
 314 

Yuzuncu	Yil	University	Journal	of	Agricultural	Sciences,	Volume:34,	Issue:2,	30.06.2024 

 Yuzuncu Yil University  
Journal of Agricultural Sciences 

(Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi) 
https://dergipark.org.tr/en/pub/yyutbd  

ISSN: 1308-7576 e-ISSN: 1308-7584 
Research Article 	

Innovative Approaches to Rice (Oryza sativa) Crop Health: A Comprehensive Analysis of Deep 
Transfer Learning for Early Disease Detection  

Utpal BARMAN*1, Dulumani DAS2, Gunikhan SONOWAL3, Mala DUTTA4 

1,2,3,4Faculty of Computer Technology, Assam Down Town University, Panikhaiti, Assam, India, 781026 

1https://orcid.org/0000-0002-2000-5007, 2https://orcid.org/0000-0001-9211-2314, 3https://orcid.org/0000-0001-5626-2411 
4https://orcid.org/0000-0001-9560-0751 

*Corresponding author e-mail: utpalbelsor@gmail.com 

 

Article Info Abstract: In this research, the primary objective is to tackle the pressing issue of 
identifying and effectively managing diseases in rice plants, a problem that can 
results in substantial crop losses and pose a severe threat to food security. The 
study employs Convolutional Neural Networks (CNNs), a type of deep learning 
model widely used for image analysis, to conduct an extensive investigation using 
a sizable dataset comprising 5,932 RGB images. These images represent four 
distinct disease classes in rice plants: Bacterial Leaf Blight (BLB), Blast, 
Brownspot, and Tungro. To conduct this research, the dataset is split into two 
subsets: a training set, which comprises 80% of the data, and a testing set, which 
makes up the remaining 20%. This division allows for a systematic evaluation of 
the performance of four different CNN architectures: VGGNet, ResNet, 
MobileNet, and a simpler CNN model. The results of this study consistently show 
that ResNet and MobileNet outperform the other CNN architectures in terms of 
their ability to accurately detect diseases in rice plants. These two models 
consistently achieve remarkable accuracy in identifying these diseases. The 
research findings not only emphasize the potential of deep learning techniques in 
addressing the critical issue of rice crop diseases but also highlights the significant 
role that ResNet and MobileNet play in strengthening crop protection efforts and 
contributing to global food security. 
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1.Introduction 

Rice (Oryza sativa L.) is the supreme crop of many countries around the globe. It is the largest 
cultivated and consumed food all over the globe. In comparison to other crops, rice has more nutrients 
and is affordable to every earning individual. About 70% of the population in Asia has a diet of rice. In 
2020 rice production in Assam is 5.1 million tonnes (Sandhya Keelery, 2022). Production of rice at 
Assam grew at an average rate of 2.73% from 4.73 million tonnes in 2017 to 5.1 million tonnes in 2020 
(Pathak et al., 2018). However over time, nematodes, some non-insect pests, and diseases that affect 
insects have all increased in abundance (Prakash et al., 2014). These biotic stresses caused numerous 
epidemics to occur throughout the nation. There are several types of rice plants and hence many 
uncovered diseases are present regarding different rice varieties. Over time, the frequency and extent of 
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the harm have varied (Gowda et al., 2021). Depending on the region, varieties planted, weather 
circumstances, and production practices, these pests and diseases show concurrent transitions both in 
their minor and major status (Soren et al., 2020). Sheath rot, early seedling blight, grain discoloration, 
false smut, bakanae, and narrow brown spots are only a few examples of minor plant ailments that have 
now developed into serious issues. Among those diseases the most common and destructive diseases are 
Bacterial Leaf Blight (BLB) (Xanthomonas oryzae pv. Oryzae), tungro (Rice tungro bacilliform virus), 
blast (Magnaporthe grisea), and brownspot (Cochliobolus miyabeanus) which lead to some catastrophic 
loss of quality and quantity of rice plants yielded in several acres of land. The early identification and 
accurate diagnosis of these diseases are crucial for implementing timely and effective management 
strategies, ensuring minimal crop losses, and optimizing yield. Traditionally, agri consultants, agri 
experts, or farmers themselves would visually inspect the plants to detect any infections since they had 
the knowledge to do so. The other conventional approach used laboratory testing, which involved 
measuring soil properties including pH, moisture, and nitrogen. Other frequently used laboratory 
techniques include microscopic analysis and serological tests. However, these methods have certain 
drawbacks, such as being time-consuming, requiring staff monitoring, and being ineffective for large 
farms. Diseases were only discovered when they caused significant crop loss (Patil and Kumar, 2021). 
Traditionally, experienced professionals visually inspect plant tissue to gauge the severity of plant 
diseases. The expensive and ineffective evaluation of plant diseases hinders the rapid advancement of 
modern agriculture (Mutka and Bart, 2015). Automated disease detection models were employed more 
frequently in precision agriculture, high-throughput crop phenotyping, intelligent greenhouses, and 
other industries as a result of the expanding uptake of digital cameras and advancements in computer 
vision (Barman and Choudhury, 2019 and 2022; Barman et al., 2023). Deep learning models were 
recommended by many studies for image-based identification of diseases of plant (Voulodimos et al., 
2018). Deep learning has recently become a potent tool in the field of machine vision and visual analysis, 
with astounding success in a wide range of fields. Its ability to automatically learn hierarchical 
representations from large-scale datasets has proven instrumental in solving complex visual recognition 
tasks. Utilizing previously trained models on a source task to enhance performance on a target task with 
little labeled data is known as transfer learning, a subset of deep learning. This approach has shown 
great promise in a wide range of applications, including agriculture and plant pathology. Liang et al. 
(2019) proposed a rice blast disease recognition using a Deep CNN. They used a dataset of 5808 images 
and developed a model for rice blast disease classification. Their model produced an accuracy of 95%. 
Wang et al. (2021) proposed a rice disease detection and classification using an attention-based neural 
network and bayesian optimization. They used an attention-based depthwise separable neural network 
with Bayesian optimization to create the model. They used a dataset of 2370 images and their model 
produced an accuracy of 94.65%. Latif et al. (2022) proposed rice plant diseases using an improved 
CNN Model. They used an improved CNN model specified as VGG19. They used a dataset with 6 
different classes and their model produced an accuracy of 96.08%. The purpose of this study is to assess 
the efficiency of deep neural networks for the prompt identification of rice diseases such as BLB, tungro, 
blast, and brown spots. By exploiting the knowledge learned from large-scale image datasets, pre-trained 
deep neural networks can extract meaningful features from rice disease images, enabling accurate 
classification and identification. The transfer learning paradigm allows us to leverage the knowledge 
gained from other related tasks, such as general object recognition or plant disease identification, and 
adapt it to the specific context of rice diseases. 

The primary objectives of this study are twofold. 
• First, to evaluate the performance of deep transfer learning models in detecting and classifying 

common rice diseases. 
• Second, to compare their effectiveness against conventional machine learning algorithms. By 

conducting a comprehensive assessment, we aim to provide valuable insights into the potential 
of deep transfer learning for early disease identification of rice. 
Furthermore, this research will contribute to the development of automated and cost-effective 

disease monitoring systems that can be deployed in real-world agricultural settings. Early disease 
detection can facilitate timely interventions, such as targeted pesticide application, disease-resistant crop 
selection, or site-specific disease management, thereby reducing the risk of yield losses and improving 
overall crop health. In summary, this paper seeks to demonstrate the potential of deep transfer learning 
in revolutionizing the early identification and management of rice diseases. By leveraging the power of 
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deep learning, we can pave the way for sustainable and resilient rice production systems, ensuring food 
security for the growing global population.  

2. Material and Methods 

The research methods of the current study are presented below.  
i. To gather a rice dataset comprising 5932 RGB images and subsequently pre-processing 

[resizing of images] the dataset for model training and testing. 
ii. To develop a CNN-based model capable of detecting common rice leaf diseases 

accurately, including BLB, blast, brown spot and tungro. 
iii. Investigate the performance of different CNN architectures, including transfer learning 

models such as VGGNet, ResNet, MobileNet. 
iv. Finally evaluate the model’s accuracy and effectiveness in identifying and classifying 

the four target rice disease classes. 

2.1. About the dataset 

The dataset has been collected from a study reported by Sethy et al. (2020). A total of 5932 
numbers of RGB images, comprising 4 diseases namely BLB, blast, brownspot, and tungro are 
considered for this experiment.In this recognition, the total number of images taken for BLB, blast, 
brownspot,and tungro are 1584, 1440, 1600, and 1308, respectively. 

BLB: It is a bacterial disease and one of the most serious diseases of rice. The crop loss due to 
this disease can be as high as 75%. It thrives in warm, humid environments. Leaf blight can be identified 
in the initial stage when there are yellow stripes on the leaf, the stripes can be in the middle or parallelly 
on the leaves eventually leading to the drying of the leaves. A sample image of bacterial leaf blight is 
shown in the Figure 1. 

Blast: Blast can be identified by noticing the rice leaf plants that have eye-shaped spots, initially 
having a yellow appearance and later leading to a dark brown color. The fungus that causes blast is 
“Magnaporthe oryzae”.It can occur when there are blasts pores are present. It occurs in rice plants at all 
stages of growth. The environment in which disease occurs includes drastic temperature differences in 
day and night, basically cool temperatures during the daytime. A sample image of the blast is shown in 
Figure 1. 

Brownspot: Brownspot is a fungal disease infecting the leaf sheath, panicle branches, leaves, 
and spikelets. It is caused by the fungus “Cochliobolus miyabeanus”. When the leaf is wet for more than 
8 – 24 hours only then the infection can occur. This infection mostly occurs during the ripening stages 
of the crop. The initial stage of the disease is a small circular brown-purple color spot in the leaf. In 
Figure 1, a sample image of brownspot is depicted. 

Tungro: The main cause of this disease is leaf hoppers that transmit the virus from plant to plant. 
It is the combination of two viruses, one of them is an RNA virus named “Rice  Tungro Spherical Virus” 
and the other one is a DNA virus named “Rice Tungro Bacilliform Virus”. In Figure 1, a sample image 
of Tungro is depicted. 

 

 
Figure 1. Sample image of a) BLB, b) blast, c) brownspots, and d) tungro. 
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2.2. About method 

2.2.1. Deep Convolutional Neural Network (DCNN) 

Better recognition of images, the process of segmentation, and image retrieval have all been 
made possible by DCNN’s presentation of a functional group of models for better comprehending the 
information contained in an image. The well-known trained networks of DCNN utilize this dataset after 
being trained over thousands of thousands of images in the datasets of the CIFAR 100 and Image-Nets, 
improving the effectiveness of categorization. Our work’s main addition is the presentation of detection 
of object techniques utilizing various trained neural network architectures, where, according to Sharma 
et al. (2018), modern models perform differently for test photos compared to trained images. 

2.2.2. Transfer learning 
Transfer learning is a successful technique to develop robust classification networks 

with little information by adjusting the parameters of a machine learning network that has 
already been pre-trained on a large dataset, like ImageNet. Even if it was not trained on the 
dataset of crop leaves, the model can still be triggered by the area of the crop spots, leaves, and 
backgrounds. There are numerous transfer learning architectures, including ResNet50 (He et 
al., 2016), Inception-v3 (Szegedy et al., 2016), and VGGNet (Simonyan and Zisserman, 2015) 
which were used in the area of Agri-informatics. The pre-trained models, such as ResNet and 
MobileNet, have learned to extract high-level features from images. These features can be 
highly relevant for detecting diseases in rice plants. Transfer learning allows us to use these 
well-learned features as a starting point and fine-tune them for the specific task of rice disease 
recognition. 
2.2.3. DCNN-based rice leaf disease recognition model 

DCNNs are similar to conventional Artificial Neural Networks (ANN), where neurons are 
optimized in learning. The proposed DCNN-based model for this experiment has nine layers. The layers 
are convolution1, pooling1, convolution2, pooling2, convolution3, pooling3, flatten, dense layer1, dense 
layer2 (Table 1). The first layer of the DCNN is convolution, which considers the input images to 
perform the convolution operation on the image pixel before sending the results to the pooling layer. In 
this model, three convolution layers and a few filters have been used. Each filter recognizes specific 
aspects of the image of the rice leaf disease and is trained spatially, considering its position in the volume 
it is applied. In Table 1, a description of convolution layers and filters has been given. To make it simple 
to learn complex relationships in the data, the nonlinear activation function ReLU has been used. For 
Convo1, Convo2, and Convo3, 16, 32 and 64 filters have been employed, respectively. As pooling 
lowers variance and computational complexity, there are fewer parameters to learn in this model. The 
feature map’s dimensions are decreased along with the spatial dimensions by downsampling. It also 
describes the features that may be seen in a section of the convolution’s feature map. The results of the 
very last max pooling layer get flattened into a vector with one dimension and placed into a fully linked 
dense layer. To identify rice leaf disease, a one-dimensional vector was finally generated by the final 
max polling layer and provided into the dense layer. Two dense layers with 64 and 4 hidden neurons 
each were added to the model. 

This experiment reported a total of 3 710 308 parameters and among them all are trainable and 
0 non-trainable parameters. To learn and tune the network parameters in the convolution, pooling,and 
dense layers to condense the features into a 1x64 vector, it is required to input the pictures to our model 
in batches. These characteristics are then transferred to another thick layer to create a vector of 1x5. The 
images are processed through a series of iterations called epochs and use the collection of validation 
images to verify the model and its associated parameters. 
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Table 1. Architecture summary of the DCNN for rice disease dataset classification 

2.2.4 VGG16 (Visual Geometry Group) based rice disease detectionmodel 

VGG -16 is 16 layers DCNN which was trained with over 1 million images from the ImgeNet 
database. The input size of the image for the network is 224x224 (Barman et al., 2020). The VGG 16 
contains 5 sets of convolution layers followed by the maxpool layer. In VGG16, there are a total of 14 
815 044 parameters; among them, there are 100 356 and 14 714 688 trainable parameters and non-
trainable parameters, respectively. In Table 2, a brief description of the different parameters of VGG16 
is given. 

Table 2. Summary of parameters for VGG16 model training on rice disease dataset 

Image Parameter Training 
Train set 4746 Total 14815044 Epoch 10 

Validation set 1186 Trainable 100356 Loss Categorical 
cross-entropy 

Size (244,244) Non-trainable 14714688 Optimizer ADAM 
    Learning rate 0.0001 

2.2.5. Residual Network 50 (ResNet50) based rice disease detection model 

He et al. (2016) introduced the Residual Neural Network (ResNet) deep neural network 
framework. By introducing a novel ”residual” or ”skip connection” concept, was created to overcome 
the difficulty of training deep neural networks. A special variation of the ResNet architecture called 
ResNet-50 has 50 layers. ResNet50 is a deeper network compared to earlier versions like ResNet-18 or 
ResNet-34. It contains 50 layers, including convolutional, pooling, and fully connected layers. ResNet-
50 utilizes a specific type of residual block called the bottleneck block. The bottleneck block decreases 
the number of parameters and computations, which lowers the computational cost of training deeper 
networks. The training set consists of 4746 images (Table 3). These are the images used to train the 
ResNet model and adjust its parameters based on the provided labels. The test set contains 1186 images. 
These images, which are distinct from the training set, are used to assess how well the trained ResNet 
model performed. The test set aids in evaluating the model’s ability to generalize to new data. In this 
study, the model has 6 744 164 trainable parameters, which are adjusted based on the training data to 
improve model performance (Table 3). The model has 18 067 328 non-trainable parameters. The Adam 
optimizer, a common optimization technique that is well-known for it’s success in training deep neural 
networks, is utilized in this instance. 

 

 

 

 

Layers Function Kernal size Pool-size Filter Output Parameters 
Input     256 x 256 0 

Convo1 Convolution 3 x 3  16 16x254x254 448 
Pooling Max Pooling  2,2 16 16x127x127 0 
Convo2 Convolution 3x3  32 32x125x125 4640 

Pooling 2 Max Pooling  2,2 32 32x62x62 0 
Convo3 Convolution 3x3  64 64x60x60 18496 

Pooling 3 Max Pooling  2,2 64 64x30x30 0 
Flatten Flatten    57600 0 
Dense Dense    1x64 3686464 

Dense_1 Dense    1x4 260 
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Table 3. Summary of parameters for ResNet model training on rice disease dataset 

Image Parameter Training 
Train set 4746 Total 24811492 Epoch 10 

Test set 1186 Trainable 6744164 Loss Categorical 
Cross Entropy 

Shape (244,244) Non-
trainable 18067328 Optimizer 

Learning rate 
ADAM 
0.001 

2.2.6. MobileNet based rice disease detection model 
The CNNs are used in mobile imaging applications like MobileNet. They are constructed using 

these compact deep neural networks with depth-wise separable convolutions that can have minimal 
latency for embedded and mobile devices (Barman et al., 2020). Compact deep neural networks with 
depth-wise separable convolutions are used in their construction, allowing for minimal latency 
for embedded and mobile devices (Barman et al., 2020). 

In Table 4, a brief description of the different parameters of MobileNet has been given. In this 
study, the model has 2 228 996 trainable parameters, which are adjusted based on the training data to 
improve model performance. The model has 34112 non-trainable parameters. The model is trained for 
10 epochs like VGG 16 and ResNet 50. 

Table 4. Summary of parameters for MobileNet model training on rice disease dataset 

Image Parameter Training 
Train set 4746 Total 2263108 Epoch 10 

Test Set 1186 Trainable 2228996 Loss Categorical cross 
entropy 

Shape (244,244) Non-trainable 34112 Optimizer 
Learning Rate ADAM 0.0001 

3. Results 

Table 5 shows the performance metrics (precision, recall, and F1 score) of different methods 
(CNN, MobileNet, VGG16, and ResNet 50) for detecting and classifying different rice diseases 
(Bacterial Leaf Blight, Blast, Brownspot, and Tungro). 

Table 5. Comparison of CNN and its transfer learning models for rice disease detection 

 
Methods 

Diseases 
Bacterial Leaf 

Blight Blast Brown Spots Tungro 

CNN 
Precision 0.96 0.96 0.99 0.99 

Recall 0.98 0.95 0.97 1.00 
F1 score 0.97 0.95 0.98 0.99 

MobileNet 
Precision 1.00 0.98 1.00 0.98 

Recall 0.99 1.00 0.99 1.00 
F1 score 1.00 0.99 1.00 0.99 

VGG16 
Precision 0.98 0.93 0.98 0.99 

Recall 0.94 0.97 0.97 1.00 
F1 score 0.96 0.95 0.98 0.99 

ResNet 50 
Precision 0.99 0.99 1.00 1.00 

Recall 1.00 1.00 0.99 0.99 
F1 score 1.00 0.99 1.00 1.00 

Precision is a measure of the accuracy of the model's positive predictions. It calculates the ratio 
of true positive predictions to the sum of true positive and false positive predictions. A higher precision 
indicates that the model has a lower false positive rate. In Table 5, MobileNet achieved high precision 
scores for most diseases, except for blast where it achieved a precision score of 0.98. This means that 
MobileNet had a relatively low false positive rate and made fewer incorrect positive predictions for most 



YYU J AGR SCI 34(2): 314-322 
Barman et al. / Innovative Approaches to Rice (Oryza sativa) Crop Health: A Comprehensive Analysis of Deep Transfer Learning for Early Disease Detection 

320 

diseases. Sethy et al., (2020) reported the 0.98 precision in ResNet 50 in their study which is lesser than 
this study. 

Recall, also known as sensitivity, measures the ability of the model to correctly identify positive 
instances. It calculates the ratio of true positive predictions to the sum of true positive and false negative 
predictions. A higher recall indicates that the model has a lower false negative rate. In Table 5, 
MobileNet achieved high recall scores for most diseases, except for brownspot where it achieved a recall 
score of 0.99. This means that MobileNet correctly identified most positive instances and had a relatively 
low false negative rate for most diseases. 

The F1 score is the harmonic mean of precision and recall. It provides a balance between 
precision and recall, considering both false positives and false negatives. A higher F1 score indicates a 
better overall performance of the model. In Table 5, MobileNet achieved high F1 scores for most 
diseases, except for blast and tungro where it achieved F1 scores of 0.99. This indicates that MobileNet 
had a good balance between precision and recall for most diseases. 

4. Discussion 

Overall, based on Table 5, MobileNet appears to be a strong performer for detecting and 
classifying rice diseases, as it achieved high scores in precision, recall, and F1 scores for most diseases. 
However, it's worth noting that VGG16 and ResNet 50 also performed well in some metrics and 
diseases, with generally high scores across the board. The choice of the best method depends on the 
specific requirements and priorities of the application. Sethy et al. (2020) reported the ResNet 50 as the 
best model in their study with 98% accuracy and 0.98 F1 score whereas the current study produced 99% 
accuracy with MobileNet. To compare the results, Table 6 demonstrates the comparative analysis of the 
different results of the previous study. 

Table 6. Comparative analysis of different studies for rice disease detection  

Author Model No of Rice Disease Class Accuracy 
Sethy et al. (2020) ResNet 50 04 98% 
Deng et al.(2021) Ensemble Model 06 91% 

Upadhyay and Kumar, (2021) CNN 03 99% 
CurrentStudy MobileNet 04 99% 

Table 6, shows a comparative analysis of different studies for rice disease detection, Sethy et 
al., (2020) used the ResNet 50 model to detect rice diseases. They worked with a dataset consisting of 
four different rice disease classes. The accuracy achieved by their model was 98%. Deng et al. (2021) 
employed an Ensemble Model for rice disease detection. Their study involved working with a dataset 
that consisted of six different rice disease classes. The accuracy achieved by their model was 91%. 
Upadhyay and Kumar (2021) utilized a CNN for rice disease detection. They worked with a dataset 
comprising three different rice disease classes. Their model achieved an accuracy of 99%. In this study, 
we used the MobileNet model for rice disease detection with an accuracy of 99%.  

These studies highlight different approaches and models used for rice disease detection, with 
varying numbers of rice disease classes. The accuracy results suggest that all the models achieved high 
accuracy in detecting rice diseases, ranging from 91% to 99%. However, MobileNet can be considered 
one of the best models for rice disease detection. Deep learning models, such as ResNet and MobileNet, 
excel at automatically extracting intricate features from images. This feature extraction capability allows 
these models to detect subtle and early visual cues associated with the onset of rice diseases, including 
changes in leaf color, texture, and structure that may precede visible symptoms and lead to early 
identification of rice diseases. Again by integrating deep learning models into monitoring systems or 
deploying them on drones or cameras in the field, it becomes possible to continuously analyze rice plant 
images in real-time. Early signs of disease development can be detected swiftly, even before the human 
eye can discern them, enabling timely intervention. 
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Conclusion 

One of the key diagnostic windows for rice diseases lies in the leaves, where distinct diseases 
manifest with varying impacts. Recognizing the nuanced differences in how these diseases affect the 
leaves represents a critical aspect of effective disease management. To address this challenge, our study 
embarked on a comprehensive exploration of various deep-learning algorithms. The overarching 
objective was clear: to achieve early diagnosis and intervention. Amidst this diverse algorithmic 
landscape, MobileNet emerged as the standout performer. Its exceptional capabilities in identifying and 
classifying rice leaf diseases signify a significant stride toward bolstering rice crop health. 
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