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Abstract: Segmentation and classification of blood cells are crucial for various medical applications, including disease 
diagnosis, treatment monitoring, and research purposes. This process allows for accurate identification and quantification of 
different cell types, aiding in the detection and understanding of various blood-related disorders. The proposed U-Net 3+ 
architecture incorporates structural modifications, including strengthened connections between convolutional layers, increased 
filter numbers, and integration of Bayesian optimization for hyperparameter tuning. The model's generalization capability is 
optimized through the dynamic adjustment of dropout rates and learning rates. Bayesian optimization facilitates the exploration 
of optimal hyperparameter combinations, allowing the model to adapt effectively to diverse datasets. Advanced training 
strategies, such as adaptive learning rate adjustment and early stopping, are employed to mitigate overfitting and enhance 
training efficiency. The proposed model exhibits exceptional performance across multiple folds, achieving low training and 
validation losses, high accuracy metrics, and robust segmentation indices. Evaluation metrics, including mean IoU (Jaccard 
Index), dice score, pixel accuracy, and precision, confirm the model's proficiency in accurately delineating blood cell 
boundaries. The study demonstrates the effectiveness of custom architectures and optimization techniques, achieving an 
average IoU (Jaccard Index) of 0.9324 and a dice score of 0.9667. The proposed U-Net 3+ model stands as a promising solution 
for accurate and reliable blood cell segmentation, demonstrating adaptability and robust performance across various datasets. 
This work sets the stage for future research in the domain of medical image segmentation, emphasizing the potential for 
continued advancements in precise and efficient segmentation methodologies.  
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Kan Hücresinin Segmentasyonu için Derin Öğrenmeye Dayalı U-Net 3+ Tekniği  
 
Öz: Kan hücrelerinin segmentasyonu ve sınıflandırılması, hastalık teşhisi, tedavi izleme ve araştırma amaçları dahil olmak 
üzere çeşitli tıbbi uygulamalar için çok önemlidir. Bu süreç, farklı hücre türlerinin doğru bir şekilde tanımlanmasına ve 
miktarının belirlenmesine olanak tanıyarak kanla ilgili çeşitli bozuklukların tespit edilmesine ve anlaşılmasına yardımcı olur. 
Önerilen U-Net 3+ mimarisi, konvolüsyonel katmanlar arasındaki bağlantıları güçlendiren, filtre sayılarını artıran ve 
hiperparametre ayarlaması için Bayesian optimizasyonu entegre eden yapısal değişiklikler bulunmaktadır. Modelin genelleme 
yeteneği, dropout oranları ve öğrenme oranlarının dinamik ayarlanması ile optimize edilmiştir. Bayesian optimizasyon, optimal 
hiperparametre kombinasyonlarını keşfetmeyi sağlayarak modelin çeşitli veri kümelerine etkili bir şekilde uyum sağlamasına 
imkan tanır. Ayrıca, aşırı uydurmayı azaltmak ve eğitim verimliliğini artırmak için adaptif öğrenme oranı ayarı ve erken 
durdurma gibi gelişmiş eğitim stratejileri kullanılmıştır. Önerilen model, çoklu katmanlarda düşük eğitim ve doğrulama 
kayıpları, yüksek doğruluk metrikleri ve güçlü segmentasyon endeksleri elde ederek olağanüstü performans sergilemektedir. 
Değerlendirme metrikleri, ortalama IoU (Jaccard İndeksi), dice skoru, piksel doğruluğu ve hassasiyet gibi, modelin kan hücre 
sınırlarını doğru bir şekilde belirleme konusundaki yetkinliğini doğrular. Çalışma, özel mimarilerin ve optimizasyon 
tekniklerinin etkinliğini 0,9324 ortalama IoU (Jaccard İndeksi) ve  0,9667 dice skoru ile ispatlamaktadır. Önerilen U-Net 3+ 
modeli, çeşitli veri kümelerinde adaptasyon yeteneği ve güçlü performansıyla umut vadeden bir çözüm olarak ön plana 
çıkmaktadır. Bu çalışma, medikal görüntü segmentasyonu alanında gelecekteki araştırmalara zemin oluşturarak, hassas ve etkili 
segmentasyon metodolojilerinde devam eden ilerlemelerin potansiyelini vurgulamaktadır. 
 
Anahtar kelimeler: kan hücresi, segmentasyon, UNet3+, ön işleme, çapraz doğrulama. 
 
1. Introduction 
 

Blood cells traverse the body through the circulatory system, and in mammalian species, they can be 
categorized into three main types [1]. Firstly, red blood cells specialize in the vital task of transporting oxygen to 
various tissues and organs. Secondly, leukocytes, which are essential components of the immune system, respond 
to bacterial infections by concentrating at the infection site, encircling the invading bacteria, and engulfing these 
bacteria as part of the body's defense mechanism. Lastly, platelets play a pivotal role in hemostasis, contributing 
to the blood clotting process and preventing excessive bleeding in response to injuries. Together, these three types 
of blood cells work in harmony to ensure the proper functioning and health of the circulatory system. The shape, 
number, and type of these cellular components have always been a topic of interest among researchers [2]. 
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Especially in the field of medicine, the impact of blood components is crucial, addressing conditions ranging from 
easily treatable ones like anemia to more challenging diseases such as leukemia. Microscopes are used to examine 
the anatomical and morphological structures of these components. However, manual processes performed on 
images obtained through microscopes can be tedious and time-consuming due to their reliance on human expertise. 
To minimize human errors, achieve time efficiency, and facilitate work on a larger number of samples, the use of 
computer-aided systems in medical studies is increasingly on the rise [3]–[6]. 

The accurate classification and segmentation of blood cells are crucial for enhancing the accuracy of medical 
diagnoses and optimizing treatment processes. In this context, automatic or semi-automatic computer-aided 
methods provide valuable tools for researchers and healthcare professionals. In the literature, a variety of studies 
focused on the classification and segmentation of blood cells [7]–[10].  Macawile et al. employed pre-trained 
neural networks, including AlexNet, GoogLeNet, and ResNet-101, to discern and enumerate white blood cells 
[10]. Comparative analysis of the outcomes from these three networks revealed that AlexNet demonstrated 
superior performance. The study reported a comprehensive accuracy rate of 96.63%.  Yıldırım and Çinar 
performed the classification of white blood cells for disease diagnosis using established deep learning models such 
as AlexNet, ResNet-50, DenseNet-201, and GoogLeNet, utilizing a pre-existing dataset [11]. The initial phase 
involved the classification of the original data with these four networks, followed by the computation of accuracy 
metrics. The most favorable outcome, featuring an accuracy rate of 83.44%, was noted when employing DenseNet-
201 in tandem with Gaussian filtering. In a study conducted by Lu et al., a network named WBC-Net, based on 
UNet++ and ResNet, was employed for the segmentation of white blood cells [12]. The segmentation was tested 
and compared both with and without skip connections, yielding precision values of 98.48%, 98.90%, 96.20%, and 
94.03% for four respective datasets. In the investigation conducted by Roy et al., the localization and identification 
of leukocytes in peripheral blood were accomplished through the application of deep learning methodologies. The 
segmentation of leukocytes utilized the DeepLabv3+ architecture. During the segmentation testing phase, the 
average accuracy achieved was 98.22%. Subsequently, the overall average accuracy during the validation process 
was computed as 98.87% ± 1 [13].  Toptas and Hanbay conducted a study on the automatic detection, 
classification, and segmentation of blood cells [2]. In this research, microscopic blood cell images were segmented 
using deep learning architectures such as DeepLabv3+, U-Net, and FCN. The highest accuracy, with a value of 
95.75%, was achieved with the DeepLabv3+ architecture. These experimental results provide support for the 
effectiveness of the proposed method. Bozkurt proposed a study on the classification of blood cells using a Dense 
Convolutional Network [14]. This research was conducted on an open-access BCCD dataset consisting of 12,507 
white blood cell images. Experiments demonstrate that the proposed DenseNet121 model achieved an accuracy of 
94%. This high accuracy value can expedite diagnosis by automating cell classification, enabling doctors to 
examine more data.  The study presented by Nahzat et al. aims to develop a CNN-based model for the classification 
of white blood cells and evaluate its performance [15]. Using white blood cell images obtained from Kaggle, the 
study demonstrates that the RMSprop optimizer yields the best results. Additionally, the proposed model is 
compared with four pre-trained models including MobileNetV2, DenseNet121, InceptionV3, and ResNet50. The 
results indicate that despite having the lowest number of trainable parameters and training time, the proposed 
model exhibits exceptional performance. Khouani et al. proposed an automated method for identifying white blood 
cells (WBCs) in cytological images, crucial for cancer diagnosis [16]. It introduces a deep learning-based approach 
to streamline tasks for hematologists. The method involves preprocessing images, applying a deep neural network 
for localization and segmentation, and refining outputs with combined predictions and corrections. Additionally, 
a novel algorithm leveraging spatial information enhances segmentation quality. Implemented using Python, 
TensorFlow, and Keras, the method shows promising results on datasets from Tlemcen Hospital, Algeria, 
achieving 95.73% accuracy with predictions in less than 1 second, outperforming existing methods.  Zhang et al. 
present a semantic segmentation approach based on deep learning, targeting the complexities arising from 
variations in cell characteristics and image quality [17]. They introduce the deformable U-Net (dU-Net), which 
incorporates deformable convolution layers into the U-Net structure to address these challenges. The dU-Net 
demonstrates precise localization and resilience to diverse cell shapes and image conditions. Experiments on 
microscopic RBC images from SCD patients show that the dU-Net achieves superior accuracy in both binary and 
multi-class segmentation tasks compared to unsupervised and state-of-the-art supervised methods. 

This study aims to introduce an artificial intelligence model developed to facilitate accurate segmentation of 
blood cells in medical imaging. The developed model features a novel architecture named U-Net 3+, which 
incorporates specific features not seen in previous studies. The U-Net 3+ model stands out by enhancing the 
existing UNet architecture with structural modifications such as reinforced connections between deeper layers, 
increased filter numbers, and integration of Bayesian optimization for hyperparameter tuning. The primary 
contribution of this study lies in presenting a new approach to accurately segmenting blood cells in medical 
imaging. The developed U-Net 3+ model has demonstrated higher accuracy and segmentation performance 
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compared to other existing methods. This study provides a significant contribution to the development of artificial 
intelligence-based segmentation techniques in medical imaging.  

The article’s remaining chapters are organized as follows: Chapter 2 provides information of dataset, image 
preprocessing, a summary of the deep learning methods such as U-Net, proposed U-Net3+ and evaluation metrics. 
The findings from U-Net3+ segmentation methods are presented in Chapter 3. The results are discussed in Chapter 
4, and conclusions and explanations are provided in Chapter 5. 
 
2. Material and Methods 
 
2.1. Dataset 
 

In this study, a dataset comprising publicly available blood cell images is utilized, totaling 1,328 images [18], 
[19]. The dataset used originally contains bounding box coordinates for each cell, and the original references of 
the cells were used to identify individual cells, and detailed information about the dataset is available in [19]. The 
dataset includes 1328 original blood cell images and an equal number of corresponding real background images. 
The images vary in size, with some measuring 1600x1200x3 pixels and others 1944x1383x3 pixels. All images in 
the dataset are in the RGB colour space. Sample images from the dataset are illustrated in Figure 1. 

         

 

 
Figure 1. Original blood smear images from the used dataset 

 
2.2. Image Pre-processing 
 

Image pre-processing is a fundamental step in machine learning and image processing applications because 
these steps prepare the necessary data to obtain more accurate results. Pre-processing also includes operations such 
as reducing noise, increasing contrast, and adjusting image size, resulting in more reliable and consistent results. 
The basis of this study is to subject the images in the data set to certain image pre-processing steps before the 
analysis process. 

Image Loading and Resizing: Each image and mask is loaded and resized to a specific target_size 
(256x256x3). This process standardizes the images to a fixed size, ensuring a consistent input size during the 
model training. 
 
[𝑅#(𝑥, 𝑦) = 𝑅 *+⋅-./010234

-53/165
, 7⋅8./010234

853/165
9]   (1) 

 



A Deep Learning-based U-Net 3+ Technique for Segmentation Blood Cell 

488 
 

In Equation (1), (	𝑅	) represents the original image, (𝑅#)	represents the resized image, (𝑊=>?@?ABC) ve 
(𝐻=>?@?ABC)  represent the original width and height of the image, and (𝑊EB>@FE) ve (𝐻EB>@FE)  represent the target 
width and height dimensions. 
 Normalization: Image and mask values are scaled from the [0, 255] range to the [0, 1] range. This enables 
the model to train faster and more stably because smaller input values provide less variance in weight updates and 
better gradient flow within the network. 
 
[𝑅##(𝑖, 𝑗) = IJ(?,K)

LMM
]                                                                                                                                  (2) 

 
In Equation (2), (𝑅##)represents the image after normalization, (𝑅#) represents the resized image, and (	𝑖	) 

and (	𝑗	) represent pixel positions. 
 Grayscale Masking: Masks are loaded in grayscale, meaning they have only one channel without color 
information. This is because segmentation masks typically need to contain binary values (0 or 1) indicating the 
presence or absence of an object, and color information is not necessary for this purpose. 
 
2.2.1. U-Net3+ and proposed model 
 

The U-net, proposed by Ronneberger et al. in 2015 [20], is primarily a convolutional neural network 
architecture designed for image segmentation. The U-Net architecture is a developed image segmentation 
algorithm, primarily designed for tasks involving segmentation, classification, and image operations [21]. The 
training duration of U-Net is relatively short, featuring a simple design and fewer parameters. It requires less 
training data compared to other networks. U-net is symmetric, incorporating skip connections between the 
downsampling and upsampling paths. 

The integration of features across various scales is a pivotal aspect of achieving precise segmentation. U-
Net++, a modified iteration of U-Net distinguished by its embedded and densely connected skip connections, has 
been devised to address this need [22]. However, despite its advancements, this model still lacks in capturing 
adequate information, signalling a considerable scope for further refinement. In response to this, the proposed U-
Net3+ architecture assumes heightened significance, strategically incorporating full-scale skip connections and 
introducing deep supervisions. These full-scale skip connections adeptly merge low-level details from feature 
maps across different scales with high-level semantic information. Concurrently, the deep supervisions effectively 
learn hierarchical representations from fully aggregated feature maps. Beyond the notable improvements in 
accuracy, U-Net 3+ also exhibits promising potential in enhancing computational efficiency by judiciously 
reducing network parameters, marking a comprehensive advancement in the field of image segmentation. Details 
of the architecture is given in Table 1. Figure 2 provides simplified summaries of U-Net, U-Net++, and U-Net 3+. 

 
Figure 2. U-Net, U-Net++, and U-Net 3+ architecture [23]. 
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Table 1. Details of the architecture 
 

Layer Layer Type Details 

Input Layer Input The input layer accepts input of size (256, 256, 3), indicating images with a resolution of 
256 pixels in width, 256 pixels in height, and 3 color channels (RGB). 

Conv Block 1 Conv2D + Activation (ReLU) 
+ (Optional) Dropout 

The first convolutional block utilizes a 3x3 kernel with 128 filters. It includes batch 
normalization, ReLU activation, and dropout. 

MaxPooling MaxPooling2D A 2x2 MaxPooling operation is applied after the first convolutional block. 

Conv Block 2 Conv2D + Activation (ReLU) 
+ (Optional) Dropout 

The second convolutional block employs a 3x3 kernel with 256 filters. It includes batch 
normalization, ReLU activation, and dropout to enhance the model's learning and 
generalization capabilities. 

MaxPooling MaxPooling2D A 2x2 MaxPooling operation is applied 

Conv Block 3 Conv2D + Activation (ReLU) 
+ (Optional) Dropout 

The third convolutional block uses a 3x3 kernel with 512 filters. It incorporates batch 
normalization, ReLU activation, and dropout to enhance the model's capacity to learn 
complex patterns and improve its generalization abilities. 

MaxPooling MaxPooling2D A 2x2 MaxPooling operation is applied 

Conv Block 4 Conv2D + Activation (ReLU) 
+ (Optional) Dropout 

The fourth convolutional block employs a 3x3 kernel with 1024 filters. It includes batch 
normalization, ReLU activation, and dropout to capture intricate features and further 
enhance the model's ability to generalize. 

MaxPooling MaxPooling2D A 2x2 MaxPooling operation is applied 

Bridge Conv2D + Activation (ReLU) 

The bridge layer, or skip connection, uses a 3x3 kernel with 2048 filters and includes ReLU 
activation. Skip connections are often used to facilitate the flow of information between the 
encoder and decoder parts of the U-Net architecture, aiding in the preservation of spatial 
information. 

Upsample 
Block 1 

UpSampling2D + Concatenate 
+ Conv Block 

An upsampling and concatenation operation is performed, followed by the application of a 
convolutional block. Upsampling is typically used to increase the spatial resolution of the 
feature maps. 

Upsample 
Block 2 

UpSampling2D + Concatenate 
+ Conv Block 

An upsampling and concatenation operation is performed, followed by the application of a 
convolutional block. 

Upsample 
Block 3 

UpSampling2D + Concatenate 
+ Conv Block 

An upsampling and concatenation operation is performed, followed by the application of a 
convolutional block. 

Upsample 
Block 4 

UpSampling2D + Concatenate 
+ Conv Block 

An upsampling and concatenation operation is performed, followed by the application of a 
convolutional block. 

Output Layer Conv2D + Activation 
(Sigmoid/Softmax) 

The final layer uses a 1x1 kernel based on the number of classes. It includes either sigmoid 
or softmax activation, depending on the nature of the task 

Total params: 125,547,521, Trainable params: 125,523,969,  Non-trainable params: 23,552 
 

2.3. Evaluation metrics 
 

Rigorous assessment of the U-Net 3+ architecture for blood cell segmentation involves the application of a 
comprehensive suite of evaluation metrics, addressing considerations of accuracy. The Equations (3)- (6) [24]: 

 
• TP represents the number of pixels that truly belong to class P and are correctly classified as P by 

the model. 
• TN denotes the count of pixels that truly belong to class N and are accurately classified as N by the 

model. 
• FN signifies the number of pixels that actually belong to class P but are misclassified as N by the 

model. 
• FP indicates the count of pixels that truly belong to class N but are misclassified as P by the model. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = STUSV
STUSVUWTUWV

                                                                                                                                  (3) 
 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = SV

SVUWV
                                                                                                                                  (4) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = SV

SVUWT
                                                                                                                                  (5) 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = L+b+I

bUI
                                                                                                                                  (6) 

 
 The Jaccard Index, also known as the Intersection over Union (IoU) value, provides the percentage of overlap 
between predicted masks and ground truth masks. It is a metric that quantifies the similarity of two sets by 
measuring the intersection divided by the union and given in Equation (7) [25]. 
 
𝐽𝑎𝑐𝑐𝑎𝑟𝑑	(𝐽𝐴𝐶) = Sb

SbUWfUWb
                                                                                                                                  (7) 

 
 The Dice Index is a metric that measures the similarity between predicted and underlying ground truth 
images, as expressed in Equation (8) [25]. 
 
𝐷𝑖𝑐𝑒 = LSb

LSbUWfUWb
                                                                                                                                  (8) 

 
 The critical metric "Pixel Accuracy" is employed to evaluate the performance of segmentation models. This 
metric measures how well the model's predictions align with the ground truth data. Pixel Accuracy is calculated 
by dividing the number of pixels correctly classified by the model by the total number of pixels [26]. In other 
words, it quantifies the concordance between the predicted mask generated by the model and the actual mask and 
given in Equation (9). 
 
Pixel	Accuracy = s?+FCt	u=>>FuEC7	uCBtt?v?Fw	

ExF	E=EBC	Ayz{F>	=v	s?+FCt
                                                                                                          (9)

                                                                                                                           
3. Experimental Results 
 

In customizing the U-Net3+ architecture, various modifications are implemented to enhance segmentation 
accuracy and create a structure resistant to overfitting while preserving the fundamental principles of the U-Net3+ 
architecture. Among the changes made are strengthening the connections between convolutional layers, increasing 
the number of filters, and integrating hyperparameter optimization mechanisms. Specifically, dropout and 
learning-rate ratios were adjusted using Bayesian optimization to increase the model's generalization ability. This 
method provides flexibility in determining the optimal network structure and parameters during the model's 
adaptation to different datasets and noise profiles. Furthermore, advanced training strategies such as adaptive 
learning rate adjustment and early stopping are adopted to improve the efficiency of the training process. These 
strategies serve as mechanisms supporting the model's rapid convergence and protection against overfitting, 
contributing to more robust and reliable segmentation results. The flowchart of the system is given below: 

 
1. Data Loading and Pre-processing 

• Images and masks are loaded. 
• Each image and mask are resized to a specified dimension. 
• Pixel values are normalized to a range between 0 and 1. 

2. Data Splitting 
• Images and masks are split into training and testing sets. 

3. Model Creation (U-Net 3+) 
• U-Net 3+ model is constructed. 
• The model is configured with a specific number of layers and filters. 

4. Hyperparameter Optimization (Bayesian Optimization) 
• Optimal values for certain hyperparameters (e.g., dropout rate and learning rate) are searched. 

5. Model Training 
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• The model is trained on different subsets of data using the k-Fold Cross-Validation method. 
• Callbacks such as ModelCheckpoint, ReduceLROnPlateau, and EarlyStopping are utilized 

during training. 
6. Model Evaluation 

• The trained model is evaluated on the test dataset. 
• Performance metrics (e.g., accuracy, precision, IoU, Dice Score) are computed. 

7. Analysis and Visualization of Results 
• Training and validation losses, accuracies, and other metrics are visualized on graphs. 
• Model predictions on the test set are compared with actual labels for visual analysis. 

Bayesian Optimization is a statistical method used to adjust the hyperparameters of our model, in this case, 
dropout_rate and learning_rate, to maximize the performance of our deep learning model. The goal of this method 
is to maximize the accuracy of our model on the validation dataset. 
Firstly, the range of values to be explored for the model's hyperparameters is being defined. For example, a range 
can be set between 0 and 0.5 for the dropout rate, and for the learning rate (10}M)	and (10}L). Next, the Bayes 
theorem is used to predict how the model will perform with these hyperparameter values. This theorem allows us 
to calculate the probability of the model's performance given certain hyperparameter values. Mathematically, this 
is expressed using the Bayes theorem as given in Equation (10): 
 

[𝑃(𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒|ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = b�ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠�𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒�×b(sF>v=>zBAuF)
b(x7sF>sB>BzFEF>t)

                        (10) 

In this formula, each term represents, respectively, the probability of the model's performance given the 
hyperparameters, the probability of hyperparameters given the model's performance, and the marginal distributions 
of these two probabilities. Finally, using this probability distribution, the most suitable hyperparameter 
combinations are determined for our model. This process ensures the adjustment of hyperparameters in a way that 
maximizes the performance of our model on the validation set. In summary, Bayesian Optimization provides us 
with the opportunity to fully harness the potential of our model. With this method, we can effectively manage the 
complex structure of our deep learning model and optimize its performance. Parameters obtained with Bayesian 
optimization are listed in Table 2. 
 

Table 2. Obtained parameters with Bayesian optimization  
 

 Dropout Learning Rate 
Initial Value 0.1 0.00001 

Value after optimization 0.184389873055315 0.004261879524120684 
 

ReduceLROnPlateau and EarlyStopping are callback methods utilized to optimize the training process of the 
U-Net 3+ model in our paper, with the goal of preventing issues like overfitting.  

ReduceLROnPlateau (Reducing Learning Rate): ReduceLROnPlateau is employed to dynamically adjust the 
model's learning rate during training. Throughout the training process, if there is no improvement in a specified 
metric (e.g., validation loss) for a certain number of epochs, it reduces the learning rate. This method aids the 
model in making finer adjustments and prevents it from getting stuck in local minima.  
 The proposed U-Net 3+ model demonstrates excellent performance across multiple folds, as evidenced by 
the results presented in Table 3. Throughout the training process, the model consistently achieves low training and 
validation losses, indicative of its ability to minimize errors and generalize well to unseen data. The high values 
for accuracy, precision, recall, and area under the curve (AUC) further underscore the model's proficiency in 
accurately segmenting blood cells. Notably, the model maintains a high level of precision and recall, striking a 
balance between minimizing false positives and false negatives. The consistency of these results across different 
folds highlights the robustness and reliability of the proposed model. Results of the segmentation are shown in 
Figure 3. 
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Table 3. Results of the proposed model 
 

 

 
Figure 3. Results of the segmentation 

 
In Table 4, the test results reinforce the model's effectiveness in segmentation tasks. The Mean IoU (Jaccard 

Index) of 0.9324 indicates a substantial overlap between the predicted and ground truth masks, emphasizing the 
model's ability to delineate cell boundaries accurately. The Dice score of 0.9667 further corroborates the model's 
segmentation accuracy. The Pixel Accuracy of 0.9796 signifies a high proportion of correctly classified pixels, 
attesting to the model's precision at the pixel level. Additionally, the exceptionally high precision value of 0.9968 
underscores the model's capability to minimize false positives, crucial in medical image segmentation where 
accuracy is paramount. These results suggest that the proposed U-Net 3+ model excels in blood cell segmentation, 
providing accurate and reliable predictions across various evaluation metrics. The combination of low losses, high 
accuracy, and robust segmentation metrics positions the model as a promising solution for medical image 
segmentation tasks. In conclusion, the achieved performance metrics, particularly the high accuracy, precision, 
and spatial overlap metrics, demonstrate the effectiveness of the U-Net 3+ model for blood cell segmentation. The 
model exhibits robust generalization across different folds, showcasing its potential for accurate and reliable 

fold train_loss val_loss train_ 
accuracy 

val_ 
accuracy 

train_ 
precision 

val_ 
precision 

train_ 
recall 

val_ 
recall 

train_ 
auc 

val_ 
auc 

1 0.0334 0.0338 0.9798 0.9792 0.96047 0.9623 0.9720 0.9699 0.9814 0.9807 
2 0.0331 0.0344 0.9797 0.9802 0.96041 0.9624 0.9732 0.9670 0.9812 0.9799 
3 0.0333 0.0342 0.9798 0.9788 0.96005 0.9566 0.9725 0.9748 0.9820 0.9820 
4 0.0328 0.0341 0.9799 0.9794 0.96117 0.9607 0.9723 0.9700 0.9817 0.9808 
5 0.0321 0.0361 0.9805 0.9779 0.96089 0.9636 0.9740 0.9650 0.9817 0.9776 
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segmentation of blood cell images. Loss and accuracy graphs for average training and validation are given in 
Figure 4. 
 

Table 4. Test results of the proposed system 
Metrics Value 

Mean IoU (jaccard index) 0.9324 
Dice score 0.9667 

Pixel accuracy 0.9796 
Precision 0.9968 

 

 
Figure 4. Loss and accuracy graphs for average training and validation 

 
Table 5. Assessment of segmentation performance across various algorithms on the same dataset 

 
Method Dice-coefficient (%) Jaccard Index (%) Reference 

Otsu’s method 92.60 86.50 

[19] 

BHT 52.50 49.48 

Watershed 78.21 68.21 

U-Net 93.09 87.16 

U-Net++ 88.80 81.44 

TernausNet 93.38 87.65 

R2U-Net 86.76 77.77 

Attention U-Net 91.00 83.73 

Attention R2U-Net 78.52 65.28 

FCN 85.41 75.29 

U-Net 3+ 96.67 93.24 Prosed Model 

 
Our model exhibits a significant advantage over other methods in terms of segmentation performance. For 

instance, in terms of both Dice coefficient and Jaccard index, our U-Net 3+ model outperforms all other methods. 
Specifically, while our U-Net 3+ model achieves a Dice coefficient of 96.67% and a Jaccard index of 93.24%, its 
closest competitor, TernausNet, achieves values of 93.38% and 87.65% respectively. Other methods in the 
comparison include Otsu's method, BHT, Watershed, U-Net++, R2U-Net, Attention U-Net, Attention R2U-Net, 
and FCN. Each of these methods employs different approaches to fulfill specific segmentation tasks. Additionally, 
it is crucial to understand why our model outperforms others by evaluating the performance of other methods in 
comparative analysis. Factors such as an enhanced architecture, more effective feature extraction, or optimized 
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hyperparameters could contribute to the success of our model. This way, the contribution of the study and the 
value of our model can be better understood. 
 
4. Discussion 
 

This chapter delves into the findings, providing an in-depth analysis of the performance of the enhanced U-
Net 3+ model for blood cell segmentation. The model, which incorporates advancements such as strengthened 
connections and an increased number of filters, has demonstrated notable improvements in accuracy and precision 
across multiple folds and the test dataset. These structural enhancements are critical in enabling the model to 
minimize errors and exhibit robust generalization to novel data. In particular, the bolstered connections facilitate 
more effective information flow within the network, while the augmented filter numbers enable finer feature 
extraction, which are both essential for precision in segmenting intricate blood cell structures. The use of Bayesian 
optimization for hyperparameter tuning is a key aspect of refining the model. This optimization strategy, by 
systematically adjusting parameters such as dropout and learning rates, has significantly contributed to the 
adaptability and accuracy of the model. The emphasis on Bayesian methods underscores our commitment to 
leveraging advanced statistical techniques to fine-tune the model's performance, ensuring optimal generalization 
across diverse datasets. The achieved mean IoU (Jaccard Index) of 0.9324 and Dice score of 0.9667 serve as 
testaments to the model's efficacy in accurately predicting cell masks, thereby highlighting its potential in medical 
image analysis. These metrics reflect not only the model's precision in delineating cell boundaries but also its 
capability to achieve consistency in segmentation tasks. The exceptional Pixel Accuracy of 0.9796 and high 
precision value of 0.9968 further highlight the model's adeptness at minimizing false positives, a critical aspect in 
the realm of medical image segmentation, where accuracy is of paramount importance. This study positions the 
proposed U-Net 3+ model as a state-of-the-art solution for blood cell segmentation, representing a considerable 
advancement in the field of deep-learning-based medical image segmentation. The model's ability to accurately 
and reliably segment images is a significant step forward, and its performance aligns with and extends existing 
literature, demonstrating the profound impact of advanced architectures and optimization techniques in achieving 
superior results. However, it is essential to recognize the limitations of this study to gain a comprehensive 
understanding. The model's performance may be influenced by the specific characteristics of the dataset, 
highlighting the need for further validation across diverse datasets. Variations in image quality and potential biases 
within the dataset can impact the model's generalization capabilities. Future research directions should explore 
transfer-learning approaches to enhance the model's adaptability to different imaging modalities and investigate 
its applicability in various medical imaging scenarios. 
 
5. Conclusions  
 

This study introduces a novel and customized U-Net 3+ model for blood cell segmentation, integrating 
substantial structural improvements and advanced optimization techniques. The model has demonstrated 
exceptional performance, as evidenced by consistently low training and validation losses, high accuracy metrics, 
and robust segmentation indices. The use of Bayesian optimization for hyperparameter tuning has been 
instrumental in enhancing the generalization capabilities of the model. The achieved Mean Intersection over Union 
(IoU) of 0.9324 and Dice score of 0.9667 highlight the model's proficiency in accurately predicting cell masks, 
emphasizing its potential utility in medical image analysis. The pixel accuracy of 0.9796 and the precision of 
0.9968 further illustrate the model's precision at both the pixel and class levels, which is crucial in medical 
scenarios where accuracy is paramount. 

The discussion provides a nuanced analysis, recognizing the model's strengths while acknowledging potential 
limitations and suggesting directions for future research. This study contributes significantly to the field of deep 
learning-based medical image segmentation, demonstrating the effectiveness of customized architectures and 
optimization strategies. In conclusion, the U-Net 3+ model, with its high accuracy and reliability for segmenting 
blood cells, has emerged as an innovative and effective solution in this domain, setting a benchmark for future 
advancements. 
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