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ABSTRACT: Economically transmitting the energy obtained from power generation units through transmission and 

distribution lines is critical for environmentally friendly and sustainable energy management. The component that plays 

an important role in delivering electrical energy from production units to distribution and consumption units is the 

transmission/distribution network. At this stage, economic sustainability of the generated active and reactive power is 

possible by keeping operating costs and loss expenses under control. Insufficient power generation units or increased 

losses increase the operating costs in power systems. Capacity excess and cost increase affect stability by reducing 

system reliability. These negativities can cause problems in power systems and negatively affect consumers by making 

the power transmission network unusable. Developing technology and increasing energy demands bring quality 

problems in power systems. The operating costs of existing power generation units, which will provide the increasing 

demand power with the most appropriate cost and power generation, need to be revised with optimization techniques. 

Thus, the efficiency of power systems can be increased. If power systems are inadequate, new and renewable power 

generation units should be included in the power system. In this study, power system operation and cost optimizations 

were carried out with Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) algorithms that use 

swarm intelligence on IEEE 30-bus test systems. Significant differences in the results were observed when the number 

of population and re-runs were selected as 20, 30 and 50 for the PSO and GWO algorithms, respectively. When the 

results for three different situations are compared on the basis of algorithms; In the simulation tests conducted for the 

third case, where 50 population and re-run values of the PSO algorithm were used, the optimal operating cost value of 

800.47 $/h was reached. As a result of the study, it was seen that the PSO and GWO algorithms used in the power system 

brought the total operating cost closer to minimum values and made power production more sustainable by increasing 

the number of population and re-runs. 
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ÖZ: Güç üretim birimlerinden elde edilen enerjinin iletim ve dağıtım hatları üzerinden ekonomik bir şekilde iletilmesi, 

çevre dostu ve sürdürülebilir enerji yönetimi açısından kritiktir. Elektrik enerjisinin üretim birimlerinden dağıtım ve 

tüketim birimlerine ulaştırılmasında önemli bir rol oynayan bileşen, iletim/dağıtım şebekesidir. Bu aşamada, üretilen 

aktif ve reaktif gücün ekonomik bir şekilde sürdürülebilirliği, işletme maliyetleri ve kayıp giderlerinin kontrol altında 

tutulması ile mümkündür. Güç üretim birimlerinin yetersiz olması veya kayıpların artması, güç sistemlerinde işletme 

maliyetini artırır. Kapasite aşımı ve maliyet artışı ise sistem güvenilirliğini azaltarak kararlılığı etkiler. Bu 

olumsuzluklar, güç sistemlerinde sorunlara yol açabilir ve güç iletim şebekesini kullanılamaz hale getirerek tüketicileri 

olumsuz etkiler. Gelişen teknoloji ve artan enerji talepleri, güç sistemlerinde kalite sorunlarını beraberinde 

getirmektedir. Artan talep gücünü en uygun maliyet ve güç üretimiyle sağlayacak mevcut güç üretim ünitelerinin 

işletme maliyetlerinin optimizasyon teknikleri ile revize edilmesi gerekmektedir. Böylelikle güç sistemlerinin 

verimliliği artırılabilir. Güç sistemlerinin yetersiz kalması durumunda yeni ve yenilenebilir güç üretim üniteleri güç 
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sistemine dahil edilmelidir. Bu çalışmada, IEEE 30-bara test sistemleri üzerinde sürü zekasını kullanan Parçacık Sürü 

Optimizasyonu (PSO) ve Gri Kurt Optimizasyonu (GKO) algoritmaları ile güç sistemi işletme ve maliyet 

optimizasyonları gerçekleştirilmiştir. PSO ve GKO algoritmaları için popülasyon ve tekrar çalıştırma sayısı sırasıyla 20, 

30 ve 50 değerlerinde seçildiğinde sonuçlarda önemli farklılıklar gözlemlenmiştir. Üç farklı durum için oluşan 

sonuçların algoritmalar bazında karşılaştırılması yapıldığında; PSO algoritmasının 50 popülasyon ve yeniden çalıştırma 

değerlerinin kullanıldığı üçüncü durum için yapılan simülasyon testlerinde en uygun işletme maliyet değeri olan 800,47 

$/Saat’e ulaşılmıştır. Çalışma sonucunda güç sisteminde kullanılan PSO ve GKO algoritmalarının popülasyon ve tekrar 

çalıştırma sayısının artışıyla toplam işletme maliyetini asgari değerlere yaklaştırdığı ve güç üretimini daha 

sürdürülebilir hale getirdiği görülmüştür. 

 

Anahtar Kelimeler: Güç sistemleri, sürdürülebilir enerji, maliyet optimizasyonu, PSO, GKO. 

 

 

1. INTRODUCTION  

Meeting the challenges of sudden increases in 

power demand in power systems can lead to 

potential issues such as the outage of transmission 

lines or generation units. To overcome such 

problems, strategies like restructuring power 

systems, organizing distributed generation, and 

implementing automatic load management and 

switchgear strategies are employed [1]. These 

methods enhance the security and reliability of 

power systems, providing end consumers with a 

higher level of energy quality [2]. Among the 

expectations of end consumers is the delivery of 

high-quality electrical energy sustainably at 

optimal costs. To achieve optimum energy costs, 

enhancing power system reliability by optimal 

placement of distributed generation units and 

minimizing transmission line losses is essential [3]. 

This way, delivering energy to end consumers at the 

most favourable cost with the lowest power system 

loss becomes possible. 

Economic energy distribution has become a critical 

element in today's energy generation, transmission, 

and distribution, given the rise in energy demand 

and fossil fuel costs [4]. Therefore, transitioning to 

energy-saving and economic power distribution 

models has become a necessity [5]. Renewable 

energy sources used in distributed generation, such 

as wind, solar, biomass, biogas, etc., can inject active 

and reactive power into the power system or act as 

loads when needed [6]. Power plants based on 

renewable energy sources, with proper placement 

and accurate power and cost optimization, reduce 

power system losses, lower total energy costs, and 

contribute to minimizing global warming. 

Managing the current power demand and 

optimizing renewable energy-based generation for 

minimum energy costs and a sustainable 

environment have become indispensable today [7]. 

Generation costs of generation units are 

numerically defined to obtain minimum generation 

costs under current load conditions [8]. The cost 

function is generally determined as a second-degree 

nonlinear function. However, this may be 

insufficient on its own. Therefore, fuel costs and 

load conditions are also considered in this function. 

Additionally, transmission line losses and 

connection point power distribution conditions 

may require a more comprehensive evaluation, 

affecting economic power distribution [9]. The 

combustion of fossil fuels results in significant 

problems in terms of both climate change and costs. 

If the optimization problem is defined to provide 

economic power distribution; in addition to load 

allocation in power generation units, reliability, 

continuity of energy supply to demand, 

appropriate costs, and reduction of fossil fuels will 

significantly reduce climate change and 

environmental factor expenditures [10]. While 

metaheuristic algorithms have been evaluated in 

terms of efficiency and robustness in economic load 

distribution (ELD) of power systems in literature 

studies, in [11] the exploration and exploitation 

capabilities of clustering cuckoo search 

optimization have been verified in ELD problems 

with different numbers of generators. In ELD 

optimization studies of power systems, 

comparative solutions of classical metaheuristic 

algorithms and their hybrid versions have been 

evaluated in terms of quality and efficiency to solve 

single or multi-objective functions [12]. Among 

these methods, in [13], a modified objective function 

in a power system with wind energy included in 

MATLAB software and a comparative analysis of 

the results obtained by applying ELD simulations 

with the PSO technique were made, emphasizing 

the speed of PSO in optimal solutions and its effect 
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on cost reduction. In the study [14], referring to the 

popularity of PSO, it was evaluated that the 

performance of the PSO architectural structures 

used in the studies was quite good in applications. 

The usefulness and calculation speed of PSO on 

various scenario situations of power systems and 

different IEEE bus test systems have been verified 

[15]. It has been confirmed in CEC functions that the 

developed GWO, while PSO applications are 

continuing, produces very assertive results in its 

use in the optimization of engineering problems 

and can be applied efficiently in optimization 

problems [16]. GWO algorithm was subjected to 

performance tests in the solution of very limited 

optimization problems using IEEE bus test systems 

data in the analysis of power systems and successful 

results were obtained [17]. Although these 

metaheuristic algorithms tend to get stuck in local 

minima, they achieve near-optimal results in 

function solutions. In addition to the metaheuristic 

algorithms mentioned in the allocation process of 

ELD, Whale Optimization Algorithm (WOA) etc. 

[18] algorithms produce effective solutions without 

getting stuck in local optimum in order to minimize 

the operating costs of power systems and 

production units as much as possible. In economical 

load distribution, mathematical optimization 

methods can analyse cost functions related to 

production costs. When defining functions, inputs 

and outputs in production units need to be 

formulated. In this context, fuel and its entry points 

into the system can be defined as input. 

Environmental sensitivity and fuel-related 

emissions play an important role in defining the 

function for economical load distribution. 

Economical load distribution based on power 

generation, taking into account load demand, can 

significantly reduce fuel consumption and emission 

levels in the system [19]. 

In this study, cost optimizations of the power 

system were made using PSO and GWO smart-

based algorithms on the IEEE 30-bus test system for 

economic power distribution. A single objective 

function was used to minimize fuel usage, 

emissions, and power losses to optimize power 

generation and transmission costs. Three cases with 

different population and re-run numbers were 

analysed in order to reveal the effects of the 

population number and number of runs on the use 

of algorithms and to evaluate the performance of 

the objective functions. The results obtained are 

presented by comparing the performances of the 

algorithms. 

The sections of the study are organized as follows: 

Section 2, under the title ‘Materials and Methods’, 

begins with a definition of the problem and an 

introduction to the bus system used. Subsequently, 

detailed explanations of the PSO and GWO 

algorithms employed for optimization are 

provided, including flowcharts. Section 3 presents 

comparative results of the PSO and GWO 

optimizations conducted for three cases on the IEEE 

30-bus test system, using various parameters. In 

Section 4, the outcomes of this study are juxtaposed 

with previous research findings on the same test 

system, emphasizing the positioning of this study 

within the existing literature. Conclusions and 

evaluations are presented in Section 5. 

2. MATERIALS AND METHOD 

2.1 Problem Definition 

 Economic load distribution relies on optimizing the 

fuel costs among the generation units to minimize 

fuel expenses for the requested loads. To calculate 

the optimal fuel cost for the power system, the 

mathematical definition of the fuel cost that each 

generator can demand needs to be formulated as a 

quadratic function, as shown in Equation (1) [19]. 

𝐹(𝑃𝐺𝑖)1 =  𝑎𝑖𝑃𝐺𝑖
2  +  𝑏𝑖𝑃𝐺𝑖  +  𝑐𝑖   $/h (1) 

 

2.2 IEEE 30-Bus Test System 

In the optimization study, GWO and PSO 

algorithms were used to reduce fuel and ere; 𝐹(𝑃𝐺𝑖) 

is the fuel cost, 𝑎𝑖,𝑏𝑖 𝑎𝑛𝑑 𝑐𝑖are the cost function 

coefficients for thermal unit 𝑖, and 𝑃𝐺𝑖  is the active 

power generation of the 𝑖𝑡ℎ thermal unit. The cost 

function can be practically explained in more detail, 

especially in the case of steam turbines used in 

thermal power plants, where the opening and 

closing of steam valves can linearly increase or 

decrease the cost function. If the fuel cost function 

is to be expanded, taking into account the effects of 

the valve point loading of generator units, it can be 

rewritten as in Equation (2) [20]. 

F(PGi) = aiPGi
2  + biPGi + ci+|ei sin [fi(PGi

min-PGi)]| (2) 

Here; 𝑒𝑖  𝑎𝑛𝑑 𝑓𝑖 are the cost function coefficients for 

fuel type of unit ith reflecting valve-point effects 
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and 𝑃𝐺𝑖
𝑚𝑖𝑛 is the minimum active power generation 

of thermal unit 𝑖. With the addition of valve loading 

points to this objective function, non-convex 

fluctuations will occur in the power versus 

generation cost curve. Overcoming these 

fluctuations becomes a challenge that needs to be 

addressed through optimization efforts. In 

economic power distribution cost optimization, 

some constraints such as transmission line losses, 

power flow limits, environmental emission gas 

values, and generator power limits need to be 

considered [21]. Among these constraints, the most 

critical is transmission line power losses. Strategies 

specified in Equations (3-4) are used to minimize 

transmission line losses. 

 

𝑃𝑙𝑜𝑠𝑠 =  𝑃𝐺
𝑇𝐵𝑖𝑗𝑃𝐺 +  𝐵𝑖𝑜𝑃𝐺 +  𝐵𝑜𝑜  (3) 

𝑃𝐺 = [𝑃𝐺1𝑃𝐺2𝑃𝐺3 … … … … . 𝑃𝐺𝑁]𝑇 (4) 

 

Here; 𝐵𝑖𝑗 , 𝐵𝑖𝑜 and 𝐵𝑜𝑜 are the coefficients of the 

power loss matrix. The power injected into the 

power system by generators must be equal to or 

greater than the sum of the demand power and the 

loss power. 𝑃𝐺  represents the total power generated 

by all generators, and the total 𝑃𝑙𝑜𝑠𝑠  is used in 

calculating the magnitude of losses. Equation (5) 

defines the demand power (𝑃𝑙𝑜𝑎𝑑) and loss power 

corresponding to the generated power for the entire 

power system [22]. 

∑ 𝑃𝐺𝑖 ≥  𝑃𝑙𝑜𝑎𝑑 +  𝑃𝑙𝑜𝑠𝑠  

𝑛

𝑖=1

 (5) 

The fundamental issue with fossil-fuel-based 

thermal power plants is that emissions gases remain 

as harmful by-products of fuels. Environmental 

sensitivity is increasing every day, and global 

efforts are underway to reduce greenhouse gases. 

The second-degree mathematical expression 

defined in Equation (6) explains the relationship 

between emission gases and power generation [23]. 
 

𝐸(𝑃𝐺𝑖) =  𝑎𝑒𝑖𝑃𝐺𝑖
2 + 𝑏𝑒𝑖𝑃𝐺𝑖 + 𝑐𝑒𝑖  (6) 

 

Here, 𝑎𝑒𝑖,𝑏𝑒i 𝑎𝑛𝑑 𝑐𝑒𝑖  are the cost function coefficients 

for thermal unit 𝑖. Instability in the power system 

can arise when the total generated power is less 

than the demand power and total losses, leading to 

voltage and frequency instability conditions. The 

environmental objective function representing the 

emissions as a quadratic function of generation unit 

(PGi) can be defined as in Equation (7) [24]-[26]. 

𝐹(𝑃𝐺𝑖)2= ∑ μ  + μ1( ∑  (PGi))+ 

n

i=1

n

i=1

μ2( ∑ (PGi -(Pload+ Ploss))2) 

n

i=1

 

(7) 

 

Here, 𝜇, 𝜇1and 𝜇2 are the emission gas and load 

balance weighting factors. n is the number of 

generation units. The optimization problem to 

minimize fuel cost and emissions can be formulated 

as in Equation (8) [27]. 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐹(𝑃𝐺𝑖)1, 𝐹(𝑃𝐺𝑖)2]  (8) 
 

In the event that the expected solution cannot be 

reached in the realization of the economic power 

distribution objective function, these coefficients 

are used as determinative penalty coefficients. Each 

power generation unit is expected to operate within 

its own generation limits. When this condition is 

satisfied, the stability of the power system will have 

been fulfilled as the most important criterion. 

Equation (9) represents the minimum and 

maximum power generation range for each 

generator [26]-[28]. 
 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤  𝑃𝐺𝑖  ≤  𝑃𝐺𝑖

𝑚𝑎𝑥  (9) 
 

In addition to these considerations, it is crucial to 

determine the speed and load limits of generators 

during extra load acceptance and shedding. 

Ensuring that the transmitted power on power 

transmission lines does not exceed the maximum 

capacity of the transmission lines is valuable for the 

operational stability of the power system, allowing 

transmission lines to operate within their limits [29]. 

power losses on the IEEE 30-bus test system. Figure 

1 shows the single-line diagram of the IEEE 30-bus 

test system used in the study.  

 

This system consists of a total of 30 buses, including 

29 connection buses and 1 swing bus. Buses 1, 2, 5, 

8, 11, and 13 are generator buses [20], [21]. 

Additionally, the system has a total of 41 

transmission lines, including 37 transmission lines 

and 4 transformer branches. The system reports a 

total active load of 283.34 MW and a reactive load 

of 126.2 MVAr [21]. 
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Figure 1: IEEE 30-bus system single line diagram. 

2.3 Metaheuristic Algorithms 

Metaheuristic algorithms are computational 

methods inspired by intuition and observations in 

nature. These algorithms are employed to solve 

complex and multi-dimensional optimization 

problems. Metaheuristic algorithms based on 

swarm intelligence are preferred in the 

restructuring of power systems and the 

optimization of fuel consumption and emissions in 

generation units, playing a significant role in 

solving power flow problems [22]-[27]. 

Optimization algorithms involved in tasks such as 

sensitivity analysis, location, and capacity 

determination, and the restructuring of power 

systems can produce different results in each run. 

Although they do not guarantee the best result, they 

are capable of achieving near-optimal results [28]-

[32]. 

In this study, cost optimization has been conducted 

on the IEEE 30-bus test system data. During the 

optimization process, metaheuristic algorithms, 

specifically Particle Swarm Optimization (PSO) and 

Grey Wolf Optimization (GWO), were employed to 

minimize the single-objective function outlined in 

Equation (7), subject to the constraints specified in 

Equation (8). Additionally, a simulation and test 

environment were designed on MATLAB to 

evaluate the effectiveness of PSO and GWO-based 

optimization processes developed to reduce the 

operating costs of power systems. 

2.3.1 Grey Wolf Optimization (GWO) 

The Grey Wolf Optimization (GWO) algorithm 

based on swarm intelligence was initially proposed 

by Mirjalili and Lewis in 2014 [33]. This algorithm is 

designed by drawing inspiration from the social 

behaviours exhibited by grey wolves during 

hunting. The interactions among three leader 

wolves, namely, Alpha, Beta, and Delta, and the rest 

of the pack are utilized to explore potential 

solutions in the solution space. Alpha represents the 

leader type, Beta is the second-ranking leader in the 

hierarchy, and Delta is the third-ranking leader in 

the pack, following Alpha and Beta leaders. Omega, 

consisting of the youngest or newest members at the 

lowest level of the pack, is responsible for following 

the other three leader types. The swarm 

intelligence-based hunting is carried out in four 

stages: searching for prey after forming the 

hierarchy, encircling, attacking, and hunting 

[16],[33]. Figure 2 illustrates the 2D and 3D hunting 

strategies of a wolf pack. 

 

 Figure 2: a) 2D, b) 3D hunting strategy of GW [33]. 

While Alpha and Beta represent the two potential 

best candidate solutions, Delta produces the third-

best solution. The mathematical expressions used 

for the hunting, approaching the prey, and 

surrounding stages of Alpha, Beta, and Delta grey 

wolves are provided in equations (10-20) [33].  

𝐷 =  |𝐶. 𝑋𝑝(𝑖) −  𝑋(𝑖)| (10) 
𝑋(𝑖 +  1) =  |𝑋𝑝(𝑡) −  𝐴. 𝐷| (11) 

Here; i represents the iteration number; 𝑋𝑝(𝑖) is the 

current position of the prey; A and C are coefficient 

vectors; D is the distance to the prey; and X 

represents the individual's position. Coefficient 

vectors A and C are calculated as shown in 

Equations (11) and (12), respectively. 

𝐴 =  |2𝑎. 𝑟1  −  𝑎| (12) 
𝐶 =  |2𝑎. 𝑟2| (13) 

Here; the value of a is linearly decreased in each 

iteration between 2 and 0. 𝑟1 and 𝑟2 are random 

factors generated within the range [0, 1]. While the 

hunting strategy of wolf packs in 2 and 3-

dimensional spaces, as represented in Figure 2, is 

illustrated, individuals in the search space move on 

a cube-sphere. The hunting tendencies of 

individuals are defined as follows [33]. 
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𝐷 ∝ =  |𝐶1. 𝑋 ∝  − 𝑋| (14) 
𝐷𝛽 =  |𝐶2. 𝑋𝛽 −  𝑋| (15) 
𝐷𝛿 =  |𝐶3. 𝑋𝛿 −  𝑋| (16) 
𝑋1 =  |𝑋 ∝  − 𝐴1. 𝐷 ∝| (17) 
𝑋2 =  |𝑋𝛽 −  𝐴2. 𝐷𝛽| (18) 
𝑋3 =  |𝑋𝛿 −  𝐴3. 𝐷𝛿| (19) 

𝑋(𝑡+1) =  
𝑋1 + 𝑋2 + 𝑋3

3
 

(20) 

According to the equations, the position 

information of the prey, which has three valid and 

valuable solutions obtained by the three leading 

individuals, is updated by combining the 

information brought by other herd members. As the 

value of the hunting agent a decrease, the position 

of the next iteration, approaching the prey, is 

determined in a better location than its previous 

position. The adapted flowchart of the grey wolf 

algorithm for power system optimization is shown 

in Figure 3. 

2.3.2 Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) is another 

metaheuristic-based swarm intelligence 

optimization technique used in this study. This 

algorithm was first introduced by Kennedy and 

Eberhart in 1995 [34]. PSO is a mathematically 

modelled optimization algorithm inspired by the 

foraging behavior of living swarms such as fish and 

birds. In this mathematical model, each particle 

seeks the best solution for a function. While each 

particle has its own unique individual position, 

among the positions obtained by each individual in 

the swarm, the best position is defined as the global 

best position [10]. Each position is associated with a 

velocity vector. While the individual best position is 

denoted as Pbest and the global best position in the 

swarm is denoted as Gbest in this diagram, the 

velocity vectors forming the positions are given by 

the equations for the inertia and weight coefficients 

Equations (21-23) [34],[35]. 

𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥

. 𝑖𝑡𝑒𝑟) (21) 

𝑣𝑖,𝑗(𝑡+1) = 𝑤 𝑣𝑖,𝑗(𝑡)

+ 𝑐1𝑟1,𝑗(𝑡)(𝑃𝑏𝑒𝑠𝑡𝑖,𝑗(𝑡)

− 𝑥𝑖,𝑗(𝑡))

+ 𝑐2𝑟2,𝑗(𝑡)(𝐺𝑏𝑒𝑠𝑡(𝑡)

− 𝑥𝑖,𝑗(𝑡)) 

(22) 

𝑥𝑖(𝑡+1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡+1) (23) 

  

Start

Get GWO search/scan 
parameters

Is all iterations completed?

End

Create Alpha, Beta, Theta, and Omega.

Calculate the location of the prey based on 
Alpha, Beta, Theta information

Update location of entire search/scan 
individual

Send the location information of each 
individual to the Power System Simulation 

and calculate the cost values.

Update Alpha, Beta and Theta individuals 
according to the obtained cost values.

No

Is all re-Runs completed?

Yes

No

Yes

Determine the location information of the 
individual with the best cost value among all 

re-Runs as the absolute solution.

 

Figure 3: GWO flowchart. 

Here; w is the inertia weight of the particle,  𝑣𝑖,𝑗(𝑡+1) 

is the particle's next velocity,  𝑥𝑖(𝑡+1) is the particle's 

position, 𝑐1 and 𝑐2 are coefficients for approaching 

local and global best positions, and  𝑟1 and 𝑟2 are 

randomly generated factors for approaching values 

in the range [0-1]. The flowchart adapted for power 

system optimization using the PSO algorithm is 

shown in Figure 4. 
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Start

Get PSO Parameters

Is all iterations completed?

End

Randomly assign initial values to 
particles

Send the position of each Particle to the 
Power System Simulation and calculate the 

cost values.

Determine individual best positions and 
global best position of the swarm

Update the speed of each Particle and check 
it is within limits

Update the position of each Particle and 
check it is within limits

No

Is all re-Runs completed?

Yes

No

Yes

Determine the location information of the 
particle with the best cost value among all 

re-Runs as the absolute solution

 

Figure 4: PSO flowchart. 

3. OPTIMIZATION RESULTS 

In the study with a defined single-objective 

function, simulations were performed using 

MATLAB R2020a software on a system with an 

Intel Core i5-3470 CPU, 3.20 GHz processor, and 6 

GB RAM to conduct various tests for the 

optimization process. In all simulation and 

optimization processes, voltage limits at load buses 

were constrained to the range of 0.95-1.05pu. After 

determining suitable parameter values and 

population sizes for the GWO and PSO algorithms, 

each algorithm was run thirty times for 100 

iterations with the selected parameters, and the 

obtained results were evaluated. In this study, 

significant differences were observed in the results 

when the population and the number of re-runs for 

the PSO and GWO algorithms were selected at three 

different values (20, 30, and 50). Therefore, the 

optimization results obtained for these values are 

presented in the study. Table 1 contains the 

parameters and their specified values for the 

optimization algorithms.  

Table 1: Parameter values of algorithms. 

GWO PSO 

Iteration 

a 

a0 

 

 

100 

2 

2 

 

 

Iteration 

C1 

C2 

Wmax 

Wmin 

100 

2 

2 

0.9 

0.4 

Population 

re-runs 

20/30/50 Population  20/30/50 

20/30/50 re-runs 20/30/50 

With the values specified in Table 1, the algorithms 

were individually run thirty times, and the average 

of the obtained results was calculated. In the initial 

study, the population size and the number of re-

runs were set to 20 for both algorithms, and 

optimization was performed. The values obtained 

for the first case are presented in Table 2.  

Table 2: Optimization results for the first case. 

 GWO PSO 

Min ($/h) 

Max ($/h) 

Average ($/h) 

Standard Deviation 

Avg. Duration (Sec.) 

808.207 

1069.800 

993.444 

18.011 

27.659 

805.843 

1191.000 

990.103 

55.999 

27.850 

According to these results, the PSO algorithm, 

producing a minimum hourly generation cost of 

$805.843, an average value of $990.103, and a 

standard deviation of 55.999, performed better than 

the GWO algorithm. However, it is observed that 

the standard deviation of the GWO algorithm is 

lower, meaning that its results are closer to each 

other. The average CPU usage times for the 

algorithms are quite close to each other, 

approximately 27 seconds. 
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As a result of the parameters obtained through the 

optimization of the two algorithms, a system 

simulation was conducted on the system whose 

block diagram is given in Figure 1. The power 

values generated, consumed, and lost in the system 

were obtained. The results are shown in Table 3.  As 

seen in Table 3, the total power generated by the 

generators is 294.484 MW with the parameters 

obtained by PSO and 294.442 MW with the 

parameters obtained by GWO. When examining 

power losses, it is observed that the values obtained 

with GWO, with a loss value of 11.102 MW, stand 

out. 

Table 3: Generator active power generation, 

consumption and loss values for the first case. 

Bus 
GWO 

PG (MW) 

PSO 

PG (MW) 

1 

2 

5 

8 

11 

13 

166.517 

46.488 

27.313 

21.440 

13.755 

18.929 

177.836 

47.665 

21.313 

23.600 

10.001 

14.069 

Total Power Generation 

Total Power Consumption 

Total Power Loss 

294.442 

283.340 

11.102 

294.484 

283.340 

11.144 

In the second study, the population size and re-runs 

number for both algorithms were set to 30, and the 

optimization was repeated. Table 4 presents the 

performance values obtained after the optimization. 

Upon examination of this table, it is observed that, 

for PSO, the minimum hourly generation cost 

remains the same at $800.954, but the average value 

decreases to $968.141 compared to the initial 

condition. The standard deviation value is obtained 

as 6.470, depending on the increase in iterations. 

The average CPU usage time is determined to be 

40.773 seconds. With this optimization, it is 

concluded that the PSO algorithm produces better 

results than GWO in terms of all values. 

Table 4: Optimization results for the second case. 

 GWO PSO 

Min ($/h) 

Max ($/h) 

Average ($/h) 

Standard Deviation 

Avg. Duration (Sec.) 

804.537 

1025.000 

985.987 

14.159 

42.204 

800.954 

992.255 

968.141 

6.470 

40.773 

 

The system's operation with the parameters 

yielding the best objective function values obtained 

through optimizations and the resulting values for 

generation, consumption, and loss of power are 

presented in Table 5. In Table 5, the total power 

generated by generators with the parameter values 

obtained with PSO is 292.941 MW, while with the 

parameter values obtained with GWO, it is 293.225 

MW. When losses are examined, it is observed that 

the PSO algorithm stands out with a loss value of 

9.601 MW. When the first and second cases results 

are compared, it is observed that the increase in the 

population size and the number of runs does not 

reduce the operating cost and power loss values 

after 30 iterations. 

Table 5: Generator active power generation, 

consumption and loss values for the second case. 

Bus 
GWO 

PG (MW) 

PSO 

PG (MW) 

1 

2 

5 

8 

11 

13 

171.670 

48.745 

21.354 

20.764 

16.815 

13.877 

177.605 

48.929 

22.158 

21.663 

10.439 

12.147 

Total Power Generation 

Total Power Consumption 

Total Power Loss 

293.225 

283.340 

9.885 

292.941 

283.340 

9.601 

In the third study, the population size and iteration 

number were set to 50 for both algorithms, and the 

optimization and simulation processes were 

repeated. When Table 6 is examined, it is observed 

that the minimum hourly generation cost for PSO 

has decreased to $800.472, but the average value has 

decreased to $805.165 compared to the first two 

cases. It is noted that the standard deviation value 

has decreased slightly due to the increase in the 

number of individuals in the swarm and the 

number of iterations. Also, due to the increase in the 

swarm size and the number of iterations, the 

algorithm's computation times are increased. As 

seen in Table 6, in terms of computation times, the 

average CPU usage time of the GWO algorithm 

increases less compared to PSO, with 49.113 

seconds. According to the performance criteria, it is 

observed that the results of PSO are better than 

GWO. 
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Table 6: Optimization results for the third case. 

 GWO PSO 

Min ($/h) 

Max ($/h) 

Average ($/h) 

Standard Deviation 

Avg. Duration (Sec.) 

803.340 

853.105 

820.082 

11.729 

49.113 

800.472 

825.441 

805.165 

5.243 

79.024 

For the third case, the generation, consumption, and 

loss power values obtained from running the 

system with the parameters obtained by 

optimization algorithms are presented in Table 7. In 

Table 7, when the parameters obtained by PSO are 

used, the total power generated by the generators is 

292.344 MW, while when the parameters obtained 

by GWO are used, it is 292.471 MW. When losses 

are examined, it is observed that the PSO results are 

better with a loss value of 9.004 MW. Compared to 

the previous two conditions, it is evaluated that the 

increase in population size and the number of runs 

does not much reduce the operating cost and power 

loss values after 50 iterations. 

Table 7: Generator active power generation, 

consumption and loss values for the third case. 

Bus 
GWO 

PG (MW) 

PSO 

PG (MW) 

1 

2 

5 

8 

11 

13 

167.975 

52.104 

22.203 

19.846 

16.565 

13.778 

178.193 

48.496 

21.976 

21.645 

10.007 

12.027 

Total Power Generation 

Total Power Consumption 

Total Power Loss 

292.471 

283.340 

9.131 

292.344 

283.340 

9.004 

 

4. DISCUSSION 

In the study, the total power generation and total 

power loss values obtained from three different 

optimizations are comparatively shown in Figure 5 

for GWO and PSO algorithms. Since the total 

consumption in the system did not change, this 

value is not included in this graph. In Figure 6, the 

average hourly power generation costs obtained 

according to the results of the three cases and two 

optimization algorithms studied with different 

parameters in the study are presented 

comparatively.  

The graph in Figure 6 shows both the efficiency of 

PSO and GWO algorithms in minimizing overall 

operating costs and the effectiveness of these 

metaheuristic algorithms in addressing the complex 

and dynamic nature of power systems. These visual 

reveals that the PSO algorithm gives better results 

than the GWO algorithm in all three cases in the 

study for optimizing the hourly power generation 

cost. According to these optimization results, the 

most cost-effective value of 800.47 $/h was reached 

in the simulation tests performed for the third case, 

where 50 population and re-Runs values of the PSO 

algorithm were used. 

 

Figure 5: Total power generation and power loss. 

  

Figure 6: Hourly power generation cost. 

Previous studies have investigated similar 

approaches using evolutionary and metaheuristic 

algorithms on the IEEE 30-bus test system, with 

their findings compared to the results of the present 

study in Table 8. The table evaluates the total power 

loss and generation cost resulting from running 

these algorithms on the IEEE 30-bus test system. 

8.5
8.7
8.9
9.1
9.3
9.5
9.7
9.9
10.1
10.3
10.5
10.7
10.9
11.1
11.3
11.5
11.7
11.9

290.0

290.5

291.0

291.5

292.0

292.5

293.0

293.5

294.0

294.5

295.0

Case 1 Case 2 Case 3

To
ta

l P
o

w
er

 L
o

ss
 (

M
W

) 

To
ta

l P
o

w
er

 G
en

er
at

io
n

(M
W

) 

Ploss (GWO) Ploss (PSO)
PGT (GWO) PGT (PSO)

808.207

804.537

803.34805.843

800.954
800.472

798

800

802

804

806

808

810

Case 1 Case 2 Case 3H
o

u
rl

y 
P

o
w

er
 G

en
er

at
io

n
 C

o
st

 (
$

/h
)

Cost (GWO) Cost (PSO)



İşcan, Lokman / TMAED 3(1),26-37, (2024) 

35 

Table 8: Literature comparison. 

PG (MW) 

\ 

Buses 

Algorithms Used in Previous 

Studies in the Literature 

Proposed 

Algorithm 

PS 

[36] 

GA-PS 

[36] 

EP-OPF 

[37]  

ABC 

[38] 

GWO PSO 

1 

2 

5 

8 

11 

13 

175.727 

48.681 

21.428 

22.831 

12.067 

12.000 

175.663 

48.641 

21.422 

22.622 

12.381 

12.000 

173.826 

49.998 

21.386 

22.630 

12.928 

12.000 

176.263 

48.383 

20.871 

22.713 

12.453 

12.000 

167.975 

52.104 

22.203 

19.846 

16.565 

13.778 

178.193 

48.496 

21.976 

21.645 

10.007 

12.027 

Total Ploss 

(MW) 

9.335 9.329 9.368 9.283 9.131 9.004 

Generation 

Cost ($/h) 

802.015 802.014 802.556 801.721 803.340 800.472 

One such study employing pattern search and 

genetic algorithms [36] concluded that these 

algorithms exhibited superior overall convergence 

performance, demonstrating competitiveness. In 

another study [37], it was demonstrated that the 

total generator fuel cost achieved through an 

evolutionary algorithm for economic power 

dispatch on the IEEE 30-bus test system was lower 

compared to costs incurred by evolutionary 

programming, tabu search, hybrid tabu search, 

simulated annealing, and enhanced tabu search, 

thus yielding significant savings in generator fuel 

costs. Furthermore, a study [38] utilizing the 

metaheuristic artificial bee colony optimization 

algorithm reported a minimum power loss value of 

9.283 MW and an hourly generation cost of 

$801.721. 

In Case 3 of this study, where the population 

number and the number of runs of the PSO 

algorithm are set to 50, it is observed that the 

application of the PSO algorithm yields promising 

results. With a minimum power loss value of 9.004 

MW and a generation cost of $800.472/hour, the 

PSO algorithm demonstrates practicality and 

approaches the global optimum solution efficiently, 

exhibiting high convergence performance. The 

positive outcomes highlight PSO's capability to 

compete effectively with other algorithms [36]-[38], 

underscoring its robust search ability. 

5. CONCLUSION 

In this research, swarm intelligence-based PSO and 

GWO algorithms were applied to the optimization 

problem using the cost-oriented objective function 

for sustainable economy on the IEEE 30-bus test 

system. In this study, which aims to reduce the total 

power loss and system operating cost, the effects of 

algorithm parameters such as population and 

number of runs on the objective function and power 

loss results were examined through tests carried out 

in a simulation environment. Significant differences 

in the results were observed when the population 

and number of reruns were selected at values of 20, 

30 and 50 for the PSO and GWO algorithms, 

respectively. As the population and number of runs 

increased, there was no significant change in the 

minimum values of the objective function, while a 

decrease was observed in the mean and standard 

deviation values. On the other hand, it was 

observed that there was an increase in total power 

loss values and average CPU usage times. In 

conclusion, the findings of the study show that 

swarm intelligence algorithms can be used 

effectively in power system optimization and that 

various parameter choices can have a significant 

impact on the results. 

In this research, PSO and GWO algorithms were 

successfully applied to cost-oriented optimization 

problems and effective results were obtained in 

power systems. In the simulation tests conducted 

for the third case, where the PSO algorithm used 50 

population and rerun values, it was determined 

that it reached the most appropriate operating cost 

value of 800.47 $/Hour. It is evaluated that in the 

future, studies focusing on multiple targets using 

different objective functions may help to improve 

power systems more comprehensively. Thus, 

processes that take an approach that includes 

reliability, sustainability and other elements as well 

as operational costs can emerge. Additionally, 

examining new parameter selections or improved 

variations to increase algorithm performance can be 

among the studies that can contribute to the field. 

Although the IEEE 30 bus test system serves as a 

standard benchmark, future research involving 

distributed generation systems may extend the 

analysis to suit larger, more complex power 

systems. It has been evaluated that such studies 

have a significant potential in increasing the 

efficiency of power systems and minimizing 

operating costs. 
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