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Abstract 
 
To extract valuable information from satellite data for applications such as agriculture, 
geological research, and environmental monitoring, the classification of hyperspectral 
images is an essential task. Labeling each pixel in this process is time-consuming and 
requires financial resources. To this end, working with a small number of samples is very 
important. In order to provide high classification performances with a limited number of 
samples, this paper aims to enhance the performance with an active learning framework. 
The framework incorporates dimensionality reduction, an edge-preserving filter, and 
active learning steps. From this perspective, we investigated different edge-preserving 
filter methods to analyze the effects on performance. By combining edge-preserving filters 
with dimensionality reduction, the study presents a unique method that improves 
classification performance while maintaining image quality and reducing noise. The 
following five edge-preserving smoothing filters are evaluated: weighted least squares 
(WLS), Joint-Histogram weighted median filter (Joint WMF), fast global image smoother 
(FGS), bilateral filter (BF), and static/dynamic (SD). Our experiments demonstrate that 
compared to the reference research (CNN+AL+MRF), the proposed framework increased 
overall and average accuracies about 2-5% for Indian Pines, Pavia University, and Salinas 
datasets. 
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Özet 

 
Tarım, jeolojik araştırma ve çevresel izleme gibi uygulamalar için uydu verilerinden değerli 
bilgiler elde etmek amacıyla hiperspektral görüntünün sınıflandırılması önemli bir görevdir. 
Bu süreçte her pikselin etiketlenmesi zaman alıcıdır ve mali kaynak gerektirmektedir. Bu 
amaçla az sayıda örnekle çalışmak çok önemlidir. Sınırlı sayıda örnek altında yüksek 
sınıflandırma performansı sağlamak için bu makale, performansı aktif bir öğrenme 
çerçevesiyle geliştirmeyi amaçlamaktadır. Çerçeve, boyut azaltma, kenar koruma filtresi 
ve aktif öğrenme adımlarını içermektedir. Bu açıdan bakıldığında performans üzerindeki 
etkilerini analiz etmek için farklı kenar koruyucu filtre yöntemlerini araştırılmıştır. Kenar 
koruyucu filtreleri boyut azaltmayla birleştiren çalışma, görüntü kalitesini korurken ve 
gürültüyü azaltırken sınıflandırma performansını artıran benzersiz bir yöntem 
sunmaktadır. Ağırlıklı En Küçük Kareler (WLS), Ortak Histogram Ağırlıklı Ortanca Filtre 
(Joint WMF), Hızlı Global Görüntü Yumuşatma (FGS), Bilateral Filtre (BF), and 
Static/dynamic (SD) olmak üzere toplam beş kenar koruyan filtre değerlendirilmiştir. 
Deneylerimiz referans araştırmayla (CNN+AL) karşılaştırıldığında önerilen çerçevenin 
Indian Pines, Pavia Üniversitesi ve Salinas veri kümeleri için genel ve ortalama doğruluğu 
yaklaşık %2-5 artırdığını göstermektedir. 
 
Anahtar kelimeler: Aktif öğrenme, Kenar koruyan filtreler, Hiperspektral görüntüleme
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1. Introduction 
 
Classification of hyperspectral images involves identifying various forms of information on Earth's surface using 
hyperspectral satellite data (Wang et al., 2021). This is achieved through the classification of satellite images, utilizing 
machine learning and deep learning techniques to identify areas containing various types of living organisms and objects 
(He et al., 2017). High-accurate hyperspectral image classification requires a comprehensive understanding of the 
electromagnetic spectrum and its relationship to living beings and objects on Earth's surface (Hong et al., 2019). This 
data is utilized to generate precise maps of the environment, soil, forests, agriculture, nature, water, and other 
resources (Alcolea et al., 2020; Hong et al., 2019). These maps play a vital role in scientific and commercial applications, 
including geological research, natural resource management, and environmental, medical, and agricultural 
investigations. 

The hyperspectral image (HSI) is a crucial type of remote sensing image where each pixel possesses a unique spectral 
signature, allowing the detection of terrestrial objects invisible to the naked eye. Over the past decade, hyperspectral 
image analysis has become one of the most sophisticated and rapidly advancing technologies in remote sensing. Thanks 
to advancements in hyperspectral imaging technology, hyperspectral sensors can now capture substantial data across 
a wide range of electromagnetic spectrum bands. HSI classification, which is a challenging task in hyperspectral remote 
sensing (Chen et al., 2018), utilizes a designated discriminant function and a defined set of spectral and spatial image 
attributes. The process entails the allocation of a distinctive label to each pixel vector. The challenge in HSI arises mainly 
from the time-consuming and expensive nature of the data annotation, which frequently calls for specific knowledge 
that may not be easily accessible. 

To address the cost and limitations of manual labeling, a solution is proposed, leveraging relevant unlabeled data 
and employing a convolutional neural network (CNN) to enhance classification performance by extracting crucial 
spectral-spatial properties (Hu et al., 2020). Image identification and image segmentation extensively employ CNNs, 
considering the spatial correlation between pixels. By strategically incorporating unlabeled training samples, this 
technique improves robustness against overfitting with minimal labeled data and enhances generalization capabilities 
by merging spatial and spectral information from the original hyperspectral image (Haut et al., 2018). Active learning 
(AL) is a method of machine learning in which the algorithm chooses which data sample to label from a pool of data that 
has not been labeled. The algorithm selects the samples that are the most informative to label in an iterative manner. 
The goal of the algorithm is to maximize learning efficiency by concentrating on the data points that are most useful. 
Because of this, Active learning assumes that certain training samples are more valuable than others when it comes to 
improving the performance of the classifier system. 

By carefully choosing which samples to annotate, AL dramatically lowers the required number of labeled samples. 
The implementation of active learning aims to select the uncertain samples and ask the expert repeatedly during the 
iteration, resulting in increasing the number of samples for each round. It improves the effectiveness and affordability 
of active learning for hyperspectral image categorization (Joshi et al., 2009). Numerous efforts have been made to 
integrate the classification of HSI with deep learning and AL (Liu et al., 2016), To mitigate the impact of this problem, 
spatial information should be taken into consideration (Li, 2015). For example, (Kang et al., 2013) applied edge-
preserving filtering (EPF) to the postprocessing of classification maps. Propose (Zhang et al., 2019) a model that uses 
CNN to classify the HSI image and maintain edge information in the picture. Although all these techniques achieve good 
accuracy, there are still certain issues with them. Chen et al. (2016) employed 1 dimensional (1D), 2 dimensional (2D), 
and 3 dimensional (3D) CNN for the classification of hyperspectral images. In another work, (Santara et al., 2017) 
proposed a neural network architecture for spectral and spatial feature learning that is band adaptive. 

Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) have proven to enhance image quality and 
extract valuable information. Additionally, a trilateral filter has been employed for edge information extraction, 
contributing to improved model accuracy without introducing complexity; this is achieved by leveraging edge 
information to distinguish between distinct objects (Gupta et al., 2020). 

In a method based on the Bilateral Filter (BF) within the multispectral domain (MBF), PCA is utilized to extract spatial 
information (Hu et al., 2021). Subsequently, edge-preserving filter techniques in the multispectral domain are applied 
to filter spectral information after feature extraction (Hu et al., 2021). Utilized a graph cut algorithm to address the 
labeling problem on Markov Random Field (MRF), constructed on the image grid (Jia et al., 2015). Approach (Kang et 
al., 2013) prioritizes local optimization of pixel classification maps, placing more emphasis on spectral information than 
spatial context. The significant advantage lies in preserving the original appearance of probability maps, ensuring the 
retention of pixel-related information. The proposed method introduces an edge-preserving image smoothing 
benchmark capable of producing competitive results across a diverse range of image contents (Zhu et al., 2019). This 
benchmark (Zhu et al., 2019), supported by real image smoothing results within an accompanying image dataset, 
undergoes verification for contrast enhancement tasks through additional related work. 
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CNN+AL+MRF method uses the full spectrum method without applying additional preprocessing steps (Cao et al., 2020). 
In our work, we extend this methodology by introducing a new framework that includes preprocessing steps as 
dimensionality reduction techniques and edge-preserving techniques as step-by-step spatial information, which is 
considered preprocessing for HSI classification. Not only does it enable increased complexity during the training process, 
but it also delivers outstanding classification performance and keeps it sharp and unstabilized. In the smoothing/pruning 
process, edge-preserving filters preserve edge information. In other words, edge-preserving filters smooth the image 
while reducing edge blurring effects such as halos and so on. Moreover, they are non-linear in nature. Examples of edge-
preserving anti-aliasing filter techniques are WLS, JointWMF, FGS, BF, and SD. This optimization not only reduces 
complexity during training but also improves feature extraction by incorporating spatial neighborhoods with edge-
preserving filters. As a result, this family of filters is very useful in reducing image noise, which makes it highly sought 
after in computer vision and increases the quality and accuracy of classification. The five edge-preserving smoothing 
filter techniques:  

1. Weighted least square (WLS) 
2. JointWMF - Joint-Histogram Weighted Median Filter 
3. Fast global image smoother (FGS) 
4. Bilateral Filter (BF) 
5. Static/Dynamic (SD) 
The objective of the experiments was to evaluate the effectiveness of applying dimensionality reduction (DR) 

processes and edge-preserving filter techniques to enhance accuracy. The combination of both DR and these techniques 
was hypothesized to yield superior results compared to alternative approaches. Our approach involved employing 
image processing techniques using five smoothing-based filters. The study aims to achieve dimensionality reduction and 
eliminate noise from smooth and deformed images or textures while preserving sharp edges. Utilize image processing 
to enhance or manipulate images, striking a balance between preserving sharp edges and managing noise or texture. 
Additionally, we sought to investigate whether Markov Random Fields (MRF) improves the overall quality and relevance 
of the final product to the assigned task. Our method includes a comparison of processing times among various 
approaches, with a specific emphasis on computational efficiency. The primary focus is to compare the results of overall 
accuracy (OA), average accuracy (AA), and stratified accuracy of PCA and averaging (AVG) processes with the five filter 
techniques. Implementation times are also considered to analyze the impact of dimensionality reduction and edge-
preserving filtering on improving classification efficiency. 
 

2. Methodology 
 
A block diagram of the proposed active learning framework is given in Figure 1. CNN+AL method first chooses very small 
samples that are limited in number and reduces the dimension of bands by using either AVG or PCA with the five edge-
preserving filter techniques. In order to observe the effectiveness of the proposed framework, we used three datasets, 
namely, Indian Pines, Pavia University, and Salinas. In literature, edge-preserving filtering is considered a form of post-
processing (Wan & Chen 2023), but we use edge-preserving filtering as pre-processing. Its purpose is to reduce noise 
and smooth an image while preserving fine edges, details, and features. These filters are especially useful when you 
want to improve image quality by removing noise or reducing unwanted artifacts while maintaining the sharpness and 
clarity of the boundaries of objects, textures, and structures. The most well-known edge-preserving filters are: 

1. Weighted Least Square (WLS) Filter is a popular edge-preserving image smoother that is particularly useful for 
detail enhancement and HDR tone mapping. Nevertheless, it has a high computational cost and a limited ability 
to preserve edges (Yang et al. 2024). The WLS framework's current deep learning-based filters are primarily 
supervised learning-based. They raise productivity but not quality (Yang et al., 2024). 

2. Joint-Histogram Weighted Median (JointWMF) Filter is a filter technique that performs weighted median filtering 
on both the input image and its related histogram. It's useful for preserving image edges and structures. And 
eliminating outlier noise in data matrices, especially if a high percentage of the matrix points are contaminated 
with outlier noise (Kilik, 2021). 

3. Fast Global Image Smoother (FGS) Filter is an efficient edge-preserving smoothing method based on the WLS 
formulation called Fast Global Smoother. The linear system has an inhomogeneous Laplacian matrix (Min et al., 
2014). This technique is for smoothing images globally. It is a two-stage procedure that consists of a corrective 
step after the first smoothing run. 

4. Bilateral Filter (BF) By modifying the bilateral filter parameters, <text> provides flexibility in the fusion process. 
With the bilateral filter being a noniterative filter and an efficient implementation scheme being available, the 
fusion process is faster and computationally simple (Kotwal & Chaudhuri, 2010). It smooths an image while 
maintaining edges and small features by considering both spatial and intensity similarity. 
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5. Static/Dynamic (SD) Filtering combines responsive parameter adjustments based on changes in input with fixed 
parameters. Image processing frequently applies this technique to tasks such as feature extraction and noise 
reduction, aiming to utilize predefined knowledge while maintaining flexibility in response to a variety of input 
characteristics (Ham et al., 2015). 

Dimension reduction methods reduce the number of features by retaining the most informative bands and discarding 
redundant or less relevant ones. The specific number of bands retained after dimension reduction would depend on 
factors such as the chosen method, the variance, and the characteristics of the hyperspectral dataset. The number of 
bands used after dimension reduction may be determined through experimentation or predefined criteria to preserve 
sufficient information for classification while reducing computational complexity. After dimensionality reduction and 
edge-preserving filters, an active learning process is started that focuses on uncertainty samples, and according to the 
type of data that is being utilized, the number of training examples that are selected at random is determined. For 
instance, when working with Indian Pines data, the training set consists of only 2% of each class, while the remaining 
classes are used for testing. Following the training phase in the labeled set, assess all of the unlabeled set's pixels and 
actively choose the most ambiguous pixels using the Best-Versus-Second Best (BvSB) technique. If the sample's BvSB 
value is low during this phase, it indicates a confused pixel. After labeling, the algorithm adds these pixels to the labeled 
set and continues iterating until the predetermined number of iterations is reached. In this way, the AL process adds 
the most uncertain samples round and round until the number of iterations is reached. By giving priority to the samples 
that contain the most information for labeling, the AL process aims to successfully maximize learning efficiency. The 
max-pooling layer follows each convolutional layer, with 500 units in the first fully linked layer and K in the second. 
Because the training data is limited, the augmentation of data involves the application of translation, rotation, flipping, 
and cropping techniques. As a classifier, we used an eight-layered CNN architecture, which is proposed in (Cao et al., 
2020) the CNN network classifies HSI using an 8x8xD patch with 20 filters in the first convolutional layer and 20 filters 
in the second. In the last stage, MRF is applied similarly to rectify misclassification in the spatial domain (Cao et al., 
2020). For more details, step by step explanation of the algorithm is shared in the Algorithm 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Block diagram of the proposed framework including DR, EPF, CNN+AL, and MRF stages 

 
Algorithm I. Algorithm of the Proposed Framework 

 

Input: Number of training samples D, unlabeled pixel set U, maximum number of iterations R, number of pixels actively selected 
in each round B, flag of using MRF, edge-preserving filter type and its parameters, dimensionality reduction method. r is 
current iteration number. 

Initialization: initialize iteration number r as 0. 
Main Loop: 

        While r < R or terminating conditions which are not met: 
        1. Dimensionality Reduction: 

• Perform dimensionality reduction method to D and reduce the dimension to DimR. 
        2. Augmentation of the Dataset: 

• Create a new training set DA by augmenting D using DimR and D. 
        3. Edge-Preserving Filtering: 

• Apply an edge-preserving filter to the hyperspectral image data in D and U. This filter helps enhance image details, preserve 
sharp edges, and manage noise. You can choose filter parameters (e.g., bilateral filter, guided filter) to suit your needs. 

        4. CNN Training/Fine-Tuning: 
• Train from the stratch or fine-tune a CNN using DA. 
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        5. Definition of Uncertain Samples: 
• Use the trained CNN to estimate class probabilities for pixels in the unlabeled candidate pool U. 
• Actively choose the top B informative pixels from U based on class probabilities. 

        6. Extend Training Set: 
• Add patches corresponding to adding the chosen B pixels to the existing training set D, using it as the new training set for 

the following iteration. 
        7. Increment Round: 

• Increment r by 1. 
        8. MRF Utilization (Optional): 

    • If Use MRF is false, go to Labeled.  
End of Main Loop 
 

This approach is particularly advantageous when dealing with low sample numbers and diverse ranges, minimal memory 
usage, simplicity, rapid training durations, avoiding the dimensionality curse, and lowering the complexity of 
hyperspectral data. AVG and PCA play pivotal roles in simplifying the data representation, making it more manageable 
for subsequent analysis. Averaging helps reduce noise and smooth out variations, contributing to a cleaner dataset. 
PCA, on the other hand, identifies and retains the most significant features, discarding less relevant information. The 
integration of these techniques with edge-preserving filtering enhances model performance by emphasizing the 
essential dimensions of the data while eliminating less critical ones. When coupled these techniques (DR) with Edge-
Preserving Filtering, collectively contribute to an optimized and refined dataset, laying a robust foundation for 
subsequent classification. 

The advantages of employing such pre-processing techniques extend beyond improved model performance. They 
address practical challenges associated with hyperspectral data, ensuring efficient use of computational resources, and 
mitigating issues related to limited samples. As a result, this approach not only enhances classification accuracy but also 
offers practical benefits in terms of resource efficiency and effectiveness. The challenge of analyzing hyperspectral data 
stems from the dimensionality curse. As an initial step prior to classification, researchers conduct dimensionality 
reduction. AVG decreases dimensionality by simply averaging successive spectral bands. By averaging the band values, 
this approach reduces the overall number of spectral bands. AVG does a particularly good job of mitigating the influence 
of noisy or less distinct bands, which may be common in hyperspectral data (Thilagavathi et al., 2021). In this method 
the spectral bands are divided into a number of sequential groups after providing the low dimensionality of the data 
set. For example, when the number of bands is 200 and the reduced dimension is 10, the first group will have spectral 
band indices ranging from 1 to 20. Later, we implement the AVG technique for every group. To examine and reduce the 
dimensions of the data into a predetermined number of primary components, employed PCA on a 3D data set as the 
second technique in DR (Hu et al., 2020). PCA is a popular technique that aims to catch the most significant variations 
in data (Hu et al., 2020). Transforming the original spectral bands creates a new set of uncorrelated variables, effectively 
reducing the dimensionality of the data through PCA. The edge-preserving filters are an image processing technique 
that aim to reduce noise and smooth an image while preserving the sharpness of edges and fine details in the image. In 
other words, it is a filter designed to enhance image quality by removing noise or unwanted artifacts without blurring 
key features and boundaries present in the image. Additionally, edge preserving filtering approaches increase interclass 
variances whereas reduces the intra-class variances. This helps to decrease spectral variability in any class. Our 
comprehensive approach leverages the synergy between DR techniques for example PCA, and AVG and a suite of 
advanced edge-preserving filters. These filters, including the Weighted Least Squares (WLS) Filter, Joint Histogram 
Weighted Mean Filtering (JWMF) Filter, Fast Global Smoothing (FGS) Filter, Bilateral Filter, and Static/Dynamic (SD) 
Filter, play pivotal roles in improving the precision of classification. 

The major feature is that significant information and everything that is not necessary or the ineffectual bands are 
removed, noise is reduced, and hyperspectral images are smoothed while preserving the sharpness of the images. 
Additionally, it preserves fine details, which generally correspond to class borders in the hyperspectral image 
classification process. This algorithm is well suited for situations with a small amount of labeled data. Specifically, we 
use dimensionality reduction techniques such as PCA and AVG along with five different edge-preserving filter methods. 
In addition to these preprocessing operations, we improve classification performance by including Markov Random Field 
(MRF) post-processing methods. 
 

3. Experimental Results 
 
To show the effectiveness of the proposed method, three well-known datasets—Indian Pines, Pavia, and Salinas—were 
used in the hyperspectral image. We measured the effects of various stages from three different perspectives: i) 
dimensionality reduction techniques, ii) edge preserving filters, and iii) using post processing (MRF).  
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All different combinations are compared with the original CNN+AL method. In the dimensionality reduction phase, we 
used AVG, which reduces the number of bands by calculating the average value of the bands. Alternatively, we used 
PCA to remove all redundant or ineffective ranges. These last two methods are dimensionality reduction techniques 
utilized to improve the accuracy results and increase the efficiency of the classifier. During all experiments, we used the 
number of reduced bands as 10 for PCA and AVG methods. Additionally, in the edge-preserving filter phase, we 
considered different edge-preserving filters, including Weighted Least Squares (WLS), JointWMF, Fast Global Smoothing 
(FGS), Bilateral Filter (BF), and Static/Dynamic (SD). The study looks at several parameter configurations and scenarios 
to gauge the quality and accuracy of the classification. Tables display the method's efficiency on a range of data sets. 
This thorough study contributes to a deeper comprehension of the usefulness and adaptability of the suggested 
visualization technique in the context of hyperspectral imaging. Third, the use of MRF has proven to be a successful 
method to improve classification accuracy. Multiple rounds are conducted in the process, starting with the initial 
training dataset (D) and a collection of unlabeled pixel data (U). 
        To ensure a clear ablation study, we carefully assign names to the experimental groups. For example, if CNN-AL is 
used with PCA, in addition to using with MRF (w MRF) or without MRF (wo MRF) in addition to a specified bilateral 
edge-preserving filter (BF), the name will be “PCA+BL+CNN-AL w/ MRF." Concatenating the abbreviations of the 
methods in related combinations effectively highlights the experimental setting. To evaluate the proposed approach's 
effectiveness, we conducted multiple tests on three benchmark datasets sourced from different regions globally. We 
executed the method on a PC equipped with an NVIDIA GeForce RTX 3060 graphics card and 64 GB of memory, utilizing 
the MATLAB environment with the MatConvNet package. Assessed the results for each method, including dimension 
reduction and technique five filters. The following metrics are numerically compared in terms of: 
 

 Overall Accuracy (OA): It measures the general classification performance in %. 

 Average Accuracy (AA): It evaluates average of classwise accuracies in %. 

 Computation Time (s): Computation time of each method in second. 
Figure 2 depicts a detailed visual comparison of the five unique filtering approaches (WLS, JWMF Filter, FGS, BF, and 

SD) on three distinct datasets. The figure shows five images, each corresponding to a different filter technique, allowing 
for a thorough evaluation of their separate effects. There are noticeable variances in noise reduction, smoothing, 
distortion, and feature enhancement. The distinct differences highlight the importance of filter selection and parameter 
adjustment in determining the visual quality of hyperspectral images. All methods filter the band images and fuse the 
spatial information for the related band image. Preserving the edges and smoothing the homogenous region reduces 
the class variability and simply transforms the spectral signatures of any classes into more similar signatures. In general, 
SD and BF smooth the images more than the other methods. 

Note that hyperparameters about both active learning process and different edge preserving filters are shared in 
Table 1 and Table 2, respectively. More information can be found from the related references (Yang et al., 2024; Kilik, 
2021; Min et al., 2014; Kotwal & Chaudhuri, 2010; Ham et al., 2015). 
 

Table 1. Hyperparameters about active learning during different experiments 
 

 
 
 
 
 

Table 2. Hyperparameters about different EPF methods 
 

 
 
 
 
 
 
 

3.1 Indian Pines 
 
 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor captured the Indian Pines dataset over the Indian Pines 
test site in northwest Indiana. The dataset consists of a 145 by 145-pixel grid with 220 spectral reflectance bands ranging 
from 0.4 to 2.5 micrometers.  

Type Data Learning Rate Epochs Number Times Iteration Number of samples 

Indian Pines 0.002 300 5 15 

Pavia University 0.001 300 4 5 

Salinas 0.002 300 5 15 

Filter Type Parameter 1 & Its Value Parameter 2 & Its Value Parameter 3 & Its Value 

WLS Smoothness term, 1 
Degree of control over the 

affinities, 1.2 
- 

JointWMF Window radius, 10 Standard deviation of kernel, 50 Iteration, 1 

FGS Standard deviation, 0.005 Lambda, 100 - 

BF Window size, 5 Standard deviation, 3 - 

SD Static guadiance, 100 Dynamic guadiance, 400 Step, 3 
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The environment of Indian Pines has a complex blend of natural perennial flora, cultivated areas, constructed structures, 
transit infrastructure, and residential areas. Given the mismatch in sample numbers, 16 separate classes pose a unique 
categorization difficulty. We randomly pick 2% of the samples from each class for training and the rest part of the data 
is determined as test set. Note that these samples are only for the beginning stage of AL. For each iteration, actively 
selected 15 samples are added to the training set as is seen from Table 3. Due to randomness, we repeated the 
experiments for five rounds and the averages of the scores are shared during the experiments. The number of training 
and test samples are shared in Table 3. 
 

Dataset -1 : Indian Pines  

 
   

 

Dataset -2: Pavia University 

     
Dataset -3: Salinas 

     
(a) WLS (b) JWMF (c) FGS (d) Bilateral (e) SD 

 

Figure 2. The images show the effect of the filter techniques on the Data Sets with Five filter techniques 
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Table 3. Number of test and train samples (2%) in Indian Pines (IP) dataset 
 

No Classes Train Test Total Samples 

1 Alfalfa 1 45 46 

2 Corn-notill 29 1399 1428 

3 Corn-mintill 17 813 830 

4 Corn 5 232 237 

5 Grass-pasture 10 473 483 

6 Grass-trees 15 715 730 

7 Grass-pasture-mowed 1 27 28 

8 Hay-windrowed 10 468 478 

9 Oats 1 19 20 

10 Soybean-notill 20 952 972 

11 Soybean-mintill 50 2405 2455 

12 Soybean-clean 12 581 593 

13 Wheat 4 201 205 

14 Woods 26 1239 1265 

15 Buildings-Grass-Trees 8 378 386 

16 Stone-Steel-Towers 2 91 93 

Total 211 10038 10249 

 
The initial training round has 300 epochs, and future rounds have the same length. The selection of 15 samples aids 
each round for training. Our system is based on a comprehensive pipeline that includes dimensionality reduction 
techniques as well as edge-preserving filter techniques. In Table 4, we shared the classification accuracy and 
computation times of the methods using with and without MRF and different edge-preserving filters (WLS, JWMF, FGS, 
BF, and SD). We also give the results of the original CNN+AL method in the first row. Note that this table does not include 
any dimension reduction algorithm to measure the effect of edge-preserving filters. It is seen that applying edge-
preserving filters generally result in higher overall accuracy than the original version. However, WLS gives lower AA 
values than the original one when MRF is active. FGS, BF, and SD filters achieved a higher than AA score of 95% both 
with and without MRF versions. The highest accuracy was measured for SD+CNN+AL, with scores of OA 99.00% and AA 
98.62%. Table 5 includes the AVG dimensionality reduction method, while Table 6 includes the PCA dimensionality 
reduction method. Here, it is seen that using dimensionality reduction has a significant impact. AVG and PCA methods 
use the five-filter technique, and the effect of this combination is noticeably clear on the classification results, which 
are measured numerically by overall accuracy (OA), average accuracy (AA), and execution or computation time. Thus, 
all the filters exceeded the original CNN+AL performance, and SD is the best technique that gives a high accuracy result 
in these three tables, as AVG+CNN+AL and PCA+CNN+AL obtain OA scores of 99.03 and 99.02, respectively. 
 

Table 4. Classification performances (%) and computation times of the methods without DR for IP 
 

 
Classes 

 

CNN+AL CNN+AL+ WLS Filter 
CNN+AL+ JWMF 

Filter 
CNN+AL + FGS Filter 

CNN+AL + Bilateral 
Filter 

CNN+AL + SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

Alfalfa 97.43 93.69 98.34 92.37 97.55 90.55 97.67 97.16 97.65 81.34 97.67 85.41 

Corn-notill 98.15 81.03 98.27 87.08 98.13 82.45 98.11 96.97 98.35 98.61 98.47 95.03 

Corn-mintill 99.56 93.83 100.00 71.62 100.00 67.70 100.00 100.00 100.00 92.73 100.00 96.33 

Corn 98.14 92.36 98.55 93.61 96.88 93.37 96.88 100.00 96.88 97.09 97.48 96.86 

Grass-pasture 99.04 97.93 98.90 96.70 99.31 97.79 99.31 99.17 99.31 99.72 99.31 99.45 

Grasstrees 100.00 98.05 100.00 99.16 100.00 97.89 96.88 100.00 100.00 97.22 100.00 99.79 

Grass-pasture-mowed 97.86 88.42 98.19 87.06 98.69 85.56 98.81 98.05 98.72 98.07 98.81 97.07 

Hay-windrowed 97.61 94.52 99.38 92.09 99.58 92.12 99.53 97.61 99.57 96.30 99.58 95.36 

Oats 96.47 92.06 98.65 90.88 99.14 85.88 98.80 96.58 98.81 96.08 98.80 95.38 

Soybean-notill 99.52 99.52 100.00 94.20 100.00 96.17 100.00 99.51 100.00 99.52 100.00 99.02 

Soybean-mintill 99.60 99.44 99.84 99.04 100.00 99.04 100.00 99.60 100.00 99.68 100.00 99.60 

Soybean-clean 98.65 79.45 100.00 70.03 100.00 74.05 100.00 99.16 100.00 96.91 100.00 97.73 

Wheat 81.72 80.65 85.87 98.91 87.64 93.55 91.11 82.22 90.00 88.89 89.89 91.01 

Woods 96.00 67.31 98.08 73.08 98.00 73.08 97.96 93.88 97.96 89.80 97.78 88.89 

Buildings-Grass-Trees 76.00 92.00 73.08 0.00 100.00 0.00 100.00 78.26 100.00 36.00 100.00 64.00 

Stone-Steel-Towers 89.47 91.99 60.00 20.00 100.00 36.84 100.00 100.00 100.00 100.00 100.00 89.47 

Overall Accuracy (OA) 95.33 92.70 98.78 91.17 98.92 90.19 98.94 97.93 98.95 95.11 99.00 95.26 

Average Accuracy (AA) 95.00 90.15 94.20 89.11 98.43 89.13 98.64 96.02 98.58 91.75 98.61 93.15 

Computation Time (s) 252.54 166.64 196.22 194.63 195.37 189.10 192.78 189.27 202.66 200.03 210.95 202.98 
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Table 5. Classification performances (%) and computation times of the methods with averaging for IP 
 

 
Classes 

 

CNN+AL + AVG 
CNN+AL + AVG+WLS 

Filter 
CNN+AL + 

AVG+JWMF Filter 
CNN+AL + AVG+FGS 

Filter 
CNN+AL + AVG+ 
Bilateral Filter 

CNN+AL + AVG+SD 
Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

Alfalfa 97.64 97.42 97.64 96.35 97.20 92.33 97.71 97.57 97.62 85.58 97.42 87.08 

Corn-notill 98.64 97.40 98.64 97.27 93.18 92.44 98.64 97.29 98.64 98.27 98.64 94.20 

Corn-mintill 100.00 100.00 100.00 99.56 100.00 97.3 100.00 100.00 100.00 93.01 100.00 95.61 

Corn 98.97 98.14 98.76 98.35 91.30 98.14 99.18 98.14 98.96 97.72 98.76 96.4 

Grass-pasture 99.32 99.04 99.31 99.31 99.72 99.31 99.45 99.03 99.4 99.72 99.31 99.45 

Grasstrees 100.00 100.00 100.00 100.00 100.00 99.79 100.00 100.00 100.00 97.06 100.00 99.79 

Grass-pasture-mowed 98.41 97.99 98.40 98.61 98.72 97.86 98.49 97.96 98.61 98.40 98.40 97.65 

Hay-windrowed 99.25 98.13 99.58 98.87 99.62 94.69 99.25 97.74 99.54 94.64 99.75 93.38 

Oats 98.83 96.33 99.15 96.11 98.31 95.28 98.82 96.64 98.65 95.79 98.89 95.44 

Soybean-notill 100.00 99.03 100.00 99.03 100.00 99.52 100.00 99.03 100.00 99.52 100.00 99.04 

Soybean-mintill 100.00 99.68 100.00 99.60 100.00 99.68 100.00 99.60 100.00 99.44 100.00 99.12 

Soybean-clean 100.00 98.65 100.00 97.55 100.00 99.46 100.00 98.65 100.00 97.30 100.00 98.64 

Wheat 88.17 81.74 89.01 83.52 89.25 73.12 88.17 81.72 88.17 87.10 89.01 86.81 

Woods 98.11 98.11 98.08 98.08 96.00 90.00 98.04 96.08 98.00 86.00 98.04 90.20 

Buildings-Grasstrees 75.00 83.33 73.08 76.92 100.00 66.67 72.00 76.00 73.08 38.46 100.00 61.54 

Stone-Steel-Towers 100.00 95.00 100.00 100.00 100.00 100.00 100.00 90.00 100.00 100.00 100.00 90.00 

Overall Accuracy (OA) 98.09 96.25 98.98 98.13 98.20 95.93 98.92 97.97 98.97 95.25 99.03 94.90 

Average Accuracy (AA) 96.25 94.21 96.98 96.20 97.71 93.48 96.86 95.34 96.92 91.75 98.64 92.78 

Computation Time (s) 165.46 161.04 179.53 114.52 188.95 152.53 204.74 189.99 205.78 190.46 202.78 190.47 

       

Table 6. Classification performances (%) and computation times of the methods with PCA for IP 
 

 
Classes 

 

CNN+AL + PCA 
CNN+AL + 

PCA+WLS Filter 
CNN+AL + PCA+JWMF 

Filter 
CNN+AL + PCA+FGS 

Filter 
CNN+AL + PCA+ 
Bilateral Filter 

CNN+AL + PCA+SD 
Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Withou
t 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

Alfalfa 97.43 93.36 97.64 96.49 97.64 92.05 97.63 97.35 97.63 85.40 97.63 89.81 

Corn-notill 98.15 83.50 98.15 98.03 98.27 91.46 98.15 97.65 98.15 98.02 98.15 94.31 

Corn-mintill 99.56 77.33 100.00 99.13 100.00 97.39 100.00 100.00 100.00 93.39 100.00 96.51 

Corn 98.14 93.35 96.89 98.34 96.90 98.35 96.90 98.14 96.90 97.52 97.70 97.08 

Grass-pasture 99.04 96.28 99.31 99.45 99.31 99.31 99.31 99.17 99.31 99.7 99.31 99.45 

Grasstrees 100.00 98.95 100.00 100.00 100.00 99.58 100.00 100.00 100.00 97.27 100.00 100.00 

Grass-pasture-mowed 97.86 84.53 98.71 98.29 98.72 97.87 98.71 97.96 98.72 98.40 98.72 97.54 

Hay-windrowed 97.61 91.41 99.54 98.58 99.54 94.93 99.54 97.49 99.58 94.78 99.54 92.47 

Oats 96.47 89.04 98.82 95.78 98.82 94.94 98.82 96.63 98.82 95.79 98.82 94.60 

Soybean-notill 99.52 94.23 100.00 99.04 100.00 994.94 100.00 100.00 100.00 99.52 100.00 99.04 

Soybean-mintill 99.60 98.81 100.00 99.52 100.0 99.52% 100.00 99.68 100.00 99.44 100.00 98.96 

Soybean-clean 98.65 74.86 100.00 97.83 100.00 98.65% 100.00 98.64 100.00 97.57 100.00 98.92 

Wheat 81.72 96.74 89.13 83.70 88.17 73.12 88.17 81.72 88.17 88.17 90.04 85.87 

Woods 96.00 74.51 98.00 98.00 98.04 96.08 98.04 98.04 98.00 86.00 97.96 87.76 

Buildings-Grass-Trees 76.00 0.00 100.00 76.00 100.00 69.23 100.00 76.92 100.00 38.46 100.00 73.08 

Stone-Steel-Towers 89.47 26.32 100.00 95.00 100.00 100.00 100.00 95.00 100.00 100.00 100.00 90.00 

Overall Accuracy (OA) 97.97 90.72 98.92 98.08 98.92 95.82 98.91 95.90 98.92 93.29 99.02 95.07 

Average Accuracy (AA) 95.33 88.91 98.51 95.82 98.46 93.84 98.46 94.83 98.46 91.84 98.62 93.46 

Computation Time (s) 151.76 144.40 179.46 177.59 193.35 192.70 190.77 189.96 199.90 198.57 203.90 200.02 

 
Note that, among all the results, the accuracy percentages show how well different techniques can classify several types 
of land cover. For example, some categories, such as "grass trees" and “soybeans,” achieved close to 100% accuracy, 
while others, such as "wheat" and “buildings, grass, and trees,” were less accurate, which showed a variance in data 
classification performance. But in general, we conclude that the best result and the shortest time were obtained using 
the technique (CNN + AL + AVG + SD w/ MRF), where (OA = 99.03, AA = 98.64). In general, using dimensionality reduction 
methods not only increases performance but also decreases computation time. 
 

3.2 Pavia University 
 
A popular hyperspectral remote sensing dataset for image analysis and classification applications is the University of 
Pavia dataset. The Imaging Spectrometer with Reflective Optics System, an aerial hyperspectral sensor, gathers the 
dataset over the Pavia campus of the University of Pavia. As Table 6 illustrates, the Pavia dataset has nine distinct 
classifications. Its dimensions are 610 pixels wide by 340 pixels high, with 103 spectral bands. Consequently, it is a 3D 
data cube. These data provide a number of difficulties arising from the high dimensionality of hyperspectral data.  
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As shown in Table 7, select 1% of the samples from each class. The training runs consist of 300 epochs repeated five 
times, and we effectively select five samples as configured for the training set. 
 

Table 7. Number of test and train samples (1%) in Pavia University (PU) dataset 
 

No Classes Train Test Total Samples 

1 Asphalt 67 6564 6631 

2 Meadows 187 18462 18649 

3 Gravel 21 2078 2099 

4 Trees 31 3033 3064 

5 Painted metal sheets 14 1331 1345 

6 Bare Soil 51 4987 5029 

7 Bitumen 14 1316 1330 

8 Self-Blocking Bricks 37 3645 3682 

9 Shadows 10 947 947 

Total 432 42344 42776 

 
     Table 8, Table 9, and Table 10 show the experimental results of the five filtering techniques, with the same order of 
Indian Pines results. When the dimensionality reduction method is not used in the framework, applying an edge-
preserving filter generally increases overall accuracy, and average accuracy scores for MRF preprocessing are active. 
Using MRF as a postprocess always provides better accuracy because it adapts spatial relationships. Note the accuracy 
results through the OA and AA values of SD filter for all three tables, where the results appeared as follows: OA scores 
of 94.99, 98.00, and 97.00 and AA scores of 92.25, 92.54, and 91.38 in Table 8, Table 9, and Table 10, respectively. 
Despite these outcomes, certain classes—such as Self-Blocking bricks—give lower individual results than the remaining 
classes for the Pavia University data. 
      According to the results, CNN+AL+AVG+SD Filter w/ MRF technique produced the highest accuracies in terms of 
classification accuracy, with an OA value of 98.00 and an AA value of 92.54, which is significantly higher than the original 
CNN+AL method. On the other hand, SD filter has the highest computational complexity at all. In general, we can see 
that each edge-preserving filtering strategy can assist increase efficiency and achieve great classification, even with the 
difficulties brought on by the large dimensionality of the hyperspectral data in the Pavia University dataset.  
     CNN+AL obtains accuracy of “self-blocking bricks” class as 39.56 and 40.24 by applying with and without MRF, 
respectively. Here, in some DR and EPF combinations such as CNN+AL+AVG+WLS, the relevant classwise accuracy 
reached to more than 90%. This case is generally seen when AVG and any EPF method is combined. Additionally, AVG 
achieves the best results compared to PCA and standard results. 
 

Table 8. Classification performances (%) and computation times of the methods without DR for PU 
 

 
Classes 

 

CNN+AL 
CNN+AL+ WLS 

Filter 
CNN+AL+ JWMF 

Filter 
CNN+AL + FGS Filter 

CNN+AL + Bilateral 
Filter 

CNN+AL + SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

Asphalt 99.26 96.63 99.32 91.78 99.36 80.22 99.36 94.61 99.39 67.01 99.92 52.37 

Meadows 94.70 91.28 95.03 99.83 95.17 98.07 94.73 94.71 94.95 98.14 95.12 98.51 

Gravel 99.76 98.52 99.96 86.08 99.76 99.67 99.78 96.64 99.78 99.71 99.76 99.87 

Trees 97.22 98.01 98.90 85.95 99.04 89.95 97.92 97.29 97.22 84.31 98.01 73.94 

Painted metal sheets 99.93 99.93 99.98 99.03 99.93 99.85 99.93 98.21 99.94 99.93 100.00 99.33 

Bare Soil 100.0 96.95 100.00 81.58 100.00 94.92 100.00 91.96 100.00 96.70 100.00 96.16 

Bitumen 97.52 96.46 98.03 94.73 97.63 96.84 97.59 96.73 98.13 96.70 98.03 74.72 

Self-Blocking Bricks 39.56 40.24 42.20 37.88 44.07 40.15 42.66 40.13 41.99 26.11 40.62 23.98 

Shadows 98.84 99.26 99.24 98.31 99.24 97.67 98.85 97.36 98.93 96.73 98.83 65.20 

Overall Accuracy (OA) 92.06 90.81 93.29 90.00 94.02 89.26 94.22 90.13 94.10 86.24 94.99 83.30 

Average Accuracy (AA) 91.86 89.83 92.52 88.35 92.69 88.59 92.31 89.74 92.26 85.04 92.25 76.01 

Computation Time (s) 398.3 371.09 420.03 410.22 498.46 436.25 419.33 400.91 5817 522.80 573.13 514.97 
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Table 9. Classification performances (%) and computation times of the methods with averaging for PU 
 

 

 
Table 10. Classification performances (%) and computation times of the methods with PCA for PU 

 

 
Classes 

 

CNN+AL + PCA 
CNN+AL + 

PCA+WLS Filter 

CNN+AL + 
PCA+JWMF Filter 

CNN+AL + 
PCA+FGS Filter 

CNN+AL + PCA+ 
Bilateral Filter 

CNN+AL + 
PCA+SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

With 
out 

MRF 

Asphalt 99.26 85.35 96.32 79.50 97.24 81.27 98.73 84.01 98.73 80.31 98.26 80.32 

Meadows 97.58 96.51 99.46 98.90 99.39 98.42 99.07 97.93 99.07 98.27 99.62 99.31 

Gravel 99.62 33.35 53.46 48.44 72.71 90.27 72.38 84.98 72.33 71.98 80.88 73.61 

Trees 97.88 91.30 88.99 91.35 89.66 89.06 93.24 91.18 93.24 85.78 94.78 87.54 

Painted metal sheets 99.78 95.09 100.0 99.85 100.00 97.83 99.85 99.03 99.85 98.30 99.32 97.94 

Bare Soil 96.32 87.57 93.57 71.98 95.30 91.94 99.12 94.29 99.12 88.09 99.69 88.41 

Bitumen 96.68 76.02 89.15 47.35 92.81 58.14 94.80 63.36 94.80 60.39 94.81 69.44 

Self-Blocking Bricks 43.88 78.63 93.95 66.03 78.52 48.11 92.08 60.79 91.99 82.99 92.06 82.59 

Shadows 97.99 40.49 98.84 99.26 98.62 97.57 62.22 97.57 62.16 98.96 62.99 98.62 

Overall Accuracy (OA) 93.24 86.80 94.48 85.42 95.57 88.31 95.77 89.98 95.76 90.10 97.00 90.69 

Average Accuracy (AA) 92.10 76.03 90.41 78.07 91.58 83.63 90.17 85.90 90.14 85.01 91.38 86.42 

Computation Time (s) 350.73 319.99 429.9 410.2 403.25 382.24 375.74 331.96 487.17 441.96. 355.72 340.0 

 

3.3 Salinas 

 
224-band AVIRIS sensor was used to obtain this high-spatial-resolution (3.7-meter) picture over the Californian Salinas 
Valley. The covered region consists of 512 lines, with 217 samples distributed among them. In a similar manner to Indian 
Pines, the twenty water-absorbing bands were discarded. For this image, only at-sensor radiance measurements were 
available. Vegetable fields, wine farms, and arid soils are all part of it. The training and testing experiments are 
performed on Salinas data similar to that in Indian data, with the same scenario in the last data mention set where 2% 
of samples are selected from each class and with the same training rounds and size, so they are identical to those in 
Indian data in mechanism. Table 11 exhibits the total volume of training and test samples for every class. The Salinas 
dataset is distinct from others in its rich spectral information and large dimensions. 

The results of the Salinas dataset are shared in Tables 12, 13, and 14 in the same order as the previous experiments. 
Similar to the previous experiment outputs, using edge-preserving filters increases the effectiveness of the active 
learning method. When both DRs are coupled with edge-preserving filters, the methods obtain at least an OA score of 
98%, which is at least 3% higher than the original CNN+AL. The best result found in Table 10 is CNN + AL + SD w/MRF 
with an OA score of 97.16 and an AA score of 97.16. The best results found in AVG and PCA are obtained in CNN+AL + 
FGS w/MRF with OA scores of 98.06 and 99.33, respectively. It is evident that the best dimensionality reduction 
technique can vary depending on the dataset. Therefore, classification increases its efficiency in several ways and 
techniques, including filtering techniques that remove noise or texture from the data while preserving sharp edges, thus 
improving performance. 

 
 
 
 

 
Classes 

 

CNN+AL + AVG 
CNN+AL + 

AVG+WLS Filter 

CNN+AL + 
AVG+JWMF Filter 

CNN+AL + AVG+FGS 
Filter 

CNN+AL + AVG+ 
Bilateral Filter 

CNN+AL + 
AVG+SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

Withou
t 

MRF 

With 
MRF 

Withou
t 

MRF 

Asphalt 98.73 86.65 98.98 81.27 98.97 83.02 99.30 87.41 98.73 86.03 99.27 94.69 

Meadows 99.07 95.31 99.59 98.42 100.00 98.39 99.99 98.33 99.08 97.86 99.98 98.54 

Gravel 72.32 68.31 75.21 90.27 80.87 82.64 81.12 85.54 79.24 81.06 80.02 72.84 

Trees 93.24 68.93 94.12 89.06 95.02 89.78 94.73 89.19 95.22 91.31 94.60 93.45 

Painted metal sheets 99.85 98.88 100.00 97.83 99.99 97.46 100.00 96.79 100.00 98.29 99.99 99.78 

Bare Soil 99.12 78.57 99.98 91.94 99.98 92.56 99.12 94.71 99.99 96.71 100.0 87.83 

Bitumen 94.80 53.54 95.07 58.14 97.21 83.79 95.99 78.58 95.15 84.05 95.90 58.30 

Self-Blocking Bricks 92.00 66.65 93.08 48.11 94.52 70.84 93.21 70.75 93.89 81.07 93.03 88.57 

Shadows 62.16 65.22 63.02 97.57 64.96 96.61 66.99 98.31 70.01 97.78 70.10 97.67 

Overall Accuracy (OA) 95.76 84.47 96.86 88.31 97.13 91.03 97.99 91.89 97.10 92.73 98.00 92.97 

Average Accuracy (AA) 90.14 75.78 91.01 83.63 92.39 88.34 92.27 88.85 92.37 90.46 92.54 87.96 

Computation Time (s) 356.7 332.8 411.23 395.26 410.81 411.01 402.28 395.92 458.83 458.83 536.6 509.26 
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Table 11. Number of test and train samples (2%) in Salinas (SA) dataset 
 

No Classes Train Test Total Samples 

1 Brocoli green weeds 1 41 1968 2009 

2 Brocoli green weeds 2 38 3688 3726 

3 Fallow 40 1936 1976 

4 Fallow rough plow 28 1366 1394 

5 Fallow smooth 54 2624 2678 

6 Stubble 80 3879 3959 

7 Celery 72 3507 3579 

8 Grapes untrained 226 11045 11271 

9 Soil vinyard develop 125 6078 6203 

10 Corn senesced green weeds 66 3212 3278 

11 Lettuce romaine 4wk 22 1046 1068 

12 Lettuce romaine 5wk 39 188 1927 

13 Lettuce romaine 6wk 19 897 916 

14 Lettuce romaine 7wk 22 1048 1070 

15 Vinyard untrained 146 7122 7268 

16 Vinyard vertical trellis 37 1770 1807 

Total 1055 53074 54129 

 
In contrast, applying edge preservation filters to HSI with many spectral bands is computationally intensive, especially 
in scenarios where maintaining fine details is critical. This processing requires algorithms for each band or layer of the 
spectrum. This data is often processed individually, resulting in a significant increase in processing time compared to 
alternative methods. For example, in the Indian data set, CNN+AL + AVG took 165.46 seconds while CNN+AL + AVG + 
WLS took 179.53 seconds. So, the balance between computational complexity and the need to maintain an accurate 
edge remains a challenge in processing spatial spectrum images. 

In Salinas dataset, selection of different EPF types does not generally affect on the accuracies compared to Indian 
Pines and Pavia University datasets. For example, when AVG is used as DR method with MRF, all EPF methods perform 
nearly 98% score of OAs and AAs which are at least 2% higher than CNN+AL method. However, in without MRF versions, 
WLS gets the lowest accuracies among these five EPF methods. This shows that MRF is a promising technique and 
needed to be applied as a post processing step. 
 

Table 12. Classification performances (%) and computation times of the methods without DR for SA 
 

 
Classes 

 

CNN+AL 
CNN+AL+ WLS 

Filter 
CNN+AL+ JWMF 

Filter 
CNN+AL + FGS 

Filter 
CNN+AL + Bilateral 

Filter 
CNN+AL + SD 

Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Withou
t 

MRF 

Brocoli green weeds 1 99.33 98.82 100.0 98.48 100.0 100.0 100.0 99.95 100.00 98.83 100.0 100.00 

Brocoli green weeds 2 99.50 99.75 100.0 99.81 100.0 99.89 100.0 99.89 100.00 99.53 100.0 99.78 

Fallow 87.19 86.45 89.09 87.13 86.42 86.50 89.24 93.39 89.82 88.94 90.11 91.78 

Fallow rough plow 93.48 93.26 93.48 93.78 94.24 96.19 94.10 94.65 94.21 92.83 94.42 75.39 

Fallow smooth 99.37 99.14 99.96 99.81 99.96 99.85 99.96 99.43 99.96 99.69 99.96 99.81 

Stubble 98.39 97.99 100.0 99.92 100.0 99.92 100.0 99.95 100.00 99.92 100.0 99.87 

Celery 98.21 97.27 99.37 98.20 99.32 98.54 99.37 98.06 99.37 97.38 99.37 98.46 

Grapes untrained 91.77 83.75 92.13 82.56 94.04 76.04 91.45 75.98 92.05 76.42 91.97 73.90 

Soil vinyard develop 98.19 99.67 99.79 98.92 99.79 99.77 99.79 99.75 99.79 99.77 99.77 99.77 

Corn senesced green 
weeds 

96.47 95.20 96.69 95.01 96.66 94.11 96.67 95.08 97.12 94.27 97.23 94.60 

Lettuce romaine 4wk 98.22 96.92 100.0 98.18 100.0 98.09 100.0 98.18 100.00 97.80 100.0 96.65 

Lettuce romaine 5wk 99.25 98.09 99.95 98.25 100.0 98.09 99.95 97.99 99.95 97.82 100.0 97.67 

Lettuce romaine 6wk 97.61 97.77 97.97 97.77 97.66 97.77 98.37 97.66 98.37 98.33 97.66 98.11 

Lettuce romaine 7wk 96.66 96.61 98.38 95.04 98.38 97.33 98.37 97.23 98.37 98.38 98.38 96.47 

Vinyard untrained 84.29 77.29 87.86 80.38 85.20 91.84 88.18 88.33 88.18 93.33 87.02 93.05 

Vinyard vertical trellis 98.02 96.32 98.59 95.81 98.59 96.15 98.47 96.21 98.53 98.02 98.47 96.78 

Overall Accuracy (OA) 95.56 92.58 97.04 93.59 96.50 93.11 97.02 93.24 97.02 94.01 97.16 92.86 

Average Accuracy (AA) 96.00 94.65 97.08 94.94 96.89 95.63 97.12 95.73 97.23 95.70 97.16 94.51 

Computation Time (s) 869.0 869.07 1001.1 987.57 1000 971.1 959.2 935.23 1045.70 1000.11 1089.6 1023.56 
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Table 13. Classification performances (%) and computation times of the methods with averaging for SA 
 

 
Classes 

 

CNN+AL + AVG 
CNN+AL + 

AVG+WLS Filter 
CNN+AL + 

AVG+JWMF Filter 
CNN+AL + 

AVG+FGS Filter 

CNN+AL + 
AVG+ Bilateral 

Filter 

CNN+AL + 
AVG+SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With 
out 

MRF 

Brocoli green weeds 1 100.00 100.00 100.0 98.20 100.00 97.76 100.00 99.75 100.0 99.95 100.0 99.75 

Brocoli green weeds 2 99.88 99.72 100.0 99.97 100.00 99.41 100.00 99.92 100.0 99.52 100.0 96.23 

Fallow 100.00 99.95 99.54 99.90 99.64 100.00 99.56 99.80 99.54 100.0 99.54 100.00 

Fallow rough plow 99.86 98.99 99.64 83.61 99.55 93.52 99.64 99.86 99.64 99.07 99.64 97.26 

Fallow smooth 98.66 97.46 98.65 100.0 98.55 99.96 98.65 99.25 98.65 98.99 98.65 99.59 

Stubble 99.95 98.99 99.99 98.65 99.30 98.66 99.21 98.66 99.19 98.53 99.19 98.45 

Celery 98.68 98.15 99.78 92.61 99.78 98.26 99.98 99.56 99.78 98.91 99.78 96.64 

Grapes untrained 94.95 88.12 96.82 68.11 95.93 84.88 96.84 91.48 96.33 85.01 95.81 37.17 

Soil vinyard develop 99.80 99.45 99.79 99.79 99.79 99.68 99.80 99.79 99.79 99.79 99.79 99.79 

Corn senesced green 
weeds 

89.63 83.11 98.50 85.11 98.53 95.41 98.72 95.36 98.50 93.82 98.53 94.00 

Lettuce romaine 4wk 94.26 89.44 98.11 2.17 98.72 90.57 98.13 94.73 98.11 95.39 98.11 65.82 

Lettuce romaine 5wk 95.86 90.92 97.81 97.65 97.71 96.78 97.71 97.24 97.76 94.44 97.71 94.99 

Lettuce romaine 6wk 96.68 93.47 96.61 98.14 96.61 97.59 96.60 96.38 97.20 97.59 96.60 97.26 

Lettuce romaine 7wk 97.28 95.50 97.38 97.85 97.38 90.63 97.47 97.66 97.38 96.25 97.38 92.96 

Vinyard untrained 89.92 78.00 87.48 96.46 88.39 97.90 88.36 84.51 88.40 93.03 89.32 97.10 

Vinyard vertical trellis 99.06 97.39 98.23 98.28 98.28 94.23 98.23 93.95 98.23 95.34 98.22 95.11 

Overall Accuracy (OA) 97.06 94.28 98.01 88.34 98.01 95.82 98.05 96.53 98.01 95.39 98.00 91.21 

Average Accuracy (AA) 97.15 94.29 98.02 88.53 98.01 95.95 98.06 96.74 98.03 96.60 98.02 91.38 

Computation Time (s) 859.63 853.10 885.6 870.0 934.59 984.26 842.73 803.2 848.5 827.2 840.1 823.95 

 
Table 14. Classification performances (%) and computation times of the methods with PCA for SA 

 

 
Classes 

 

CNN+AL + PCA 
CNN+AL + 

PCA+WLS Filter 
CNN+AL + 

PCA+JWMF Filter 
CNN+AL + PCA+FGS 

Filter 
CNN+AL + PCA+ 
Bilateral Filter 

CNN+AL + 
PCA+SD Filter 

With 
MRF 

With 
out 

MRF 

With 
MRF 

Witho
ut 

MRF 

With 
MRF 

Without 
MRF 

With 
MRF 

With 
out 

MRF 

With 
MRF 

With
out 

MRF 

With 
MRF 

With 
out 

MRF 

Brocoli green weeds 1 100.00 99.65 100.0 100.00 100.00 99.25 100.00 100.0 100.0 100.0 100.0 100.0 

Brocoli green weeds 2 98.81 99.87 100.0 99.97 100.00 99.46 100.00 100.0 100.0 99.89 100.0 99.78 

Fallow 99.23 100.00 100.0 100.00 100.00 100.00 100.00 99.95 100.0 100.0 100.0 100.0 

Fallow rough plow 98.16 98.16 99.35 80.61 99.42 92.41 99.35 99.35 99.35 99.06 99.35 96.39 

Fallow smooth 98.25 98.34 99.17 100.00 99.32 97.30 99.40 99.47 99.36 99.25 99.32 99.29 

Stubble 98.24 98.13 100.0 100.00 100.00 99.21 100.00 100.0 100.0 99.97 100.0 99.87 

Celery 98.97 98.51 99.97 99.78 99.97 99.44 100.00 99.75 100.0 100.0 99.97 99.83 

Grapes untrained 98.78 96.98 98.77 84.31 99.99 92.41 99.52 94.79 99.78 93.19 99.88 89.72 

Soil vinyard develop 99.32 98.84 99.79 99.79 99.79 99.79 99.81 99.77 99.79 99.77 99.81 99.77 

Corn senesced green 
weeds 

99.71 98.44 99.79 99.88 99.66 99.26 99.69 99.17 99.66 99.14 99.69 99.23 

Lettuce romaine 4wk 100.00 99.71 100.0 7.99 100.00 89.55 100.00 99.62 100.0 99.81 100.0 95.36 

Lettuce romaine 5wk 98.12 98.59 99.95 99.63 99.53 97.70 99.63 99.84 99.53 99.48 99.58 99.37 

Lettuce romaine 6wk 98.70 96.60 100.0 99.12 99.89 99.23 100.00 99.01 100.0 99.67 100.0 99.23 

Lettuce romaine 7wk 98.81 95.21 99.91 98.87 100.00 96.05 99.91 96.32 99.91 98.59 99.91 99.15 

Vinyard untrained 84.02 68.51 97.91 99.65 83.00 96.90 93.75 93.52 89.36 95.03 86.65 97.23 

Vinyard vertical trellis 98.10 97.66 98.89 99.50 98.89 99.56 98.89 97.89 98.89 99.05 98.94 98.55 

Overall Accuracy (OA) 97.47 96.41 99.33 94.27 98.09 97.05 98.92 97.74 98.32 97.68 98.04 97.06 

Average Accuracy (AA) 97.95 96.45 99.59 91.82 98.72 97.34 99.37 98.65 99.10 98.87 98.94 98.30 

Computation Time (s) 854.07 849.23 968.0 952.00 882.62 825.99 864.70 821.3 817.2 799.8 933.6 903.4 

 
In summary, the experiments show the effectiveness of pre-processing techniques when applied to the data set, 

achieving superior performance in classifying hyperspectral images, and one of the best techniques that contributed 
effectively was the static/dynamic filter technique, which had the highest score in most of the data results. 
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4. Conclusion 
 
Hyperspectral image classification performance is essential, for applications such as agriculture, geological research, 
and environmental monitoring, improving. In the past ten years, active learning frameworks have gained a lot of 
popularity as a way to overcome the difficulties associated with limited labeled samples. CNN+AL has proven to be 
effective in this particular field among these methods. However, CNN+AL does not preprocess the HSI spectral 
signatures. In our paper, we proposed using preprocessing techniques, such as different dimensionality reduction 
techniques and edge-preserving filters, to improve the CNN+AL method. Dimensionality reduction methods help 
prevent dimensionality and remove redundant and unnecessary information from the data. In this context, 
dimensionality reduction aids in preventing data duplication, extracting useful features, and reducing resources and 
training time. While edge-preserving filters aim to reduce noise and smooth the image while preserving the clarity of 
HSI class boundaries and their information, they also support high classification performances.  
      We performed different combinations of DR and EPF methods on the three reference datasets used in the 
methodology: Indian Pines, University of Pavia, and Salinas. Each of these datasets represents a different scenario and 
set of distinct characteristics. The framework uses five distinct edge-preserving filters while employing PCA and AVG as 
dimensionality reduction techniques. The proposed method proved that the pre-processing step in active learning is 
significant and that it outperforms the CNN+AL method in terms of overall and average accuracy. The highest percentage 
was in Indian Pines and Pavia University when AVG technology was combined with SD Filter, where it gave a result of 
(99.03%, 98.00%), respectively, while Salinas had the highest result when PCA was combined with WLS, where the result 
was (99.33%). Although dimensionality reduction methods contribute to reducing the amount of time required to train 
a CNN, filtering algorithms contribute to increasing the total amount of time required for the CNN+AL framework 
through their use of computational time. 
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