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Abstract: This paper introduces a mathematical model for skin cancer, formulated 
by fractional order differential equations (FODE). Considering the importance of 
the stress factor, it is included in the model and its effect on tumor cells is 
scrutinized. The study examines the local stability of equilibrium points and 
evaluates the impact of fractional derivatives on the dynamic behavior of the 
system. In addition, numerical simulations are conducted to analyze the influence 
of fractional order derivatives and distinct parameters on population dynamics. 
The presentation of graphs based on various fractional orders and parameter 
values aids in the visualization of the findings. The study further investigates the 
impact of stress on tumor cells. The outcomes are expected to provide valuable 
insights to medical researchers in developing appropriate measures for screening 
and treating skin cancer. 

  
  

 Cilt Kanserinin Stres Etkisiyle Matematiksel Modellenmesi   
 
 

Anahtar Kelimeler  
Kesirli Mertebeden 
Diferansiyel Denklemler, 
Cilt Kanseri, 
Nümerik Simülasyonlar, 
Varlık ve Teklik 

Öz: Bu çalışmada cilt kanseri için kesirli mertebeli diferansiyel denklemler (FODE) 
ile formüle edilen matematiksel bir model sunulmuştur. Stres faktörünün önemi 
dikkate alınarak modele dahil edilmiş ve tümör hücreleri üzerindeki etkisi 
araştırılmıştır. Denge noktalarının yerel kararlılığı incelenmiştir ve kesirli 
türevlerin sistemin dinamik davranışı üzerindeki etkisi değerlendirilmiştir. Ek 
olarak, kesirli mertebeli türevlerin ve farklı parametrelerin popülasyon 
dinamikleri üzerindeki etkisini analiz etmek için sayısal simülasyonlar yapılmıştır. 
Çeşitli kesirli mertebe ve parametre değerlerine dayalı grafiklerin sunulması, 
bulguların görselleştirilmesine yardımcı olmaktadır. Ayrıca stresin tümör hücreleri 
üzerindeki etkisi de araştırılmıştır. Sonuçların, tıbbi araştırmacılara cilt kanserinin 
taranması ve tedavisi için uygun önlemlerin geliştirilmesinde değerli bilgiler 
sağlaması beklenmektedir.  
 

  
 
*İlgili Yazar: semsettintunca@gmail.com
1. Introduction
 
Basal cell and squamous cell carcinomas are two examples of non-melanoma skin malignancies. Despite the 
rarity of death, surgical treatment is both uncomfortable and disfiguring. It is hard to identify the temporal 
trends in the occurrence of these malignancies since the proper recording of them has not been accomplished. 
But particular studies from Australia, Canada, and the US show that the prevalence of non-melanoma skin 
cancers grew by a factor of more than two between the 1960s and the 1980s. Despite being far less common than 
non-melanoma skin cancers, malignant melanoma is the most common kind of skin cancer fatality and is more 
frequently reported and appropriately diagnosed than non-melanoma skin cancers. Malignant melanoma 
incidence has considerably grown in the US since the early 1970s, rising by an average of 4% yearly. A person's 
UV exposure habits, genetic make-up, and attitude all have an impact on their risk of getting malignant 
melanoma, according to several research. The incidence of skin malignancies, including melanoma and 
nonmelanoma, has gone up recently. Every year, there are 2 to 3 million occurrences of non-melanoma skin 
cancer and 132.000 cases of melanoma skin cancer globally. Data released by the Skin Cancer Foundation 
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indicates that one in three cancer diagnoses are related to skin cancer, and one in five Americans will have skin 
cancer at some time in their life. The atmosphere's ability to prevent dangerous solar UV radiation from 
penetrating the Earth's surface declines as ozone levels drop. It is anticipated that there would be 4.500 more 
incidences of melanoma skin cancer and 300.000 more cases of non-melanoma skin cancer for every 10% drop 
in ozone levels (https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-
(uv)radiation-and-skin-cancer). 
 
Skin cancer arises from the skin cells, which are the fundamental building blocks of the skin tissue. Normally, 
these cells undergo a process of growth and division to produce new cells, while old and damaged cells are 
naturally eliminated. However, in certain cases, this intricate balance is disrupted, resulting in an uncontrolled 
proliferation of cells that form a tumor mass [1, 2]. Melanoma, the deadliest type of skin cancer, originates from 
melanocytes and undergoes a distinct clinical course marked by two stages. Melanomas can specifically advance 
to the malignant vertical growth phase (VGP) following an initial phase of radial development in the epidermis 
[3]. The cells called melanocytes, which produce the pigment melanin that gives skin its color, give birth to 
melanoma, a highly aggressive tumor. Melanoma continues to be one of the most aggressive types of cancer even 
after much study [4]. Melanoma is a very aggressive form of skin cancer with a high death rate and an incidence 
that is rising quickly. Melanoma is a desirable target for the development of therapeutic vaccinations since it is a 
solid tumor. T-cell resistance to tumor-associated antigens (TAAs), however, may limit the spectrum of 
functional tumor-reactive T-cells and so reduce the efficacy of such vaccinations. This may make it more difficult 
for vaccinations to produce robust antitumor immunity [5]. Tumors can effectively evade the host's natural 
defences through a multi-step process known as cancer immune editing. Changing from immunosurveillance to 
immunotolerance of the tumor is the key stage in immunoediting, which greatly lowers the immune system's 
capacity to combat cancer. As a result of this process, CD4+ T cells adopt a Type-2" T helper 2 (Th2) phenotype 
rather than a Type-1" T helper 1 (Th1) phenotype, which favours humoral responses and inhibits cytotoxic 
effector activities [6, 7, 8]. Tumor cells exploit host defence mechanisms to promote their progression, invasion, 
and metastasis. One of these mechanisms involves the production of TGF-β cytokine, which exerts an 
immunosuppressive effect by interfering with antigen presentation to lymph nodes and suppressing the effector 
functions of CD4+ and CD8+ T cells, such as proliferation, differentiation, and acquisition of effector molecules 
[9,10]. Although there is a wide range of medications under investigation for use in tumor immunotherapy 
clinical trials, their primary therapeutic objectives involve the disruption or reversal of tumor-induced 
immunosuppression [11, 12]. The potential of oncolytic viral therapies as a cancer treatment has been widely 
recognized, primarily because certain viruses (known as oncolytic viruses) can reproduce within tumor cells 
without causing harm to normal tissue cells [13]. Models represent a complex network of biological components, 
incorporating a structure derived from existing knowledge and parameters based on available data [14]. 
Although many life scientists continue to rely on simple cause-and-effect relationships to expand their 
understanding, leading researchers have observed that the direct connection between observation and insight is 
becoming less clear [15]. Effective computer models can be important resources for cancer researchers; systems 
biologists provide biochemical models of cancer, while physical oncologists provide tissue models. By using 
systems biology, researchers may learn how the network structure and dynamic behavior of melanoma cells 
influence the biochemical pathways involved in drug resistance, invasiveness, proliferation, and survival [16]. 
 
Researchers have studied various skin cancer system interactions. For example, partial differential equations 
(PDEs) were used by Eikenberry et al. [17] to create a spatially explicit model that captured the dynamics of 
melanoma invasion in the skin. In [18], presented a mathematical simulation of the immune response brought on 
by the simultaneous administration of activated OT1 cytotoxic T cells (CTLs) and anti-CD137 monoclonal 
antibodies. The treatment targets melanoma in B16 OVA mouse models treated with a particular 
immunotherapy approach. Nikolov and Menov [19] studied how vaccinations, particularly those based on 
antigens and dendritic cells, affect the control of melanoma micrometastasis. A mathematical model of tumor cell 
interactions with M1 and M2 macrophages was presented by Shu et al. [20]. In [21], Özköse et al. presented a 
mathematical model of stem cells and chemotherapy for cancer treatment using fractional order differential 
equations. Lai and Friedman [22], developed a mathematical model to address the question of how BRAF/MEK 
inhibitors and PD-1 inhibitors interact in the treatment of melanoma. Özköse et al. [23], a novel fractional-order 
mathematical model was investigated that incorporates the Caputo fractional derivative and accounts for the 
population dynamics of tumor cells, macrophage cells, active macrophage cells, and host cells. 
 
The purpose of this work is to construct a fractional-order mathematical model and analyze the effects of stress 
on cancer cell proliferation, which is motivated by the preceding explanation. We have presented a model 
motivated by Öztürk and Özköse's [24] work. A fractional differential equations model research that examines 
the relationship between the immune system and the tumor was offered by [24]. In this model, we added the 
stress effect in the model and analyzed it. Considering the importance of the stress factor, its effect on tumor cells 
has been scrutinized. Consistent systems with coherent units of measurement on both sides of the equations are 

https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)radiation-and-skin-cancer)
https://www.who.int/news-room/questions-and-answers/item/radiation-ultraviolet-(uv)radiation-and-skin-cancer)
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crucial tools in fractional systems. Modifying the variables on the right side of the equations, such as elevating 
them to the power of α, is necessary to achieve dimensional consistency. This approach helps ensure 
dimensional compatibility, providing a clearer demonstration of how the fractional order influences the 
developed system. And from this point of view, we take into consideration this in terms of mathematical 
perspective [25]. 
 
2.  Preliminaries 
 
Definition 1. [26] The fractional integral of order 𝛼 > 0, of the function 𝑓(𝑡), 𝑡 > 0 is given by 

 

𝐼𝛼𝑓(𝑡) = ∫  
𝑡

0

(𝑡 − 𝑠)𝛼−1

Γ(𝛼)
𝑓(𝑠)𝑑𝑠, 

 

and the fractional derivative of order 𝛼 ∈ (𝑛 − 1, 𝑛), 𝑡 > 0 is given by 

 

𝐷𝛼𝑓(𝑡) = 𝐼𝑛−𝛼𝐷𝛼𝑓(𝑡) (𝐷 =
𝑑

𝑑𝑡
), 

 

where 𝛼 > 0 and Γ(.) is the Gamma function. 

Definition 2. [26] The Caputo fractional derivative of order 𝛼 > 0 of a function 𝑓: (0,∞) → ℛ is given by 

 

 0
𝐶𝐷𝑡

𝛼𝑓(𝑡) =

{
 
 

 
 1

Γ(𝑛 − 𝛼)
∫  
𝑡

0

 
(

𝑑

𝑑𝜏)𝑛𝑓(𝜏)
)

(𝑡 − 𝜏)𝛼−𝑛+1𝑑𝜏,
0 ≤ 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 = [𝛼], 𝑛 ∈ 𝑁,

(
𝑑

𝑑𝑡
)
𝑛

𝑓(𝑡), 𝛼 = 𝑛, 𝑛 ∈ 𝑁.

                                                           (1) 

 

Definition 3. [26] The Laplace transform (LT) of the function 𝑓(𝑡) of order 𝛼 > 0 is defined by 

 

𝐿[ 0
𝐶𝐷𝑡

𝛼𝑓(𝑡)] = 𝑠𝛼𝐹(𝑠) −∑  

𝑛−1

𝑣=0

𝑓(𝑣)(0)𝑠𝛼−𝑣−1 .                                                                                                                               (2) 

 

Definition 4. [26] The Laplace transform (LT) of the function 𝑓(𝑡) = 𝑡𝜗1−1𝐸𝜗,𝜗1(±𝜔𝑡
𝜗) is defined as 

 

𝐿[𝑡𝜗1−1𝐸𝜗,𝜗1(±𝜔𝑡
𝜗)] =

𝑠𝜗−𝜗1

𝑠𝜗 ±𝜔
 .                                                                                                                                                     (3) 

 

Theorem 1. [27, 28, 29] Consider the following fractional-order system: 

 

𝑑𝛼𝑥

𝑑𝑡𝛼
= 𝑓(𝑥),  𝑥(0) = 𝑥0,                                                                                                                                                                       (4) 
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with 𝛼 ∈ (0,1] and 𝑥 ∈ 𝑅𝑛. The zeros of the function 𝑓(𝑋∗) = 0 are the equilibrium points of the system (5) and 

these equilibrium points: 

 

(1) Asymptomatically stable ⟺ the eigenvalues 𝜆𝑖 of the Jacobian matrix  𝐽(𝑋∗) satisfy that |arg (𝜆𝑖)| >
𝛼𝜋

2
,           

       ∀𝑖, 𝑖 = 1,2, … , 𝑛. 

 

(2) Unstable ⟺ ∃𝑖, such that the corresponding eigenvalue 𝜆𝑖 of 𝐽(𝑋∗) satisfy 

       |arg (𝜆𝑖)| <
𝛼𝜋

2
, 𝑖 = 1,2, … , 𝑛. 

Theorem 2. [30] Take into account the polynomial equation 

 

𝑃(𝜆) = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 +⋯ . . +𝑎𝑛−1𝜆 + 𝑎𝑛. 

 

(1) For 𝑛 = 1, the condition for |arg (𝜆𝑖)| >
𝛼𝜋

2
  is  𝛼1 > 0, 

 

(2) For 𝑛 = 2, the condition for |arg (𝜆𝑖)| >
𝛼𝜋

2
 are either Routh-Hurwitz conditions [31] (𝑎1 > 0, 𝑎2 > 0) or     

       𝑎1 < 0,4𝑎2 > 𝑎1
2, |tan−1 (4𝑎2 > 𝑎1

2)| >
𝛼𝜋

2
. 

 

3. Mathematical Modelling 
 
The use of mathematical models in predicting the severity and progression of skin cancers, as well as forecasting 
their future manifestations, has proven notably effective. Such models also hold promise in developing 
treatments for a wide array of ailments. Several mathematical representations have been devised to elucidate 
the nature of skin cancer and its detrimental influence on various chronic conditions. This study's objective is to 
explore the association between stress and skin cancer using a distinct model. The evaluation of skin cancer 
incorporates the consideration of three cell types: macrophage cells (𝑀1), active macrophage cells (𝑀2), and 
tumor cells (𝑇). 
 
Consistent systems with coherent units of measurement on both sides of the equations are crucial tools in 
fractional systems. Modifying the variables on the right side of the equations, such as elevating them to the 
power of α, is necessary to achieve dimensional consistency. This approach helps ensure dimensional 
compatibility, providing a clearer demonstration of how the fractional order influences the developed system. 
The proposed fractional-order model can be represented as follows: 
 

 0
𝑐𝐷𝑡

𝛼𝑀1(𝑡) = 𝑀1(𝑡)𝜑1
𝛼 (1 −

𝑀1(𝑡)

𝜃1
𝛼 ) − 𝛿𝛼𝑀1(𝑡)𝑀2(𝑡) − 𝛾1

𝛼𝑀1(𝑡) + 𝜂1
𝛼𝑀2(𝑡) − 𝑠1

𝛼𝑀1(𝑡),

 0
𝑐𝐷𝑡

𝛼𝑀2(𝑡) = 𝑀2(𝑡)(𝛿
𝛼𝑀1(𝑡) − 𝛾2

𝛼) − 𝑠2
𝛼𝑀2(𝑡),

 0
𝑐𝐷𝑡

𝛼𝑇(𝑡) = 𝑇(𝑡)𝜑2
𝛼 (1 −

𝑇(𝑡)

𝜃2
𝛼 ) − 𝜎

𝛼𝑇(𝑡)𝑀2(𝑡) + 𝑐
𝛼 ,

                                     (5) 

 

with the initial conditions:  𝑀1(0) = 𝑀10 ≥ 0,  𝑀2(0) = 𝑀20 ≥ 0,  𝑇(0) = 𝑇0 ≥ 0, where 𝑡 ≥ 0 and 𝛼 (0 < 𝛼 ≤ 1) 

is order of model. 

4. Existence and Uniqueness (E&U) 
 
With the initial conditions 𝑀1(0) = 𝑀10 , 𝑀2(0) = 𝑀20 , 𝑇(0) = 𝑇0, let's consider the system (5). It is possible to 

express system (5) as follows: 

 0
𝑐𝐷𝑡

𝛼𝑋(𝑡) = {
𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉

𝑋(𝑡0) = 𝑋0
                                                                             (6) 
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Table 1. The biological meanings of the parameters and numerical values 

 

Par. Description Values Reference 

𝜃1 The macrophages' carrying capacity 20 [24] 

𝜃2 The tumor cells' carrying capacity 10 [24] 

𝜑1 Macrophage cells' growth rate 0.5 [24] 

𝜑2 Tumor cells' growth rate 0.4 [24] 

𝛾1 The natural death rate of the macrophage cells 0.07 [24] 

𝛾2 The active-macrophages cells' natural mortality rate 0.7 [24] 

𝜎 The proportion of tumor cells being destroyed 0.3 [24] 

𝛿 The proportion of inactive macrophages that become 0.201 [24] 

𝑐 The transformation rate of normal cells to malignant ones 9.8 [24] 

𝜂1 The rate at which activated macrophages transform into 0.05 [24] 

𝑠1 Stress-related macrophage cell degeneration 0.02 Estimated 

𝑠2 Stress-related active-macrophage cell degeneration 0.02 Estimated 

 
Where 
 
 

𝑋(𝑡) = (

𝑀1(𝑡)

𝑀2(𝑡)

𝑇(𝑡)
) , 𝑋(0) = (

𝑀1(0)

𝑀2(0)

𝑇(0)
) ,   𝐵1 = (

𝜑1
𝛼 − 𝛾1

𝛼 − 𝑠1
𝛼 𝜂1

𝛼 0

0 −𝛾1
𝛼 − 𝑠2

𝛼 0

0 0 𝜑2
𝛼
), 

 

𝐵2 = (

−𝜑1
𝛼

𝜃1
𝛼 −𝛿𝛼 0

0 0 0
0 0 0

) ,   𝐵3 = (
0 0 0
𝛿𝛼 0 0
0 0 0

) ,   𝐵4 = (

0 0 0
0 0 0

0 −𝜎𝛼
−𝜑2

𝛼

𝜃2
𝛼

) , 𝑉 = (
0
0
𝑐𝛼
). 

 

In view of [32, 33, 34, 35], the definitions required for E&U are given following: 

Definition 5. Assume that 𝐶∗[0, 𝜏] represents the class of continuous column vector 𝑋(𝑡). The continuous 

functions on the interval [0, 𝜏] are represented by the components 𝑀1, 𝑀2, 𝑇 ∈ 𝐶
∗[0, 𝜏]. The norm of 𝑋 ∈ 𝐶∗[0, 𝜏] 

is 

 

∥ 𝑋 ∥= sup
𝑡
 |𝑒−𝑁𝑡𝑀1(𝑡)| + sup

𝑡
 |𝑒−𝑁𝑡𝑀2(𝑡)| + sup

𝑡
 |𝑒−𝑁𝑡𝑇(𝑡)| 

 

when 𝑡 > 𝜓 ≥ 𝑚, we write 𝐶𝜓
∗ [0, 𝜏] and 𝐶𝜓[0, 𝜏]. 

Definition 6. 𝑋 ∈ 𝐶∗[0, 𝜏] is a solution of the initial value problem (IVP) (6) if  

(1) (𝑡, 𝑋(𝑡)) ∈ 𝐷, 𝑡 ∈ [0, 𝜏] where 𝐷 = [0, 𝜏] × 𝐾,𝐾 = {(𝑀1, 𝑀2, 𝑇) ∈ 𝑅+
3 : |𝑀1| ≤ 𝑝, |𝑀| ≤ 𝑟, |𝑇| ≤ 𝑤}; 𝑝, 𝑟, 𝑤 are 

positive constants. 

(2) 𝑋(𝑡) satisfy (6). 
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Theorem 3. The initial value problem (6) has a unique solution 𝑋 ∈ 𝐶∗[0, 𝜏]. 

Proof. The FODE in (6) can be represented based on the characteristics of fractional calculus: 

 

𝐼1−𝛼
𝑑

𝑑𝑡
𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉. 

 

Operating with 𝐼𝛼  we get 

 

𝑋(𝑡) = 𝑋(0) + 𝐼𝛼(𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉).                                                                (7) 

 

Now let 𝐹: 𝐶∗[0, 𝜏] → 𝐶∗[0, 𝜏] be defined by 

 

𝐹𝑋(𝑡) = 𝑋(0) + 𝐼𝛼(𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉).                                                              (8) 

 

Then 

 

𝑒−𝑁𝑡(𝐹𝑋 − 𝐹𝑌) = 𝑒−𝑁𝑡𝐼𝛼(𝐵1(𝑋(𝑡) − 𝑌(𝑡)) + 𝑀1(𝑡)𝐵2(𝑋(𝑡) − 𝑌(𝑡))

+𝑀2(𝑡)𝐵3(𝑋(𝑡) − 𝑌(𝑡)) + 𝑇(𝑡)𝐵4(𝑋(𝑡) − 𝑌(𝑡)))

 ≤
1

Γ(𝛼)
∫  
𝑡

0

  (𝑡 − 𝑠)𝛼−1𝑒−𝑁(𝑡−𝑠)(𝑋(𝑠) − 𝑌(𝑠))

 × 𝑒−𝑁𝑠(𝐵1 + 𝑝𝐵2 + 𝑟𝐵3 + 𝑤𝐵4)𝑑𝑠

 ≤
(𝐵1 + 𝑝𝐵2 + 𝑟𝐵3 + 𝑤𝐵4)

𝑁𝛼
∥ 𝑋 − 𝑌 ∥ ∫  

𝑡

0

 
𝑠𝛼−1

Γ(𝛼)
𝑑𝑠

 

 

This implies that 

 

∥ 𝐹𝑋 − 𝐹𝑌 ∥≤
(𝐵1 + 𝑝𝐵2 + 𝑟𝐵3 +𝑤𝐵4)

𝑁𝛼
∥ 𝑋 − 𝑌 ∥ 

 

If 𝑁 is chosen such that: 

 

𝑁𝛼 > 𝐵1 + 𝑝𝐵2 + 𝑟𝐵3 +𝑤𝐵4, 

 

then we obtain 

 

∥ 𝐹𝑋 − 𝐹𝑌 ∥≤∥ 𝑋 − 𝑌 ∥ 

And the operator 𝐹 has a fixed point. As a result, (7) has a unique solution 𝑋 ∈ 𝐶∗[0, 𝜏]. From (7), it has been 

concluded that: 
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𝑋(𝑡) = 𝑋(0) +
𝑡𝛼

Γ(𝛼 + 𝐼)
(𝐵1𝑋(0) +𝑀1(0)𝐵2𝑋(0) +𝑀2(0)𝐵3𝑋(0)

+𝑇(0)𝐵4𝑋(0) + 𝑉) + 𝐼
𝛼−1(𝐵1𝑋

′(𝑡) + 𝑀1
′(𝑡)𝐵2𝑋(𝑡)

 +𝑀1(𝑡)𝐵2𝑋
′(𝑡) + 𝑀2

′(𝑡)𝐵3𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋
′(𝑡)

+𝑇′(𝑡)𝐵4𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋
′(𝑡))

 

and 

𝑑𝑋(𝑡)

𝑑𝑡
=

𝑡𝛼−1

Γ(𝛼)
(𝐵1𝑋(0) + 𝑀1(0)𝐵2𝑋(0) + 𝑀2(0)𝐵3𝑋(0)

+𝑇(0)𝐵4𝑋(0) + 𝑉) + 𝐼
𝛼(𝐵1𝑋

′(𝑡) + 𝑀1
′(𝑡)𝐵2𝑋(𝑡)

 +𝑀1(𝑡)𝐵2𝑋
′(𝑡) + 𝑀2

′(𝑡)𝐵3𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋
′(𝑡)

+𝑇′(𝑡)𝐵4𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋
′(𝑡))

𝑒−𝑁𝑡𝑋′(𝑡) = 𝑒−𝑁𝑡 [
𝑡𝛼−1

Γ(𝛼)
(𝐵1𝑋(0) + 𝑀1(0)𝐵2𝑋(0) + 𝑀2(0)𝐵3𝑋(0)

+𝑇(0)𝐵4𝑋(0) + 𝑉) + 𝐼
𝛼(𝐵1𝑋

′(𝑡) + 𝑀1
′(𝑡)𝐵2𝑋(𝑡)

 +𝑀1(𝑡)𝐵2𝑋
′(𝑡) + 𝑀2

′(𝑡)𝐵3𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋
′(𝑡)

+𝑇′(𝑡)𝐵4𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋
′(𝑡))]

 

 

from here, the conclusion 𝑋′ ∈ 𝐶𝜎
∗[0, 𝜏] is reached. Then, from (7), we have 

 

𝑑𝑋(𝑡)

𝑑𝑡
=
𝑑

𝑑𝑡
𝐼𝛼(𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉),

𝐼1−𝛼
𝑑𝑋(𝑡)

𝑑𝑡
= 𝐼1−𝛼

𝑑

𝑑𝑡
𝐼𝛼(𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉),

 

𝐷𝛼𝑋(𝑡) = 𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉 

and 

𝑋(0) = 𝑋0 + 𝐼
𝛼(𝐵1𝑋(𝑡) + 𝑀1(𝑡)𝐵2𝑋(𝑡) + 𝑀2(𝑡)𝐵3𝑋(𝑡) + 𝑇(𝑡)𝐵4𝑋(𝑡) + 𝑉), 

therefore (7) is equivalent to the initial value problem (6). 

5. Equilibrium Points and Their Stability (E&S) 
 
To calculate the equilibria of system (5), let 

 

 0
𝐶𝐷𝑡

𝛼𝑀1(𝑡) = 0,

 0
𝐶𝐷𝑡

𝛼𝑀2(𝑡) = 0,

 0
𝐶𝐷𝑡

𝛼𝑇(𝑡) = 0.

 

Thus 

 

𝑀1𝜑1
𝛼 (1 −

𝑀1
𝜃1
𝛼) − 𝛿

𝛼𝑀1𝑀2 − 𝛾1
𝛼𝑀1 + 𝜂1

𝛼𝑀2 − 𝑠1
𝛼𝑀1 = 0,

𝑀2(𝛿
𝛼𝑀1 − 𝛾2

𝛼) − 𝑠2
𝛼𝑀2 = 0,

𝑇𝜑2
𝛼 (1 −

𝑇

𝜃2
𝛼) − 𝜎

𝛼𝑇𝑀2 + 𝑐
𝛼 = 0.

                                                                                               (9) 
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Then the equilibrium points are: 
 

𝐸1 = (0,0,
𝜃2
𝛼

2
−
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 

 

𝐸2 = (0,0,
𝜃2
𝛼

2
+
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 

 

𝐸3 = (𝜃1
𝛼𝜑1

𝛼(−𝑠1
𝛼 − 𝛾1

𝛼 + 𝜑1
𝛼), 0,

𝜃2
𝛼

2
−
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 

 

𝐸4 = (𝜃1
𝛼𝜑1

𝛼(−𝑠1
𝛼 − 𝛾1

𝛼 + 𝜑1
𝛼), 0,

𝜃2
𝛼

2
+
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 

 

𝐸5 = (𝛿−𝛼(𝑠2
𝛼 + 𝛾2

𝛼),
𝛿−2𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

−𝛼(−(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 − 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼

𝛿−2𝛼𝜃1
−𝛼𝜑2

−𝛼

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)2𝜃2

𝛼𝜑1
𝛼 + 𝛿𝛼𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

𝛼𝜃2
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +𝛿2𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)𝜃1

𝛼𝜃2
𝛼𝜑2

𝛼 − 𝛿2𝛼(𝜃2
𝛼(4𝑐𝛼(𝑠2

𝛼 + 𝛾2
𝛼 − 𝜂1

𝛼)2𝜃1
2𝛼𝜑2

𝛼 + 𝛿−4𝛼𝜃2
𝛼(𝛿2𝛼𝜂1

𝛼𝜃1
𝛼𝜑2

𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

))

 

 

𝐸6 = (𝛿−𝛼(𝑠2
𝛼 + 𝛾2

𝛼),
𝛿−2𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

−𝛼(−(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 − 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼

𝛿−2𝛼𝜃1
−𝛼𝜑2

−𝛼

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)2𝜃2

𝛼𝜑1
𝛼 + 𝛿𝛼𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

𝛼𝜃2
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +𝛿2𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)𝜃1

𝛼𝜃2
𝛼𝜑2

𝛼 + 𝛿2𝛼(𝜃2
𝛼(4𝑐𝛼(𝑠2

𝛼 + 𝛾2
𝛼 − 𝜂1

𝛼)2𝜃1
2𝛼𝜑2

𝛼 + 𝛿−4𝛼𝜃2
𝛼(𝛿2𝛼𝜂1

𝛼𝜃1
𝛼𝜑2

𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

))

 

 

5.1. Positivity and boundedness 
 
The positivity and boundedness of the model (5) solution have been analyzed in this section. Let 𝑅+

3 = 𝜁(𝑡) ∈

𝑅3: 𝜁(𝑡) ≥ 0 and 𝜁(𝑡) = [𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡)]
𝑇. Let us reviewthe lemma that will be utilized to prove that the 

solution to model (5) is non-negative. 

Lemma 1. (Generalized Mean Value Theorem) [26] Assume that 𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] and  0
𝐶𝐷𝑡

𝛼𝑤(𝑡) ∈ 𝐶[𝑎, 𝑏] for 0 <

𝛼 ≤ 1, then 𝑤(𝑡) = 𝑤(𝑎) +
1

Γ(𝛼)
 0
𝑐𝐷𝑡

𝛼𝑤(𝜏)(𝑡 − 𝛼)𝛼, where 0 ≤ 𝜏 ≤ 𝑡, ∀𝑡 ∈ (𝑎, 𝑏]. 

Remark 1. If 𝑤 ∈ 𝐶[𝑎, 𝑏] and  0
𝐶𝐷𝑡

𝛼𝑤(𝑡) ≥ 0, ∀𝑡 ∈ (𝑎, 𝑏], then the function 𝑤(𝑡) is non-increasing for all 𝑡 ∈ (𝑎, 𝑏]. 

Theorem 4. The solution of model (5) along with initial conditions is bounded in 𝑅+
3 . 
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Proof. 

 0
𝑐𝐷𝑡

𝛼𝑀1(𝑡)|𝑀1(𝑡)=0 = 𝜂1
𝛼𝑀2(𝑡) ≥ 0,

 0
𝑐𝐷𝑡

𝛼𝑀2(𝑡)|𝑀2(𝑡)=0 = 0 ≥ 0,

 0
𝐶𝐷𝑡

𝛼𝑇(𝑡)|𝑇(𝑡)=0 = 𝑐
𝛼 ≥ 0.

                                                                                                                                   (10) 

 

If (𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡)) ∈ 𝑅+
3 , then from system (10) and Remark 1, the solution of model (5) can only be of high 

hyperplanes 𝑀1(𝑡) = 0,𝑀2(𝑡) = 0 and 𝑇(𝑡) = 0. This concludes that the area 𝑅+
3  is a positive invariant set. 

Theorem 5. The region 𝑄 = {𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡) ∈ 𝑅+
3 ,  0 < 𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡) ≤ 𝑐

𝛼𝑝1 +𝑁(0)𝑝2} is a positive 

invariant set for the system (5). 

Proof. (5) yields the following: 

 

 0
𝐶𝐷𝑡

𝛼𝑁(𝑡) = 𝑀1(𝑡)𝜑1
𝛼 −

𝜑1
𝛼

𝜃1
𝛼 𝑀1

2(𝑡) − 𝛾1
𝛼𝑀1(𝑡) + 𝜂1

𝛼𝑀2(𝑡) − 𝑠1
𝛼𝑀1(𝑡)

 −𝛾2
𝛼𝑀2(𝑡) − 𝑠2

𝛼𝑀2(𝑡) + 𝑇(𝑡)𝜑2
𝛼 −

𝜑2
𝛼

𝜃2
𝛼 𝑇

2(𝑡) − 𝜎𝛼𝑇(𝑡)𝑀2(𝑡) + 𝑐
𝛼

 

 

This gives  0
𝑐𝐷𝑡

𝛼𝑁(𝑡) ≤ 𝑐𝛼 +𝑀1(𝑡)𝜑1
𝛼 + 𝜂1

𝛼𝑀2(𝑡) + 𝑇(𝑡)𝜑2
𝛼 ≤ 𝑐𝛼 + 𝑁(𝑡). 

When LT is applied to the previous equation, the outcome is: 

 

𝑠𝑣𝑤(𝑁) − 𝑠𝑣−1𝑁(0) ≤ 𝑐𝛼 + 𝑤(𝑁) 

 

which further gives 𝑤(𝑁) ≤
𝑐𝛼

𝑠𝑣−1−1
+

𝑠𝑣−1

𝑠𝑣−1
𝑁(0), from the definitions 3 and 4, we get that if (𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡)) ∈

𝑅+
3 , then 

 

𝑁(𝑡) ≤ 𝑐𝛼𝑡𝑣𝐸𝑣,𝑣+1(𝑡
𝑣) + 𝑡𝑣−1𝐸𝑣,1(𝑡

𝑣)𝑁(0) ≤ 𝑐𝛼𝑝1 + 𝑁(0)𝑝2 

 

where 𝑝1 and 𝑝2 are constants. 

Thus 𝑁(𝑡) (the total cell) is bounded and 𝑀1(𝑡),𝑀2(𝑡), 𝑇(𝑡) are bounded. 

5.2. Stability of the equilibria 
  
Here, we outline the prerequisites for equilibria's stability. 

Theorem 6. Let 𝐸1 be the equilibrium points system (5). Then 𝐸1 is unstable. 

 

Proof. The Jacobian matrix of model (5) evaluated at equilibrium point 𝐸1 is given by 

𝐽(𝐸1) =

(

 
 

𝜑1
𝛼 − 𝑠1

𝛼 − 𝛾1
𝛼 𝜂1

𝛼 0

0 −𝛾2
𝛼 − 𝑠2

𝛼 0

0 −𝜎𝛼 (
𝜃2
𝛼

2
−
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2

)
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The characteristic equation is |𝐽(𝐸1) − 𝜆𝐼| = 0. Hence the eigenvalues of 𝐽(𝐸1) are written as 

𝜆1 = −𝑠2
𝛼 − 𝛾2

𝛼 ,

𝜆2 = 𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2,

𝜆3 = −𝑠1
𝛼 − 𝛾1

𝛼 + 𝜑1
𝛼.

 

We know that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are positive. Since 𝜆1 < 0 and |arg (𝜆1)| >
𝛼𝜋

2
, 𝜆2 > 0 and         

|arg (𝜆2)| <
𝛼𝜋

2
. According to the Theorem (1), equilibrium point 𝐸1 is unstable. 

Theorem 7. Let 𝐸2 be the equilibrium points system (5). Assume that 𝜑1
𝛼 < 𝑠1

𝛼 + 𝛾1
𝛼 . Then 𝐸2 is locally 

asymptotically stable (LAS). 

Proof. The Jacobian matrix of model (5) obtained at 𝐸2 equilibrium point is given by 

 

𝐽(𝐸2) =

(

 
 

𝜑1
𝛼 − 𝛾1

𝛼 − 𝑠1
𝛼 𝜂1

𝛼 0

0 −𝛾2
𝛼 − 𝑠2

𝛼 0

0 −𝜎𝛼 (
𝜃2
𝛼

2
+
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) −𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2

)

 
 

 

 

The characteristic equation is |𝐽(𝐸2) − 𝜆𝐼| = 0. Hence the eigenvalues of 𝐽(𝐸2) are written as 

 

𝜆1 = −𝑠2
𝛼 − 𝛾2

𝛼 ,

𝜆2 = −𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2,

𝜆3 = −𝑠1
𝛼 − 𝛾1

𝛼 + 𝜑1
𝛼.

 

 

We know that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are positive. Since 𝜆1 < 0 and |arg (𝜆1)| >
𝛼𝜋

2
, 𝜆2 < 0 and 

|arg (𝜆2)| >
𝛼𝜋

2
, We assume that 𝜑1

𝛼 < 𝑠1
𝛼 + 𝛾1

𝛼  then 𝜆3 < 0 and |arg (𝜆3)| >
𝛼𝜋

2
. Therefore, all eigenvalues satisfy 

|arg (𝜆𝑖)| >
𝛼𝜋

2
. Hence by Theorem (1), 𝐸2 is locally asymptotic stable. 

Theorem 8. Let 𝐸3 be the equilibrium points system (5). Then 𝐸3 is unstable.       

        

Proof. The Jacobian matrix of model (5) evaluated at equilibrium point 𝐸3 is given by 

 

𝐽(𝐸3) =

(

 
 

𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼 𝜂1

𝛼 + 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼) 0

0 −𝑠2
𝛼 − 𝛾2

𝛼 − 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼) 0

0 −𝜎𝛼 (
𝜃2
𝛼

2
−
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) 𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2

)

 
 

 

 

The characteristic equation is |𝐽(𝐸3) − 𝜆𝐼| = 0. Hence the eigenvalues of 𝐽(𝐸3) are written as 

 

𝜆1 = 𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2,

𝜆2 = 𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼,

𝜆3 = −𝑠2
𝛼 − 𝛾2

𝛼 − 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼).
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We know that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are positive. 𝜆1 > 0 and |arg (𝜆1)| <
𝛼𝜋

2
. According to the Theorem 

(1), equilibrium point 𝐸3 is unstable. 

Theorem 9. Let 𝐸4 be the equilibrium points system (5). Assume that 𝑠1
𝛼 + 𝛾1

𝛼 < 𝜑1
𝛼 and                     

−𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼) < 𝑠2

𝛼 + 𝛾2
𝛼 . Then 𝐸4 is LAS. 

Proof. The Jacobian matrix of model (5) evaluated at equilibrium point 𝐸4 is given by 

 

𝐽(𝐸4) =

(

 
 

𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼 𝜂1

𝛼 + 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼) 0

0 −𝑠2
𝛼 − 𝛾2

𝛼 − 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼) 0

0 −𝜎𝛼 (
𝜃2
𝛼

2
+
1

2
𝜃2

𝛼

2𝜑2
−
𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2) −𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2

)

 
 

 

 

The characteristic equation is |𝐽(𝐸4) − 𝜆𝐼| = 0. Hence the eigenvalues of 𝐽(𝐸4) are written as 

𝜆1 = −𝜃2
−
𝛼

2𝜑2

𝛼

2(4𝑐𝛼 + 𝜃2
𝛼𝜑2

𝛼)
1

2,

𝜆2 = 𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼.

𝜆3 = −𝑆2
𝛼 − 𝛾2

𝛼 − 𝜃1
𝛼𝜑1

−𝛼𝛿𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼).

 

We know that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are positive. Since 𝜆1 < 0 and |arg (𝜆1)| >
𝛼𝜋

2
. We assume that          

𝑠1
𝛼 + 𝛾1

𝛼 < 𝜑1
𝛼 and −𝜃1

𝛼𝜑1
−𝛼𝛿𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼) < 𝑠2
𝛼 + 𝛾2

𝛼  then 𝜆2 < 0 and |arg (𝜆2)| >
𝛼𝜋

2
, 𝜆3 < 0 and     

|arg (𝜆3)| >
𝛼𝜋

2
. Therefore, all eigenvalues satisfy |arg (𝜆𝑖)| >

𝛼𝜋

2
. Hence by Theorem (1), 𝐸4 is locally asymptotic 

stable. 

Theorem 10. Let 𝐸5 be the equilibrium points system (5). Assume that 

𝑠2
𝛼 + 𝛾2

𝛼 < 𝜂1
𝛼 , 𝑠2

𝛼 + 𝛾2
𝛼 < −𝛿𝛼𝜃1

𝛼𝜑1
−𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼) and 

(𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 < 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

 

Then the 𝐸5 is locally asymptotically stable. 

Proof. 

 

𝐽(𝐸5) = (
𝑗11 𝜂1

𝛼 − (𝑠2
𝛼 + 𝛾2

𝛼) 0
𝑗21 0 0
0 𝑗32 𝑗33

) 

 

Where 

 

𝑗11 = −𝑠1
𝛼 − 𝛾1

𝛼 + 𝜑1
𝛼 − 2𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

−𝛼𝜑1
𝛼 + (

𝛿−𝛼𝜃1
−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)(𝛿𝛼𝑠1

𝛼𝜃1
𝛼 + 𝛿𝛼𝛾1

𝛼𝜃1
𝛼 + 𝜑1

𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝛿𝛼𝜃1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼 ) ,

𝑗21 =
𝛿−𝛼𝜃1

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼)(−𝜑1
𝛼(𝑠2

𝛼 + 𝛾2
𝛼) − 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼 ,
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𝑗32 =
−𝜎𝛼𝛿−2𝛼𝜃1

−𝛼𝜑2
−𝛼

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)2𝜃2

𝛼𝜑1
𝛼 + 𝛿𝛼𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

𝛼𝜃2
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +𝛿2𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)𝜃1

𝛼𝜃2
𝛼𝜑2

𝛼 − 𝛿2𝛼(𝜃2
𝛼(4𝑐𝛼(𝑠2

𝛼 + 𝛾2
𝛼 − 𝜂1

𝛼)2𝜃1
2𝛼𝜑2

𝛼 + 𝛿−4𝛼𝜃2
𝛼(𝛿2𝛼𝜂1

𝛼𝜃1
𝛼𝜑2

𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

) ,

 

𝑗33 = 𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

.
 

 

The characteristic equation is |𝐽(𝐸5) − 𝜆𝐼| = 0. Hence 

(𝜆 + 𝑍)(𝜆2 + 𝐺𝜆 + 𝑅) = 0                                                                                                                                                              (11) 

where 

𝐺 = 𝛿−𝛼𝜃1
−𝛼 ((𝑠2

𝛼 + 𝛾2
𝛼)2𝜑1

𝛼 − 𝜂1
𝛼(2(𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))) (𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1, 

 

𝑅 = 𝛿−𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
−𝛼(−(𝑠2

𝜔 + 𝛾2
𝛼)𝜑1

𝛼 − 𝛿𝛼𝜃1
𝛼(𝑠1

𝜔 + 𝛾1
𝜎 − 𝜑1

𝜔)), 

 

𝑍 =  −𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

.
 

 

Let 𝜆1, 𝜆2 and 𝜆3 be the roots of (11). Given the presumptions, we may say that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are 

positive. Therefore 𝜆1 = −𝑍 < 0, 𝐺 > 0, 𝑅 > 0. Thus, from Routh-Hurwitz Criteria if 𝐺 > 0, 𝑅 > 0 then 𝜆2 and 𝜆3 

are negative or have negative real parts. Due to this, all eigenvalues ensure |arg (𝜆𝑖)| >
𝛼𝜋

2
 and 𝐸5 is local 

asymptotically stable. 

Eigenvalues of 𝐽(𝐸5) are: 

 

𝜆1 = 𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

,
 

 

𝜆2 =  −
1

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)(𝑠2

𝛼 + 𝛾2
𝛼 − 2𝜂1

𝛼)𝜃1
−𝛼𝜑1

𝛼 − 𝜂1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)(𝛿−2𝛼𝜃1

−2𝛼(4𝛿𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
𝛼((𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))

+ ((𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 − 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)))

2
(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−2))

1

2

) ,
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𝜆3 =
1

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(−𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)(𝑠2

𝛼 + 𝛾2
𝛼 − 2𝜂1

𝛼)𝜃1
−𝛼𝜑1

𝛼 + 𝜂1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)(𝛿−2𝛼𝜃1

−2𝛼(4𝛿𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
𝛼((𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))

+ ((𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 − 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)))

2
(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−2))

1

2

) .

 

Theorem 11. Let 𝐸6 be the equilibrium points system (5). Assume that 

𝑠2
𝛼 + 𝛾2

𝛼 > 𝜂1
𝛼 , 𝑠2

𝛼 + 𝛾2
𝛼 < −𝛿𝛼𝜃1

𝛼𝜑1
−𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼) and 

(𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 > 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

 

Then the 𝐸6 is locally asymptotically stable. 

Proof. 

𝐽(𝐸6) = (
𝑗11 𝜂1

𝛼 − (𝑠2
𝛼 + 𝛾2

𝛼) 0
𝑗21 0 0
0 𝑗32 𝑗33

) 

where 

𝑗11 = −𝑠1
𝛼 − 𝛾1

𝛼 + (1 − 2𝛿−𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
−𝛼)𝜑1

𝛼 − (
𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

−𝛼(−(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 − 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼 ) ,

𝑗21 =
𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

−𝛼(−(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 − 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼 ,

 

𝑗32 =
−𝜎𝛼𝛿−2𝛼𝜃1

−𝛼𝜑2
−𝛼

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)2𝜃2

𝛼𝜑1
𝛼 + 𝛿𝛼𝜎𝛼(𝑠2

𝛼 + 𝛾2
𝛼)𝜃1

𝛼𝜃2
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +𝛿2𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)𝜃1

𝛼𝜃2
𝛼𝜑2

𝛼 + 𝛿2𝛼(𝜃2
𝛼(4𝑐𝛼(𝑠2

𝛼 + 𝛾2
𝛼 − 𝜂1

𝛼)2𝜃1
2𝛼𝜑2

𝛼 + 𝛿−4𝛼𝜃2
𝛼(𝛿2𝛼𝜂1

𝛼𝜃1
𝛼𝜑2

𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

) ,

 

𝑗33 =  −𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

.
 

 

The characteristic equation is |𝐽(𝐸6) − 𝜆𝐼| = 0. Hence 

 

(𝜆 + 𝐾)(𝜆2 + 𝐺𝜆 + 𝑅) = 0                                                                                                                                                               (12) 

where 

𝐺 = 𝛿−𝛼𝜃1
−𝛼 ((𝑠2

𝛼 + 𝛾2
𝛼)2𝜑1

𝛼 − 𝜂1
𝛼(2(𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))) (𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1,

 

𝑅 = 𝛿−𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
−𝛼(−(𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 − 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)), 
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𝐾 = 𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

.
 

Let 𝜆1, 𝜆2 and 𝜆3 be the roots of (12). By the assumptions, we know that 𝜑1, 𝜑2, 𝜃1, 𝜃2, 𝛿, 𝛾1, 𝛾2, 𝜂1, 𝜎, 𝑐 are pozitive. 

Therefore 𝜆1 = −𝐾 < 0, 𝐺 > 0, 𝑅 > 0. From Routh-Hurwitz Criteria if 𝐺 > 0, 𝑅 > 0 then 𝜆2 and 𝜆3 are negative or 

have negative real parts. Due to this, all eigenvalues ensure |arg (𝜆𝑖)| >
𝛼𝜋

2
 by Theorem (1) and 𝐸6 is local 

asymptotically stable. 

Eigenvalues of 𝐽(𝐸6) are: 

 

𝜆1 =  −𝜃1
−𝛼𝜃2

−𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−1(𝜃2

𝛼(4𝑐𝛼(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)2𝜃1

2𝛼𝜑2
𝛼 + 𝛿−4𝛼𝜃2

𝛼(𝛿2𝛼𝜂1
𝛼𝜃1

𝛼𝜑2
𝛼

−(𝑠2
𝛼 + 𝛾2

𝛼)(𝜎𝛼((𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)) + 𝛿2𝛼𝜃1

𝛼𝜑2
𝛼))

2

))

1

2

,
 

 

𝜆2 =  −
1

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)(𝑠2

𝛼 + 𝛾2
𝛼 − 2𝜂1

𝛼)𝜃1
−𝛼𝜑1

𝛼 − 𝜂1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)(𝛿−2𝛼𝜃1

−2𝛼(4𝛿𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
𝛼((𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))

+ ((𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 − 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼)))

2
(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−2))

1

2

) ,

 

 

𝜆3 =
1

2(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)
(−𝛿−𝛼(𝑠2

𝛼 + 𝛾2
𝛼)(𝑠2

𝛼 + 𝛾2
𝛼 − 2𝜂1

𝛼)𝜃1
−𝛼𝜑1

𝛼 + 𝜂1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼)

 +(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)(𝛿−2𝛼𝜃1

−2𝛼(4𝛿𝛼(𝑠2
𝛼 + 𝛾2

𝛼)𝜃1
𝛼((𝑠2

𝛼 + 𝛾2
𝛼)𝜑1

𝛼 + 𝛿𝛼𝜃1
𝛼(𝑠1

𝛼 + 𝛾1
𝛼 − 𝜑1

𝛼))

+ ((𝑠2
𝛼 + 𝛾2

𝛼)2𝜑1
𝛼 − 𝜂1

𝛼(2(𝑠2
𝛼 + 𝛾2

𝛼)𝜑1
𝛼 + 𝛿𝛼𝜃1

𝛼(𝑠1
𝛼 + 𝛾1

𝛼 − 𝜑1
𝛼))

2
(𝑠2
𝛼 + 𝛾2

𝛼 − 𝜂1
𝛼)−2))

1

2
) .

 

 
6. Numerical Scheme for the Provided Skin Cancer Model in the Caputo Fractional (CF) Derivative Sense 
 
Using the CF operator, the dynamics of the proposed fractional-order model (5) are investigated. Using the 

Adams-type estimator-corrector approach, we carry out numerical simulations for the suggested nonlinear 

fractional-order system [36, 37, 38, 39]. We examine the subsequent Cauchy-type ordinary differential equation 

within the context of the 𝛼-order Caputo operator: 

 

 0
𝐶𝐷𝑡

𝛼Φ(𝑡) = 𝑓(𝑡,Φ(𝑡)),  Φ(𝑏)(0) = Φ0
𝑏,  0 < 𝑎 ≤ 1,0 < 𝑡 ≤ 𝜏                                                                                               (13) 

 

where 𝑏 = 0,1, … , 𝑛 − 1, and 𝑛 = ⌈𝛼⌉ Equation (13) can be turned to the Voltera equation: 

 

Φ(𝑡) = ∑𝑏=0
𝑛−1  Φ0

(𝑏) 𝑡𝑏

𝑏!
+

1

Γ(𝑎)
∫
0

𝑡
 (𝑡 − 𝑠)𝛼−1Φ(𝑠,Φ(𝑠))𝑑𝑠                                                                                       (14) 

Considering the Adam-Bashforth-Moulton algorithm [37] along with the proposed predictor-corrector scheme to 

provide numerical solutions for the model, we adopt ℎ =
𝜏

𝑁
, 𝑡𝑧 = 𝑧ℎ, and 𝑧 = 0,1, … , 𝑁 ∈ 𝑍+, allowing Φ𝑧 ≈ Φ(𝑡𝑧) 

for discretization. The associated corrector formula is derived as per the reference [40]. 
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𝑀1𝑞+1 = ∑𝑧=0
𝑞−1

 𝑀10
(𝑧) 𝑡𝑞+1

𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑧,𝑞+1) (𝑀1𝑧𝜑1

𝛼 (1 −
𝑀1𝑧

𝜃1
)

−𝛿𝛼𝑀1𝑧𝑀2𝑧 − 𝛾1
𝛼𝑀1𝑧 + 𝜂1

𝛼𝑀2𝑧 − 𝑠1
𝛼𝑀1𝑧)

 +
ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑞+1,𝑞+1) (𝑀1𝑞+1

𝑃𝐹 𝜑1
𝛼 (1 −

𝑀1𝑞+1
𝑃𝐹

𝜃1
)

−𝛿𝛼𝑀1𝑞+1
𝑃𝐹 𝑀2𝑞+1

𝑃𝐹 − 𝛾1
𝛼𝑀1𝑞+1

𝑃𝐹 + 𝜂1
𝛼𝑀2𝑞+1

𝑃𝐹 − 𝑠1
𝛼𝑀1𝑞+1

𝑃𝐹 ) ,

 

𝑀2𝑞+1 = ∑𝑧=0
𝑞−1

 𝑀20

(𝑧) 𝑡𝑞+1
𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑧,𝑞+1)(𝑀2𝑧(𝛿

𝛼𝑀1𝑧 − 𝛾2
𝛼) − 𝑠2

𝛼𝑀2𝑧)

 +
ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑞+1,𝑞+1) (𝑀2𝑞+1

𝑃𝐹 (𝛿𝛼𝑀1𝑞+1
𝑃𝐹 − 𝛾2

𝛼) − 𝑠2
𝛼𝑀2𝑞+1

𝑃𝐹 ) ,

 

𝑇𝑞+1 = ∑𝑧=0
𝑞−1

 𝑇0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑧,𝑞+1) (𝑇𝑧𝜑2

𝛼 (1 −
𝑇𝑧
𝜃2
𝛼) − 𝜎

𝛼𝑇𝑧𝑀2𝑧 + 𝑐
𝛼)

 +
ℎ𝛼

Γ(𝛼 + 2)
∑𝑧=0
𝑞
 (𝑝𝑞+1,𝑞+1) (𝑇𝑞+1

𝑃𝐹 𝜑2
𝛼 (1 −

𝑇𝑞+1
𝑃𝐹

𝜃2
𝛼 ) − 𝜎

𝛼𝑇𝑞+1
𝑃𝐹 𝑀2𝑞+1

𝑃𝐹 + 𝑐𝛼) ,

 

 

Where 

 

𝑝𝑧,𝑞+1 = {

𝑞𝛼+1 − (𝑞 − 𝛼)(𝑞 + 1)𝛼 , ifz = 0,

(𝑞 − 𝑧 + 2)𝛼+1 + (𝑞 − 𝑧)𝛼+1 − 2(𝑞 − 𝑧 + 1)𝛼+1, if 1 ≤ 𝑧 ≤ 𝑞,
1, ifz = 𝑞 + 𝑧.

                                                                    (15) 

 

The next step is to build the coincident predictor formula. Φ𝑞+1
𝑃𝐹 . The following formula can be used to compute 

the predictor: 

𝑀1𝑞+1
𝑃𝐹 =  ∑𝑧=0

𝑞−1
 𝑀10
(𝑧) 𝑡𝑞+1

𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 1)
∑𝑧=0
𝑞
 (𝑗𝑧,𝑞+1) (𝑀1𝑧𝜑1

𝛼 (1 −
𝑀1𝑧
𝜃1
)

−𝛿𝛼𝑀1𝑧𝑀2𝑧 − 𝛾1
𝛼𝑀1𝑧 + 𝜂1

𝛼𝑀2𝑧 − 𝑠1
𝛼𝑀1𝑧),

𝑀2𝑞+1
𝑃𝐹 =  ∑𝑧=0

𝑞−1
 𝑀20

(𝑧) 𝑡𝑞+1
𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 1)
∑𝑧=0
𝑞
 (𝑗𝑧,𝑞+1)(𝑀2𝑧(𝛿

𝛼𝑀1𝑧 − 𝛾2
𝛼) − 𝑠2

𝛼𝑀2𝑧),

𝑇𝑞+1
𝑃𝐹 =  ∑𝑧=0

𝑞−1
 𝑇0
(𝑧) 𝑡𝑞+1

𝑧

𝑧!
+

ℎ𝛼

Γ(𝛼 + 1)
∑𝑧=0
𝑞
 (𝑗𝑧,𝑞+1) (𝑇𝑧𝜑2

𝛼 (1 −
𝑇𝑧
𝜃2
𝛼) − 𝜎

𝛼𝑇𝑧𝑀2𝑧 + 𝑐
𝛼) .

                                           (16) 

where 
 

𝑗𝑧,𝑞+1 = (𝑞 + 1 − 𝑧)
𝛼 − (𝑞 − 𝑧)𝛼. 

7. Numerical Simulations and Discussion 
 
We have used the Adams-Bashforth Moulton Predictor-Corrector technique to generate numerical solutions for 

system (5) with initial conditions (𝑀10 , 𝑀20 , 𝑇0) = (33, 22, 50) and parameters given in Table (1). The goal of the 

numerical simulations is to investigate the effects of changing 𝛼 values and parameter values on the dynamic 

behavior of model (5). Table (1) provides specific information on the parameter values used in the numerical 

simulations. We have performed numerical simulations using the parameter values from Table (1) to investigate 

the temporal dynamics of each sub-population at various fractional parameter 𝛼 values. And we have calculated 

the equilibrium points as 𝐸6 = (𝑀1, 𝑀2, 𝑇) = (3.58209, 1.71324, 14.2925) Additionally, graphics are produced to 

emphasize how changes in particular parameter values can have a significant impact on cell behavior. 

Considering different parameter values and fractional-order values, the dynamic patterns of the suggested skin 

cancer model are shown in Figures (1), (2), (3), (4), and (5). In particular, Figure (1) illustrates how the 
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fractional scenario affects tumor cells by showing how they behave at various 𝛼 values. The tumor cells exhibit a 

decreasing trend as 𝛼 values rise. 

We have performed numerical simulations using the parameter values from Table (1) to investigate the 

temporal dynamics of each sub-population at various fractional parameter 𝛼 values. Additionally, graphics are 

produced to emphasize how changes in particular parameter values can have a significant impact on cell 

behavior. Considering different parameter values and fractional-order values, the dynamic patterns of the 

suggested skin cancer model are shown in Figures (1), (2), (3), (4), and (5). In particular, Figure (1) illustrates 

how the fractional scenario affects tumor cells by showing how they behave at various 𝛼 values. The tumor cells 

exhibit a decreasing trend as 𝛼 values rise. 

Fig. (1) examines the evolution of the active tumor cells throughout time. As can be seen in the illustration, the 

memory effect of the tumor cells increases when the fractional-order 𝛼 lowers from the unit. In non-integer 

settings, these cells therefore take longer to stabilize. Furthermore, the tumor cells behave in an unstable way 

when α is a unit, but the system remains stable over the long run when α is not an integer, indicating one of the 

essential properties of the fractional-order derivatives. 

 

Figure 1. Change of the tumor cells over time of the varying fractional-order derivative 
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Figure 2. Change of the active macrophages cells over time of the varying fractional-order derivative 

 

Figure 3. Change of the macrophages cells over time with the varying fractional-order derivative 
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Additionally, Fig. (2) shows that there are generally more active macrophage cells when 𝛼 = 0.7 than when 𝛼 =

1. As a result, the fractional order predicts a higher number of active macrophage cells than the estimate 

obtained in the integer-order scenario. Moreover, after 100 days, it is seen that the body still has active 

macrophage cells when 𝛼 = 0.7. On the eleventh day, however, it can be seen that they begin to disappear in an 

integer-order scenario. 

The agreement between the distribution of active macrophage cells and the behavior of fractional derivatives is 

evident from the effect of 𝛼 = 0.7. The wider stability region of fractional differential equations compared to 

integer-order equations, which implies that they are at least as stable as integer-order equations, is one of the 

main reasons for employing FODEs. Moreover, all the necessary conditions for the existence of solutions to 

fractional-order equations, as stated in [24, 41], must be met. Hence, Fig. (1) provides empirical evidence 

supporting this theoretical finding, indicating that the stability zone of the proposed model increases as 𝛼 

decreases from unity. 

 

Figure 4. Change of the tumor cells over time of the different 𝑠1 values and 𝛼 = 0.8 

Figure (3) showcases a trend akin to the one witnessed in active macrophage cells. With deviations of the 

fractional-order parameter α from unity, there is a noticeable rise in the memory effect exhibited by 

macrophagecells. In the context of fractional circumstances, this rise implies a decrease in the peak count of 

macrophage cells, aiming towards stability over time. This behavior demonstrates how 𝛼 affects the dynamics of 

the proposed system model for skin cancer. 

Figure (4) depicts an increase in tumor cells under the fractional-order case 𝛼 = 0.8 as 𝑠1 values increase. 

Similarly, in Figure (5), it can be observed that 𝑠2 has a substantial effect on the regression of tumor cells, with an 

increase in 𝑠2 resulting in an increase in the number of cancer cells. 

The fractional-order derivative attenuates the oscillation behavior close to the positive equilibrium point, as seen 

in Figure (1). The occurrence of periodic solutions is related to cancer models. It implies that tumor levels may 

vary around an equilibrium point even in the absence of treatment. Clinical observations of the "Jeff's 

Phenomenon" have been made [42], and it has been documented in several cancer model organisms [24, 43]. As 
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seen in Fig. (4), the number of tumor cells grows with an increase in 𝑠1, and the number of tumor cells increases 

with an increase in 𝑠2 in Fig. (5). 

 

Figure 5. Change of the tumor cells over time of the different 𝑠2 values and 𝛼 = 0.8 

8. Conclusions 
 
This paper focuses on the Caputo fractional order cancer-immune system model, which is a system of fractional 

differential equations (5) with Caputo fractional derivatives. We investigate the local asymptotic stability of the 

tumor-free and tumor-infection fixed points of the system and demonstrate that under certain conditions, the 

equilibrium points of the model (5) are asymptotically stable. We then examine the existence and uniqueness of 

the solution and provide numerical simulations to validate the theoretical results. To explore the effects of 

varying the fractional order derivative and to analyze the behaviour of the system, we generate figures for 

different 𝛼 values. Our results show that as 𝛼 decreases from 1, the cells reach equilibrium points more quickly, 

and we conclude that the Caputo fractional derivative yields more realistic results than integer order derivatives. 

It is observed that the density of tumor cells increases as stress increases. It is seen that the system is stable as 

the fractional derivative value decreases from 1, which shows that the stability region of fractional derivatives is 

wider than full-order derivatives. Our model differs from other studies in the literature on skin cancer by 

examining the relationship between stress and skin cancer. Additionally, it differs from other models in terms of 

the mathematical analysis presented here. Stress plays a significant role in cancer development, and our results 

indicate that reducing stress leads to a decrease in the number of tumors. We also observe significant changes in 

the number of macrophage cells, the number of active macrophage cells, and the number of tumor cells as 𝛼 

varies. We anticipate that this study will make valuable contributions to the fields of mathematics and medicine. 
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