented panels numbered 28, 29, 30, 31, 32, 
and 33. These panels are predominantly oriented to the 
South and Southwest, depending on installation 
feasibility. 

PV panels with high Solar Radiation (SR) values are 
oriented between 180 and 233 degrees, corresponding to 
the south and southwest directions. However, the 
orientations associated with high Solar Duration (SD) 
values differ across seasons. In the fall season, the 
interval is between 228 and 231 degrees, in winter it's 
227 to 233 degrees, in spring the high SD values are 
achieved with orientations between 180 and 195 degrees 
(toward the south), and in summer, when solar rays 
directly strike the ground, the interval tends towards the 
southwest (225-231 degrees). 

The average slope of the installed PV unit solar panels 
with high SR values shows distinct patterns across 
seasons. Specifically: 

Fall and Winter: Panels with high SR values have an 
average slope of 26 to 34 degrees. 

Spring: High SR panels display an average slope 
ranging from 22 to 24 degrees. 

Summer: Panels with low slope angles, typically 
between 6 and 16 degrees, attain higher SR values due to 
the direct solar rays striking the ground. 

Interestingly, the PV units of solar panels that exhibit 
high SR values for the fall and winter seasons remain 
relatively consistent for spring and summer. However, 
the summer season introduces a shift in high SR values, 
where the panels that receive the most direct solar rays, 
such as panels numbered 14, 15, 16, and 24, achieve the 
highest SR values. This adjustment is noteworthy as 
these panels differ from those with high SR values in fall 
and winter (panels numbered 1, 23, 35, and 37). The 
result is a noticeable increase in SR values for panels 14, 
15, 16, and 24 during the summer season. 

In Figure 2, small areas housing PV solar panels 14, 
15, and 16 exhibit high SR (Solar Radiation) values. These 
panels are on the same rooftop and share identical 

orientations with PV solar panel number 13. However, 
they are positioned at an elevated level and possess a 
slightly smaller inclination angle within the range of 6 
degrees. Conversely, PV solar panels with a steeper 
inclination angle of 15.8 degrees (as stated in Figure 2) 
capture comparatively less solar radiation. 

This observation highlights that PV solar panel units 
with lower inclinations (specifically, panels 14, 15, and 
16) experience greater solar radiation across all seasons. 

During the summer season, PV units of solar panels 
numbered 14, 15, 16, and 26 experience the highest Solar 
Duration, with 12 hours of sunlight each day. But in the 
winter season, the PV unit solar panel numbered 34 
records the lowest solar duration of 3 hours per day 
Figure 4. This lower value in winter can be attributed to 
panel 34's location, in a lower area surrounded by taller 
buildings that cast shadows. 

When considering the combination of high-power 
capacity and large panel areas (ranging from 25 to 32 
m²), panels numbered 3, 26, 36, and 38 stand out. In the 
summer season, these panels exhibit capacities between 
509 and 517 kWh/m². Conversely, PV units of solar 
panels with high SR values and smaller areas, specifically 
panels numbered 14, 15, and 16, achieve a slightly higher 
capacity of 533 kWh/m² during the same season. 

To confirm the accuracy of the acquired results for the 
Summer UP (Unit Power) during the season, data was 
collected on the 15th of August at noon. This data involved 
the solar power readings extracted from the inverters of 
specific PV solar panels, namely numbers 4, 8, 13, 24, and 
38 as illustrated in Figure 5. The solar power produced 
by these inverters correlates with the Summer UP values 
of the respective PV solar panels. These values are 
arranged in ascending order: 8, 24, 4, 13, and 38. This 
identical order also aligns with the arrangement of UP 
values. These consistent findings validate the 
relationship between solar power production, utilization 
performance, and the specific characteristics of the 
mentioned PV solar panels. 
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Figure 4. The season mean Solar radiation, mean solar duration and the unit power of the 40 photovoltaic units. 

 

 
Figure 5. Solar power of the inverters of the PV Solar panels number 4,8,13,24 and 38. 
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Figure 6. Bivariable map of seasonal PV solar unit power and area. 

 
The bivariate map (Figure 6) showcasing Solar Power 

and Unit Area illustrates the seasonal solar power for 
each unit alongside the corresponding panel area. An 
evident pattern emerges wherein the solar power across 
all units and seasons—Fall, Winter, Spring, and 
Summer—is directly proportional to the unit's solar 
panel count and their respective areas. A notable 
example of this trend is observed with units numbered 
38 and 3. 

To gain a deeper comprehension of the relationships 
between PV units of solar panels within the study area, 
with a focus on seasonal power variations, the 
Agglomerative Hierarchical Clustering (AHC) technique 
was employed. This method, put forth by [22], facilitates 
the clustering of similar PV units based on their 
characteristics. 

The Agglomerative Hierarchical Clustering (AHC) 
algorithm treats each PV unit's seasonal power values as 
a distinct cluster. It then calculates the similarity or 
dissimilarity between every pair of PV units utilizing the 
Euclidean distance metric. 

 In Figure 7 of the dendrogram, the vertical axis 
measures the dissimilarity or distance between clusters, 
providing insights into the relationships and groupings 
among clusters. 

 This involves identifying the proximity between 
clusters and merging the closest clusters based on the 
selected similarity metric. The process continues as the 
algorithm recomputes the similarity between the new 
clusters, ultimately generating an output comprising four 
distinct clusters, labeled as Moderate, High, Low, and 
Very Low solar power, as depicted in Table 2 which 
answers the study question.  

How can PV solar panels be categorized based on 
their efficacy? 

During this merging process, the AHC algorithm 
constructs a hierarchical structure of clusters, visually 
represented as a dendrogram. In this dendrogram, each 
leaf node corresponds to an individual PV unit, while the 
branches symbolize the evolving clustering hierarchy. 
This visual representation is presented in Figure 7. 
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Table 2 shows the four clusters' centroid values 
(average) of PV units’ solar power in the four seasons. 
The first cluster C1 englobe all the PV units of moderate 

power, C2 cluster contains the high efficacy of solar 
power PV units.   

 
 

 
Figure 7. Dendrogram of the PV units clustering. 

 
Table 2. Cluster centroid of PV solar panels based on solar power. 

Cluster 
 

PV № Fall Winter Spring Summer Efficacy 

C1 
 

1,2,5,6,7,8,9,10,17,22,23,24,30,34,37 661.696 447.039 989.746 1113.559 Moderate 

C2 
 

3,4,11,13,25,26,36,38 1107.480 746.292 1659.153 1868.114 High 

C3 
 

12,14,15,16,27,28,29,31,32,35,39,40 412.772 273.003 627.339 708.448 Low 

C4 
 

18,19,20,21,33 84.765 56.542 130.570 150.578 Very low 

 
The four clusters, namely C1, C2, C3, and C4, 

encompass PV solar panels that exhibit similar solar 
power levels across all seasons. 

Cluster C2 comprises high-efficiency solar panels, 
with their performance influenced by factors such as 
installation position, orientation, and the number of 
panels (area). Cluster C4 includes panels with very low 
solar power output, suggesting that they do not yield the 
desired energy generation results. It is advisable to 
consider relocating these panels to enhance their 
productivity. 

The productivity of solar panels within clusters C2 
and C4 remains reasonable despite their fixed positions 
on the rooftops. This implies that, even in their current 
locations, these panels contribute a certain level of 
energy output. 

To address the second research question, the PV units 
displaying elevated solar radiation and power possess 
specific geometrical and solar attributes. The most 
effective PV solar panels within the study area are those 
oriented between 195 and 225 degrees. These panels are 
positioned at a shallow inclination angle of 6 degrees and 
encompass a larger surface area or a greater number of 
individual panels. These factors collectively contribute to 
their enhanced performance in capturing solar radiation 
and generating power. 

 
4. Conclusion  
 

In a world grappling with energy crises and 
environmental concerns, solar photovoltaic (PV) panels 

have emerged as a promising solution. This study 
presents a comprehensive analysis of the capacity and 
efficacy of rooftop-installed PV solar panels within the El 
Meten region of Lebanon. Through integrating geospatial 
technologies like drone-based photogrammetry for DSM 
generation and GIS, a thorough examination of geometric 
and solar characteristics, seasonal solar radiation, solar 
duration, and unit power was conducted for 40 PV units. 

The research unveiled critical insights regarding 
optimal panel orientation, seasonal power variations, 
and the clustering of panels based on their solar power 
efficacy. The Agglomerative Hierarchical Clustering 
(AHC) algorithm facilitated the categorization of panels 
into four distinct clusters: moderate, high, low, and very 
low solar power outputs. This clustering approach aids in 
identifying panels contributing efficiently to energy 
generation, those with potential for improvement, and 
those that may require reevaluation or relocation. 

The study's outcomes offer valuable guidance for 
future solar installations in the region, enabling informed 
decisions on panel positioning, orientation, and efficacy 
optimization. As solar energy gains momentum as a 
sustainable power source, the findings of this study 
contribute to the ongoing dialogue on maximizing energy 
generation while reducing reliance on conventional fossil 
fuels. By harnessing the power of geospatial technologies 
and data-driven analysis, the research not only advances 
the understanding of rooftop solar panel efficacy but also 
promotes the broader adoption of renewable energy 
solutions to address pressing global energy challenges. 
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