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Özet 

In this paper, the first part is related to the introduction. In the introduction, the works on Bertrand and 
PH-curves are presented. In the second section, basic concepts and theorems in Euclidean 3-space are given. In 
the third part, Spherical, Spherical PH-curves and Bertrand PH-curves in Euclidean 3-space are studied and related 
theorems are given. 

Anahtar Kelimeler: Küresel Eğriler, Bertrand Eğriler, PH-Eğriler, Öklid Uzayı, Bertrand PH-Eğriler 

 

Öklid-3 Uzayında Bertand ve Küresel PH-eğriler Üzerine 

Abstract 

Today, identity has become a concept of great interest and importance in our world. It has become an 
indicator of how an individual defines himself/herself internally as well as externally, in which groups and in what 
kind of social environment he/she lives and will live. In this way, individuals have started to adapt to their social 
environment through their identities. Identity is the subject of research in many social sciences ranging from social 
psychology to sociology, social anthropology to international relations, and the main research in these fields 
focuses on the characteristics of individuals, groups or larger nations and what distinguishes them from others. At 
this point, classification, comparison, the construction of the concepts of self and other, and historical traumas are 
of great importance. 

Keywords: Spherical Curves, Bertrand Curves, PH-Curves, Euclidean Space, Bertrand PH-Curves. 
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Introduction 

Curve theory is an important area of differential geometry and Bertrand curves are one of the 
important curves in this field. Bertrand curves are curves defined and studied by the French 
mathematician Joseph Bertrand in the 19th century. (Bertrand,1850).  

Bertrand reached various results by classifying curves on regular surfaces. He defined a special 
class of curves called Bertrand curves. Bertrand curves are curves whose principal normal vectors are 
linear. This property implies that the curve has a certain symmetry and therefore Bertrand curves are an 
interesting topic in differential geometry and curve theory.  

The study of the properties and character of Bertrand curves has various applications in 
differential geometry, mathematics, physics and mechanics. The properties and mathematical structures 
of these curves are of interest to mathematicians interested in the theory of curves and differential 
geometry in general. Bertrand curves have an important place in the study of differential geometry and 
theory of curves. Their properties and mathematical analysis provide more information about the shapes 
and behavior of curves. Bertrand curves are also used in the study of topics such as the tangent circles 
of curves and their relationships with each other. 

The simplest example of a Bertrand curve is a circle or a straight line. However, there are also 
more complex and diverse Bertrand curves. For example, ellipses, parabolas, hyperbolas, Bernoulli 
curves and Cassini curves are examples of Bertrand curves. 

Joseph Bertrand examined the properties of Bertrand curves in more detail and put forward the 
necessary and sufficient condition to characterize pairs of Bertrand curves. A pair of Bertrand curves 
consists of two curves that have a certain property (Bertrand, 1850). 

In his work, the characterization obtained by Bertrand is as follows: The necessary and sufficient 
condition for a curve 𝜶 with curvature 𝜿 and torsion  𝝉 in 𝟑 −dimensional Euclidean space to be a pair 
of Bertrand curves is that the following equation holds with coefficients expressed in real numbers 𝝀 
and 𝝁: 

𝝀𝜿 +  𝝁𝝉 =  𝟏                                                           (1.1) 

Here 𝝀 and 𝝁 denote a linear relationship between the curvature (𝜿) and torsion (𝝉) properties 
of the curve. That is, if a curve 𝜶 has 𝝀 and 𝝁 satisfying equation (1.1), then the curve 𝜶 and the curve 
𝜶∗  (the second curve generated by the principal normal vectors) form a pair of Bertrand curves (Hsiung, 
1981). 

 Equation (1.1) helps us to better understand Bertrand curves by describing their 
properties and relationships. Bertrand's characterization provides an important tool for further study and 
analysis of the geometry and character of Bertrand curves. 

 Izumiya and Takeuchi expressed how Bertrand curves can be obtained from spherical 
curves in Euclidean 𝟑 −space. In their work, Izumiya and Takeuchi showed that Bertrand curves can be 
obtained from spherical curves in 𝟑 −dimensional Euclidean space. This approach shows that Bertrand 
curves can be obtained by transforming spherical curves with a certain rotational motion. The work of 
Izumiya and Takeuchi is an important resource for mathematicians and differential geometry 
researchers, especially those interested in the geometry and origins of Bertrand curves. This work helps 
us to understand the different types of Bertrand curves and to study how they can be transformed into 
this special class of spherical curves. More details and mathematical expressions of how Bertrand curves 
can be derived from spherical curves can be found in the original work by Izumiya and Takeuchi. This 
work is an interesting resource for those interested in a more in-depth study of Bertrand curves and 
differential geometry (Izumiya and Takeuchi, 2002). 

Murat Babaarslan (2009), in his master's thesis, first obtained the Cartan framework and Cartan 
curvatures in the spaces ℝ𝟏

𝟓, ℝ𝟐,
𝟒 , ℝ𝟐

𝟓. Then he defined null Bertrand curves in these spaces and gave their 
characteristic properties (Babaarslan, 2009). 

In her master thesis, Gül Güner (2011) investigated how different curves can be transformed 
into Bertrand curves and the properties of Bertrand curves. In the thesis, it is first shown how to obtain 
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cylindrical helices from planar curves and Bertrand curves from spherical curves in Euclidean 3-space. 
Using this method, the Bertrand curves corresponding to the spherical indicators of a curve are 
investigated. Also, the planar evolute of a cylindrical helix and the spherical evolute of a spherical curve 
are investigated. In addition, the hyperbolic evolute of a spherical curve in 𝔼𝟑 space is also studied in 
this thesis. Gül Güner's thesis is an important contribution to the subject by investigating the relations 
between Bertrand curves and different curves. The methods and findings presented in the thesis can 
guide the research on Bertrand curves and the researchers working in the related field (Güner, 2011).  

Pythagorean-hodograph (PH) curves were described by Farouki and Sakkalis in 1990 (Farouki 
and Sakkalis, 1990). These curves are known as curves whose length can be calculated explicitly. 
Farouki's work was aimed at determining the properties and descriptors of PH-curves. He also 
investigated their relationship with helix curves and proved that all helix curves are PH-curves, but the 
converse is not always true (Farouki and Sakkalis, 1992). Characterization studies for two and three 
dimensional PH-curves were carried out by Farouki using complex numbers and quartrenions (Farouki 
and Sakkalis, 1994). 

In 2000, Moon defined Pythagorean-Hodograph (PH) curves according to the Minkowski metric 
and obtained the Minkowski Pythagorean-Hodograph (MPH) curves. The Minkowski metric is a metric 
used in the special theory of relativity in the four-dimensional Minkowski space of space and time. The 
MPH curves are versions of the PH curves defined in Minkowski space and are defined taking into 
account geometric properties in this space. Steographic projection is a method of projecting a curve in 
Minkowski space onto a plane and has been used to represent MPH curves. Moon's work has defined 
versions of the PH curves that are valid in Minkowski space and used steographic projection to represent 
these curves (Moon, 2000). 

Çağla Ramis (2013) focused on PH-curves and their applications in her master thesis. The thesis 
focused on the study of PH-curves in both two-dimensional and three-dimensional Euclidean and 
Minkowski spaces. The properties of these curves are investigated to obtain results and formulas. 
Furthermore, the thesis emphasizes the close relationship between helix curves and PH-curves. 
Considering this relationship, a planar PH-curve is generated from a spatial PH-curve. This shows how 
PH-curves can have different properties in different spaces and how they can be transformed from one 
space to another. The characterizations obtained for Euclidean space are carried over to Minkowski 
space and supported with examples. In this way, it is understood how the properties of PH-curves in 
Euclidean space are valid in Minkowski space and how they can be used. This thesis shows how PH-
curves can be used in different spaces and applications and how their properties can be studied. The 
research can be an important resource for those who want to make progress in the mathematical analysis 
of PH-curves and their applications (Ramis, 2013). 

 

2. Preliminaries 

In this part of the paper, basic concepts and theorems in Euclidean 𝟑 −space was introduced. 
These concepts and theorems serve as a source for the third section of the paper. 

 

Definition 2.1. Let 𝑽 be a vector space and the set {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a subset of this vector 
space. If 

𝟏𝒗𝟏 + 𝟐𝒗𝟐 + ⋯ + 𝒏𝒗𝒏 = 𝟎                                                           (2.1) 

equation (2.1) is satisfied when all scalars  𝟏, 𝟐, … , 𝒏 are zero, then the set {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} is 
called linearly independent (Hacısalihoğlu, 2000). 

Definition 2.2. Let 𝑉 be a vector space and the set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  be a subset of this vector 
space. If for all vectors 𝑢 ∈ 𝑉 and the scalars  𝑎ଵ, 𝑎ଶ, … , 𝑎௡ ∈ ℝ  

𝑢 = 𝑎ଵ𝑣ଵ + 𝑎ଶ𝑣ଶ + ⋯ + 𝑎௡𝑣௡                                                              (2.2) 

is valid then the set  {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  spans the space 𝑉  (Hacısalihoğlu, 2000). 
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Definition 2.3. Let 𝑉 be a vector space and the set ℬ = {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  be a subset of this vector 
space. If the set  ℬ satisfies the following conditions; 

1.  The set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡} is linearly independent, 

2.  The set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡} spans the space  𝑉, 

then the set ℬ is called a base of the space 𝑉 (Hacısalihoğlu, 2000). 

Definition 2.4. Let 〈 , 〉 be a function on n-dimensional Euclidean space 𝔼௡. If we define this 
function for all vectors 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), 𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡)  ∈  𝔼௡ as 

〈𝑥, 𝑦〉 = ෍ 𝑥௜𝑦௜

௡

௜ୀଵ
 

then the function 〈 , 〉 is called inner product (Hacısalihoğlu, 2000). 

Definition 2.5. Let  𝑉 be a real inner product space. The transformation ‖  ‖ defined as 

 ‖  ‖ ∶  𝑉 →  ℝ,   ‖𝑢‖ = ඥ〈𝑢, 𝑢〉 

specifies a norm on  𝑉. Specifically, if we take in the form 𝑉 = 𝔼௡ using the standard Euclidean 
inner product for  𝑢 = (𝑢ଵ, 𝑢ଶ, … , 𝑢௡) ∈  𝔼௡ then the following equality is given, 

‖𝑢‖  = ඥ𝑢ଵ
ଶ + 𝑢ଶ

ଶ + ⋯ + 𝑢௡
ଶ .                                            (2.3) 

The value ‖𝑢‖ is called the norm or length of the vector 𝑢 (Hacısalihoğlu, 2000). 

Definition 2.6. Let 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), 𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡) ∈  𝔼௡  

 𝑑 ∶ 𝔼௡𝑥𝔼௡ → ℝ 

     (𝑥, 𝑦)  ⟶  𝑑(𝑥, 𝑦)  =  ‖𝑥𝑦ሬሬሬሬ⃗ ‖  =  ඥ∑ (𝑥௜ − 𝑦௜)ଶ௡
௜ୀଵ                               (2.4) 

The function 𝑑 is called the distance function in 𝔼௡ and the real number 𝑑(𝑥, 𝑦) is called the 
distance between the points 𝑥, 𝑦 ∈ 𝐸௡ (Hacısalihoğlu, 2000). 

Definition 2.7. In 3 −dimensional Euclidean space 𝔼ଷ the vector product is defined for all 
vectors 𝑢 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ), 𝑣 = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ) ∈ 𝔼ଷ as following. 

𝑢 × 𝑣 = (𝑢ଶ𝑣ଷ − 𝑣ଶ𝑢ଷ,  𝑢ଷ𝑣ଵ − 𝑣ଷ𝑢ଵ, 𝑢ଵ𝑣ଶ − 𝑣ଵ𝑢ଶ)                        (2.5) 

(Hacısalihoğlu, 2000). 

Theorem 2.1. The distance function on 𝔼௡ is a metric (Hacısalihoğlu, 2000). 

 

Definition 2.8.                                   𝑑 ∶ 𝔼௡𝑥𝔼௡ → ℝ 

                                                (𝑥, 𝑦)  ⟶  𝑑(𝑥, 𝑦)  =  ‖𝑥𝑦ሬሬሬሬ⃗ ‖    

The function 𝑑 defined as above is called Euclidean metric function on 𝔼௡ (Hacısalihoğlu, 
2000). 

Definition 2.9. Let 𝐼 ⊆ ℝ be an interval. 

𝛼:  𝐼 ⟶  𝔼௡ 

                 𝑡 ⟶   (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡))  

If the function defined above α is differentiable α(𝐼) is called a curve in 𝔼௡ defined by the 
coordinate neighborhood (𝛪,α) (Hacısalihoğlu, 2000). 

Definition 2.10. Let 𝛼 be a curve in 𝔼௡ and defined by the coordinate functions (𝐼,α ) and ( 𝐽, 𝛽). 
If the followings valid 

           ℎ =  𝛼ିଵ o β ∶  𝐽 ⟶ 𝛽 
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    𝑠 ⟶   ℎ(𝑠) = 𝑡 

then the differentiable function ℎ defined above is called a parameter change function 
(Hacısalihoğlu, 2000). 

Definition 2.11. Let the curve 𝛼 in  𝔼௡ be parametric, 

𝛼 ∶          𝐼 ⟶ 𝔼௡ 

𝑡 ∶    𝛼(𝑡)  =  (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)) 

and for curve 𝛼 ; 

𝛼ᇱ(𝑡) =  
𝑑𝛼

𝑑𝑡
 

=  ቀ
ௗఈభ

ௗ௧
,

ௗఈమ

ௗ௧
, … ,

ௗఈ೙

ௗ௧
ቁ. 

Then the vector ( 𝛼(𝑡), 𝛼ᇱ(𝑡)) ∈ 𝑇𝔼೙(𝑝) is called the velocity vector or tangent vector of the 
curve 𝛼 at 𝛼ᇱ(𝑡)  corresponding to the parameter value  𝑡 ∈ 𝐼 (Hacısalihoğlu, 2000). 

Definition 2.12. Let the α curve at  𝔼௡ is defined parametrically,  

α ∶ 𝐼 ⟶ 𝔼௡ 

𝑡 = (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)) 

The derivative of the curve  𝛼, 

𝛼ᇱ(𝑡) = ൬
𝑑𝛼ଵ

𝑑𝑡
  ,

𝑑𝛼ଶ

𝑑𝑡
, … ,

𝑑𝛼௡

𝑑𝑡
൰ 

and the norm is to be 

‖ 𝛼ᇱ(𝑡)‖ ∶ 𝐼 ⟶  ℝ 

𝑡 ⟶ ‖ 𝛼ᇱ(𝑡)‖ =  ඩ෍(
𝑑𝛼௜

𝑑𝑡
)ଶ

௡

௜ୀଵ

 

scalar velocity function. The real number at the point 𝑡 = 𝑡଴                                 

‖ 𝛼ᇱ(𝑡଴)‖ = ට∑ (
ௗఈ೔

ௗ௧
)ଶ௡

௜ୀଵ                                                           (2.6) 

is called scalar velocity (Hacısalihoğlu, 2000). 

Definition 2.13. Let the curve 𝛼 in 𝔼௡ be 

 𝛼 ∶  𝐼 ⟶ 𝔼௡ 

𝑡 ∶ 𝛼(𝑡)  = (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)). 

For all 𝑡ଵ, 𝑡ଶ ∈ 𝐼  

𝑠 = ∫ ‖ 𝛼ᇱ(𝑡)‖𝑑𝑡
௧మ

௧భ
                                                              (2.7) 

the real number 𝛼 is called the arc length of the curve 𝛼  between the points  α(𝑡ଵ) and  α(𝑡ଶ) 
(Hacısalihoğlu, 2000). 

Definition 2.14. Let 𝛼 be a curve in 𝔼௡. If the norm of the curve 𝛼 satisfies 

‖ 𝛼ᇱ(𝑠)‖ =1 

then the curve 𝛼 is called the unit speed curve and the parameter 𝑠 is called the arclength 
parameter (Hacısalihoğlu, 2000).    
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Definition 2.15. If the curve 𝛼 in 𝔼௡ satisfies the following 

                                           ‖ 𝛼ᇱ(𝑡)‖ = ቛ 
ௗఈ

ௗ௧
ቛ  ≠ 0                                         (2.8) 

then the curve is called a regular curve (Hacısalihoğlu, 2000). 

 

3. PH-Curves in Euclidean 3-Space 

Definition 3.1. Let 𝛼 be a curve in 𝔼௡ and 𝛼(𝑡) = ൫𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)൯. The hodograph of 
the polynominal curve 𝛼 is defined by 

    ‖𝛼ᇱ(𝑡)‖ = 𝛼ଵ
ᇱ (𝑡)ଶ + 𝛼ଶ

ᇱ (𝑡)ଶ + ⋯ + 𝛼௡
ᇱ (𝑡)ଶ = 𝜎(𝑡)ଶ                              (3.1) 

and if there’s a 𝜎(𝑡) polynominal then the curve 𝛼 is called Pythagorean Hodograph curve(PH-
curve) (Farouki ve Sakkalis, 1994). 

 

Definition 3.2. Let 𝑛 ∈ 𝑁଴ and 𝑎௜ ∈  ℝ where 0 ≤ 𝑖 ≤ 𝑛, 

𝛼(𝑡) = 𝑎௡𝑡௡ +  𝑎௡ିଵ𝑡௡ିଵ + ⋯ +  𝑎ଵ𝑡 + 𝑎଴ , 𝑎௡ ≠ 0                            (3.2) 

in the from of  𝑡 function and 𝑛 is called the degree of the polynomial (Larson, 2012). 

Definition 3.3. Let 𝛼 be a curve in 𝔼௡. If the curve 𝛼 defined as, 

𝛼: [𝑎, 𝑏] →  𝐸௡ 

𝛼(𝑡) = ቀ𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)ቁ 

where the components 𝛼௜(𝑡) for all 1 ≤ 𝑖 ≤ 𝑛 are polynomials then the curve 𝛼  is called 
𝑛 −dimensional polynomial curve (Larson, 2012). 

Definition 3.4.  Let 𝛼 be a curve in 𝔼௡ defined as, 

𝛼: [𝑎, 𝑏] →  𝐸௡ 

𝛼(𝑡) = ቀ𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)ቁ. 

The degree of the polynomial curve 𝛼 is the number 𝑑𝑒𝑔𝛼(𝑡) defined by 

𝑑𝑒𝑔𝛼(𝑡) = 𝑚𝑎𝑥൛𝑑𝑒𝑔൫𝛼ଵ(𝑡)൯, 𝑑𝑒𝑔൫𝛼ଶ(𝑡)൯, … , 𝑑𝑒𝑔൫𝛼௡(𝑡)൯ൟ            (3.3) 

(Larson, 2012). 

Theorem 3.1. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) be polynomials, The Pythagorean condition 

𝑎ଶ(𝑡) + 𝑏ଶ(𝑡) = 𝑐ଶ(𝑡) 

is satisfied by the polynomials 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) where 

𝑎(𝑡) = [𝑢ଶ(𝑡) − 𝑣ଶ(𝑡)]𝑤(𝑡) 

𝑏(𝑡) = 2𝑢(𝑡)𝑣(𝑡)𝑤(𝑡) 

𝑐(𝑡) = [𝑢ଶ(𝑡) + 𝑣ଶ(𝑡)]𝑤(𝑡) 

in the form of  𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡) polynomials (Ramis, 2013). 

 

3.1. Spherical PH-Curves in Euclidean 3-Space 

 Theorem 3.1.1. There is no spherical PH-curve in 𝔼ଷ.  

 Proof: Let 𝛾: 𝐼 →  𝑆ଶ be a spherical-PH curve in 𝔼ଷ. Since 𝛾 is a polynomial curve in 
𝔼ଷ for 𝛾ଵ(𝑡), 𝛾ଶ(𝑡), 𝛾ଷ(𝑡) polynomials; 
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𝛾(𝑡) = (𝛾ଵ(𝑡), 𝛾ଶ(𝑡), 𝛾ଷ(𝑡)) 

can be written and since 𝛾 is a PH-curve then 

(�̇�ଵ)ଶ + (�̇�ଶ)ଶ +  (�̇�ଷ)ଶ = 𝜎ଶ                                    (3.4) 

the equality (3.4) must be satisfied for an arbitrary polynomial 𝜎. Also 𝛾 lies on the sphere it 
must satisfy 

𝛾ଵ
ଶ + 𝛾ଶ

ଶ + 𝛾ଷ
ଶ = 1.                                             (3.5) 

In this case: 

𝑑𝑒𝑔{𝛾ଵ
ଶ(𝑡) + 𝛾ଶ

ଶ(𝑡) + 𝛾ଷ
ଶ(𝑡)} = 𝑚𝑎𝑥{deg (𝛾ଵ

ଶ(𝑡), 𝛾ଶ
ଶ(𝑡), 𝛾ଷ

ଶ(𝑡))} = 0 

As a result we get that 𝛾 is a polynomial where its degree is zero, This means that it is  a point. 
Consequently, there is no spherical PH-curve in Euclidean space. 

4. Bertrand Curves in Euclidean 3-Space 

Definition 4.1.  Let α ∶  I →  𝔼௡  and  𝛼∗: I →  𝔼௡  be two differentiable curves, the Frenet 
frames of these curves are respectively { T, 𝑁ଵ, 𝑁ଶ … , 𝑁௡ିଵ} and {𝑇 ∗ , 𝑁ଵ ∗  , 𝑁ଶ ∗, . . . , 𝑁௡ିଵ ∗} and 𝑁ଵ(𝑠) 
the principal normal vector of the curve 𝛼,  of the curve 𝑁ଵ ∗(s)  the principal normal vector of the curve 
𝛼∗. If the principal normal vectors 𝑁ଵ(𝑠) and 𝑁ଵ ∗(s) are linearly dependent then the (α, 𝛼∗ ) is called 
Bertrand curves pair, 𝛼 curve is also called a Bertrand curve (Hacısalihoğlu, 2000). 

 

Figure 1. Bertrand Curve Pair  

Definition 4.2. Let 𝛾: 𝐼 →  𝑆ଶ be a unit spherical curve with arc parameter 𝜎. The unit tangent 

vector of 𝛾 at 𝜎 is given by 𝑇(𝜎) = �̇�(𝜎) where �̇� =
ௗఊ

ௗఙ
  . Together with the vector 𝑆(𝜎), defined as 

𝑆(𝜎) = 𝛾(𝜎) ×  𝑇(𝜎) we obtain an orthonormal frame {𝛾(𝜎), 𝑇(𝜎), 𝑆(𝜎)}  along   𝛾. This frame is called 
the Sabban Frame of the 𝛾 curve (Izumiya ve Takeuchi, 2002). 

Theorem 4.1. Let 𝛾: 𝐼 →  𝑆ଶ be a spherical curve. The spherical Frenet formulas for the unit 
spherical curve are as follows, 

�̇�(𝜎) = 𝑇(𝜎)

�̇�(𝜎) = −𝛾(𝜎) + 𝐾௚(𝜎)𝑆(𝜎)

�̇�(𝜎) = −𝐾௚(𝜎)𝑇(𝜎)

 

Here 𝐾௚(𝜎), is the geodesic curvature of 𝛾 in 𝑆ଶ given by 𝐾௚(𝜎) = det (𝛾(𝜎), 𝑇(𝜎), �̇�(𝜎)) 
(Izumiya ve Takeuchi, 2002). 

Theorem 4.2. Given a spherical curve 𝛾(𝜎), with unit speed then 

𝛾෤(𝜎) = 𝑎 ∫ 𝛾(𝜐)𝑑𝜐 + 𝑎𝑐𝑜𝑡𝜃 ∫ 𝑆(𝜐)𝑑𝜐 + 𝑐
ఙ

ఙబ

ఙ

ఙబ
                                       (3.6) 

the space curve 𝛾෤(𝜎) defined by (3.7) is a Bertrand curve, and all Bertrand curves can be 
constructed by this method. Here 𝑎 and 𝜃 are constant numbers and 𝑐 is a constant vector (Izumiya ve 
Takeuchi, 2002). 
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5. Bertrand PH-Curves in Euclidean 3-Space 

 Since there is no spherical PH-curve in Euclidean space as shown in Theorem 3.1.1, the 
curve obtained by the method in Theorem 4.2. cannot be a Bertrand PH-curve. When this study was 
carried to Minkowski space, the existence of a spherical PH-curve was seen. Thus, spherical PH-curves 
and Bertrand PH-curves were studied in Minkowski space. 

6. Conclusion 

This study considers the spherical PH-curves in 3-dimensional Euclidean space. We studied 
these curves in 3-dimensional Euclidean space and we proved that there is no spherical PH-curve in 3-
dimensional Euclidean space. Afterwards we concluded that Bertrand PH-curves cannot characterized 
by the method given in Theorem 4.2. But spherical PH-curves can be studied in Minkowski space. 
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Özet 

In this paper, the first part is related to the introduction. In the introduction, the works on Bertrand and 
PH-curves are presented. In the second section, basic concepts and theorems in Euclidean 3-space are given. In 
the third part, Spherical, Spherical PH-curves and Bertrand PH-curves in Euclidean 3-space are studied and related 
theorems are given. 
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Öklid-3 Uzayında Bertand ve Küresel PH-eğriler Üzerine 

Abstract 

Today, identity has become a concept of great interest and importance in our world. It has become an 
indicator of how an individual defines himself/herself internally as well as externally, in which groups and in what 
kind of social environment he/she lives and will live. In this way, individuals have started to adapt to their social 
environment through their identities. Identity is the subject of research in many social sciences ranging from social 
psychology to sociology, social anthropology to international relations, and the main research in these fields 
focuses on the characteristics of individuals, groups or larger nations and what distinguishes them from others. At 
this point, classification, comparison, the construction of the concepts of self and other, and historical traumas are 
of great importance. 

Keywords: Spherical Curves, Bertrand Curves, PH-Curves, Euclidean Space, Bertrand PH-Curves. 
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Introduction 

Curve theory is an important area of differential geometry and Bertrand curves are one of the 
important curves in this field. Bertrand curves are curves defined and studied by the French 
mathematician Joseph Bertrand in the 19th century. (Bertrand,1850).  

Bertrand reached various results by classifying curves on regular surfaces. He defined a special 
class of curves called Bertrand curves. Bertrand curves are curves whose principal normal vectors are 
linear. This property implies that the curve has a certain symmetry and therefore Bertrand curves are an 
interesting topic in differential geometry and curve theory.  

The study of the properties and character of Bertrand curves has various applications in 
differential geometry, mathematics, physics and mechanics. The properties and mathematical structures 
of these curves are of interest to mathematicians interested in the theory of curves and differential 
geometry in general. Bertrand curves have an important place in the study of differential geometry and 
theory of curves. Their properties and mathematical analysis provide more information about the shapes 
and behavior of curves. Bertrand curves are also used in the study of topics such as the tangent circles 
of curves and their relationships with each other. 

The simplest example of a Bertrand curve is a circle or a straight line. However, there are also 
more complex and diverse Bertrand curves. For example, ellipses, parabolas, hyperbolas, Bernoulli 
curves and Cassini curves are examples of Bertrand curves. 

Joseph Bertrand examined the properties of Bertrand curves in more detail and put forward the 
necessary and sufficient condition to characterize pairs of Bertrand curves. A pair of Bertrand curves 
consists of two curves that have a certain property (Bertrand, 1850). 

In his work, the characterization obtained by Bertrand is as follows: The necessary and sufficient 
condition for a curve 𝜶 with curvature 𝜿 and torsion  𝝉 in 𝟑 −dimensional Euclidean space to be a pair 
of Bertrand curves is that the following equation holds with coefficients expressed in real numbers 𝝀 
and 𝝁: 

𝝀𝜿 +  𝝁𝝉 =  𝟏                                                           (1.1) 

Here 𝝀 and 𝝁 denote a linear relationship between the curvature (𝜿) and torsion (𝝉) properties 
of the curve. That is, if a curve 𝜶 has 𝝀 and 𝝁 satisfying equation (1.1), then the curve 𝜶 and the curve 
𝜶∗  (the second curve generated by the principal normal vectors) form a pair of Bertrand curves (Hsiung, 
1981). 

 Equation (1.1) helps us to better understand Bertrand curves by describing their 
properties and relationships. Bertrand's characterization provides an important tool for further study and 
analysis of the geometry and character of Bertrand curves. 

 Izumiya and Takeuchi expressed how Bertrand curves can be obtained from spherical 
curves in Euclidean 𝟑 −space. In their work, Izumiya and Takeuchi showed that Bertrand curves can be 
obtained from spherical curves in 𝟑 −dimensional Euclidean space. This approach shows that Bertrand 
curves can be obtained by transforming spherical curves with a certain rotational motion. The work of 
Izumiya and Takeuchi is an important resource for mathematicians and differential geometry 
researchers, especially those interested in the geometry and origins of Bertrand curves. This work helps 
us to understand the different types of Bertrand curves and to study how they can be transformed into 
this special class of spherical curves. More details and mathematical expressions of how Bertrand curves 
can be derived from spherical curves can be found in the original work by Izumiya and Takeuchi. This 
work is an interesting resource for those interested in a more in-depth study of Bertrand curves and 
differential geometry (Izumiya and Takeuchi, 2002). 

Murat Babaarslan (2009), in his master's thesis, first obtained the Cartan framework and Cartan 
curvatures in the spaces ℝ𝟏

𝟓, ℝ𝟐,
𝟒 , ℝ𝟐

𝟓. Then he defined null Bertrand curves in these spaces and gave their 
characteristic properties (Babaarslan, 2009). 

In her master thesis, Gül Güner (2011) investigated how different curves can be transformed 
into Bertrand curves and the properties of Bertrand curves. In the thesis, it is first shown how to obtain 
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cylindrical helices from planar curves and Bertrand curves from spherical curves in Euclidean 3-space. 
Using this method, the Bertrand curves corresponding to the spherical indicators of a curve are 
investigated. Also, the planar evolute of a cylindrical helix and the spherical evolute of a spherical curve 
are investigated. In addition, the hyperbolic evolute of a spherical curve in 𝔼𝟑 space is also studied in 
this thesis. Gül Güner's thesis is an important contribution to the subject by investigating the relations 
between Bertrand curves and different curves. The methods and findings presented in the thesis can 
guide the research on Bertrand curves and the researchers working in the related field (Güner, 2011).  

Pythagorean-hodograph (PH) curves were described by Farouki and Sakkalis in 1990 (Farouki 
and Sakkalis, 1990). These curves are known as curves whose length can be calculated explicitly. 
Farouki's work was aimed at determining the properties and descriptors of PH-curves. He also 
investigated their relationship with helix curves and proved that all helix curves are PH-curves, but the 
converse is not always true (Farouki and Sakkalis, 1992). Characterization studies for two and three 
dimensional PH-curves were carried out by Farouki using complex numbers and quartrenions (Farouki 
and Sakkalis, 1994). 

In 2000, Moon defined Pythagorean-Hodograph (PH) curves according to the Minkowski metric 
and obtained the Minkowski Pythagorean-Hodograph (MPH) curves. The Minkowski metric is a metric 
used in the special theory of relativity in the four-dimensional Minkowski space of space and time. The 
MPH curves are versions of the PH curves defined in Minkowski space and are defined taking into 
account geometric properties in this space. Steographic projection is a method of projecting a curve in 
Minkowski space onto a plane and has been used to represent MPH curves. Moon's work has defined 
versions of the PH curves that are valid in Minkowski space and used steographic projection to represent 
these curves (Moon, 2000). 

Çağla Ramis (2013) focused on PH-curves and their applications in her master thesis. The thesis 
focused on the study of PH-curves in both two-dimensional and three-dimensional Euclidean and 
Minkowski spaces. The properties of these curves are investigated to obtain results and formulas. 
Furthermore, the thesis emphasizes the close relationship between helix curves and PH-curves. 
Considering this relationship, a planar PH-curve is generated from a spatial PH-curve. This shows how 
PH-curves can have different properties in different spaces and how they can be transformed from one 
space to another. The characterizations obtained for Euclidean space are carried over to Minkowski 
space and supported with examples. In this way, it is understood how the properties of PH-curves in 
Euclidean space are valid in Minkowski space and how they can be used. This thesis shows how PH-
curves can be used in different spaces and applications and how their properties can be studied. The 
research can be an important resource for those who want to make progress in the mathematical analysis 
of PH-curves and their applications (Ramis, 2013). 

 

2. Preliminaries 

In this part of the paper, basic concepts and theorems in Euclidean 𝟑 −space was introduced. 
These concepts and theorems serve as a source for the third section of the paper. 

 

Definition 2.1. Let 𝑽 be a vector space and the set {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} be a subset of this vector 
space. If 

𝟏𝒗𝟏 + 𝟐𝒗𝟐 + ⋯ + 𝒏𝒗𝒏 = 𝟎                                                           (2.1) 

equation (2.1) is satisfied when all scalars  𝟏, 𝟐, … , 𝒏 are zero, then the set {𝒗𝟏, 𝒗𝟐, … , 𝒗𝒏} is 
called linearly independent (Hacısalihoğlu, 2000). 

Definition 2.2. Let 𝑉 be a vector space and the set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  be a subset of this vector 
space. If for all vectors 𝑢 ∈ 𝑉 and the scalars  𝑎ଵ, 𝑎ଶ, … , 𝑎௡ ∈ ℝ  

𝑢 = 𝑎ଵ𝑣ଵ + 𝑎ଶ𝑣ଶ + ⋯ + 𝑎௡𝑣௡                                                              (2.2) 

is valid then the set  {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  spans the space 𝑉  (Hacısalihoğlu, 2000). 
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Definition 2.3. Let 𝑉 be a vector space and the set ℬ = {𝑣ଵ, 𝑣ଶ, … , 𝑣௡}  be a subset of this vector 
space. If the set  ℬ satisfies the following conditions; 

1.  The set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡} is linearly independent, 

2.  The set {𝑣ଵ, 𝑣ଶ, … , 𝑣௡} spans the space  𝑉, 

then the set ℬ is called a base of the space 𝑉 (Hacısalihoğlu, 2000). 

Definition 2.4. Let 〈 , 〉 be a function on n-dimensional Euclidean space 𝔼௡. If we define this 
function for all vectors 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), 𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡)  ∈  𝔼௡ as 

〈𝑥, 𝑦〉 = ෍ 𝑥௜𝑦௜

௡

௜ୀଵ
 

then the function 〈 , 〉 is called inner product (Hacısalihoğlu, 2000). 

Definition 2.5. Let  𝑉 be a real inner product space. The transformation ‖  ‖ defined as 

 ‖  ‖ ∶  𝑉 →  ℝ,   ‖𝑢‖ = ඥ〈𝑢, 𝑢〉 

specifies a norm on  𝑉. Specifically, if we take in the form 𝑉 = 𝔼௡ using the standard Euclidean 
inner product for  𝑢 = (𝑢ଵ, 𝑢ଶ, … , 𝑢௡) ∈  𝔼௡ then the following equality is given, 

‖𝑢‖  = ඥ𝑢ଵ
ଶ + 𝑢ଶ

ଶ + ⋯ + 𝑢௡
ଶ .                                            (2.3) 

The value ‖𝑢‖ is called the norm or length of the vector 𝑢 (Hacısalihoğlu, 2000). 

Definition 2.6. Let 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥௡), 𝑦 = (𝑦ଵ, 𝑦ଶ, … , 𝑦௡) ∈  𝔼௡  

 𝑑 ∶ 𝔼௡𝑥𝔼௡ → ℝ 

     (𝑥, 𝑦)  ⟶  𝑑(𝑥, 𝑦)  =  ‖𝑥𝑦ሬሬሬሬ⃗ ‖  =  ඥ∑ (𝑥௜ − 𝑦௜)ଶ௡
௜ୀଵ                               (2.4) 

The function 𝑑 is called the distance function in 𝔼௡ and the real number 𝑑(𝑥, 𝑦) is called the 
distance between the points 𝑥, 𝑦 ∈ 𝐸௡ (Hacısalihoğlu, 2000). 

Definition 2.7. In 3 −dimensional Euclidean space 𝔼ଷ the vector product is defined for all 
vectors 𝑢 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ), 𝑣 = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ) ∈ 𝔼ଷ as following. 

𝑢 × 𝑣 = (𝑢ଶ𝑣ଷ − 𝑣ଶ𝑢ଷ,  𝑢ଷ𝑣ଵ − 𝑣ଷ𝑢ଵ, 𝑢ଵ𝑣ଶ − 𝑣ଵ𝑢ଶ)                        (2.5) 

(Hacısalihoğlu, 2000). 

Theorem 2.1. The distance function on 𝔼௡ is a metric (Hacısalihoğlu, 2000). 

 

Definition 2.8.                                   𝑑 ∶ 𝔼௡𝑥𝔼௡ → ℝ 

                                                (𝑥, 𝑦)  ⟶  𝑑(𝑥, 𝑦)  =  ‖𝑥𝑦ሬሬሬሬ⃗ ‖    

The function 𝑑 defined as above is called Euclidean metric function on 𝔼௡ (Hacısalihoğlu, 
2000). 

Definition 2.9. Let 𝐼 ⊆ ℝ be an interval. 

𝛼:  𝐼 ⟶  𝔼௡ 

                 𝑡 ⟶   (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡))  

If the function defined above α is differentiable α(𝐼) is called a curve in 𝔼௡ defined by the 
coordinate neighborhood (𝛪,α) (Hacısalihoğlu, 2000). 

Definition 2.10. Let 𝛼 be a curve in 𝔼௡ and defined by the coordinate functions (𝐼,α ) and ( 𝐽, 𝛽). 
If the followings valid 

           ℎ =  𝛼ିଵ o β ∶  𝐽 ⟶ 𝛽 
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    𝑠 ⟶   ℎ(𝑠) = 𝑡 

then the differentiable function ℎ defined above is called a parameter change function 
(Hacısalihoğlu, 2000). 

Definition 2.11. Let the curve 𝛼 in  𝔼௡ be parametric, 

𝛼 ∶          𝐼 ⟶ 𝔼௡ 

𝑡 ∶    𝛼(𝑡)  =  (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)) 

and for curve 𝛼 ; 

𝛼ᇱ(𝑡) =  
𝑑𝛼

𝑑𝑡
 

=  ቀ
ௗఈభ

ௗ௧
,

ௗఈమ

ௗ௧
, … ,

ௗఈ೙

ௗ௧
ቁ. 

Then the vector ( 𝛼(𝑡), 𝛼ᇱ(𝑡)) ∈ 𝑇𝔼೙(𝑝) is called the velocity vector or tangent vector of the 
curve 𝛼 at 𝛼ᇱ(𝑡)  corresponding to the parameter value  𝑡 ∈ 𝐼 (Hacısalihoğlu, 2000). 

Definition 2.12. Let the α curve at  𝔼௡ is defined parametrically,  

α ∶ 𝐼 ⟶ 𝔼௡ 

𝑡 = (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)) 

The derivative of the curve  𝛼, 

𝛼ᇱ(𝑡) = ൬
𝑑𝛼ଵ

𝑑𝑡
  ,

𝑑𝛼ଶ

𝑑𝑡
, … ,

𝑑𝛼௡

𝑑𝑡
൰ 

and the norm is to be 

‖ 𝛼ᇱ(𝑡)‖ ∶ 𝐼 ⟶  ℝ 

𝑡 ⟶ ‖ 𝛼ᇱ(𝑡)‖ =  ඩ෍(
𝑑𝛼௜

𝑑𝑡
)ଶ

௡

௜ୀଵ

 

scalar velocity function. The real number at the point 𝑡 = 𝑡଴                                 

‖ 𝛼ᇱ(𝑡଴)‖ = ට∑ (
ௗఈ೔

ௗ௧
)ଶ௡

௜ୀଵ                                                           (2.6) 

is called scalar velocity (Hacısalihoğlu, 2000). 

Definition 2.13. Let the curve 𝛼 in 𝔼௡ be 

 𝛼 ∶  𝐼 ⟶ 𝔼௡ 

𝑡 ∶ 𝛼(𝑡)  = (𝛼ଵ(𝑡), 𝛼ଶ(𝑡), … , 𝛼௡(𝑡)). 

For all 𝑡ଵ, 𝑡ଶ ∈ 𝐼  

𝑠 = ∫ ‖ 𝛼ᇱ(𝑡)‖𝑑𝑡
௧మ

௧భ
                                                              (2.7) 

the real number 𝛼 is called the arc length of the curve 𝛼  between the points  α(𝑡ଵ) and  α(𝑡ଶ) 
(Hacısalihoğlu, 2000). 

Definition 2.14. Let 𝛼 be a curve in 𝔼௡. If the norm of the curve 𝛼 satisfies 

‖ 𝛼ᇱ(𝑠)‖ =1 

then the curve 𝛼 is called the unit speed curve and the parameter 𝑠 is called the arclength 
parameter (Hacısalihoğlu, 2000).    
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Definition 2.15. If the curve 𝛼 in 𝔼௡ satisfies the following 

                                           ‖ 𝛼ᇱ(𝑡)‖ = ቛ 
ௗఈ

ௗ௧
ቛ  ≠ 0                                         (2.8) 

then the curve is called a regular curve (Hacısalihoğlu, 2000). 

 

3. PH-Curves in Euclidean 3-Space 

Definition 3.1. Let 𝛼 be a curve in 𝔼௡ and 𝛼(𝑡) = ൫𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)൯. The hodograph of 
the polynominal curve 𝛼 is defined by 

    ‖𝛼ᇱ(𝑡)‖ = 𝛼ଵ
ᇱ (𝑡)ଶ + 𝛼ଶ

ᇱ (𝑡)ଶ + ⋯ + 𝛼௡
ᇱ (𝑡)ଶ = 𝜎(𝑡)ଶ                              (3.1) 

and if there’s a 𝜎(𝑡) polynominal then the curve 𝛼 is called Pythagorean Hodograph curve(PH-
curve) (Farouki ve Sakkalis, 1994). 

 

Definition 3.2. Let 𝑛 ∈ 𝑁଴ and 𝑎௜ ∈  ℝ where 0 ≤ 𝑖 ≤ 𝑛, 

𝛼(𝑡) = 𝑎௡𝑡௡ +  𝑎௡ିଵ𝑡௡ିଵ + ⋯ +  𝑎ଵ𝑡 + 𝑎଴ , 𝑎௡ ≠ 0                            (3.2) 

in the from of  𝑡 function and 𝑛 is called the degree of the polynomial (Larson, 2012). 

Definition 3.3. Let 𝛼 be a curve in 𝔼௡. If the curve 𝛼 defined as, 

𝛼: [𝑎, 𝑏] →  𝐸௡ 

𝛼(𝑡) = ቀ𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)ቁ 

where the components 𝛼௜(𝑡) for all 1 ≤ 𝑖 ≤ 𝑛 are polynomials then the curve 𝛼  is called 
𝑛 −dimensional polynomial curve (Larson, 2012). 

Definition 3.4.  Let 𝛼 be a curve in 𝔼௡ defined as, 

𝛼: [𝑎, 𝑏] →  𝐸௡ 

𝛼(𝑡) = ቀ𝛼ଵ(𝑡), 𝛼ଶ,(𝑡), … 𝛼௡(𝑡)ቁ. 

The degree of the polynomial curve 𝛼 is the number 𝑑𝑒𝑔𝛼(𝑡) defined by 

𝑑𝑒𝑔𝛼(𝑡) = 𝑚𝑎𝑥൛𝑑𝑒𝑔൫𝛼ଵ(𝑡)൯, 𝑑𝑒𝑔൫𝛼ଶ(𝑡)൯, … , 𝑑𝑒𝑔൫𝛼௡(𝑡)൯ൟ            (3.3) 

(Larson, 2012). 

Theorem 3.1. Let 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) be polynomials, The Pythagorean condition 

𝑎ଶ(𝑡) + 𝑏ଶ(𝑡) = 𝑐ଶ(𝑡) 

is satisfied by the polynomials 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡) where 

𝑎(𝑡) = [𝑢ଶ(𝑡) − 𝑣ଶ(𝑡)]𝑤(𝑡) 

𝑏(𝑡) = 2𝑢(𝑡)𝑣(𝑡)𝑤(𝑡) 

𝑐(𝑡) = [𝑢ଶ(𝑡) + 𝑣ଶ(𝑡)]𝑤(𝑡) 

in the form of  𝑢(𝑡), 𝑣(𝑡), 𝑤(𝑡) polynomials (Ramis, 2013). 

 

3.1. Spherical PH-Curves in Euclidean 3-Space 

 Theorem 3.1.1. There is no spherical PH-curve in 𝔼ଷ.  

 Proof: Let 𝛾: 𝐼 →  𝑆ଶ be a spherical-PH curve in 𝔼ଷ. Since 𝛾 is a polynomial curve in 
𝔼ଷ for 𝛾ଵ(𝑡), 𝛾ଶ(𝑡), 𝛾ଷ(𝑡) polynomials; 



On Bertrand and Spherical PH-Curves in Euclidean 𝟑 −Space 

55 
 

𝛾(𝑡) = (𝛾ଵ(𝑡), 𝛾ଶ(𝑡), 𝛾ଷ(𝑡)) 

can be written and since 𝛾 is a PH-curve then 

(�̇�ଵ)ଶ + (�̇�ଶ)ଶ +  (�̇�ଷ)ଶ = 𝜎ଶ                                    (3.4) 

the equality (3.4) must be satisfied for an arbitrary polynomial 𝜎. Also 𝛾 lies on the sphere it 
must satisfy 

𝛾ଵ
ଶ + 𝛾ଶ

ଶ + 𝛾ଷ
ଶ = 1.                                             (3.5) 

In this case: 

𝑑𝑒𝑔{𝛾ଵ
ଶ(𝑡) + 𝛾ଶ

ଶ(𝑡) + 𝛾ଷ
ଶ(𝑡)} = 𝑚𝑎𝑥{deg (𝛾ଵ

ଶ(𝑡), 𝛾ଶ
ଶ(𝑡), 𝛾ଷ

ଶ(𝑡))} = 0 

As a result we get that 𝛾 is a polynomial where its degree is zero, This means that it is  a point. 
Consequently, there is no spherical PH-curve in Euclidean space. 

4. Bertrand Curves in Euclidean 3-Space 

Definition 4.1.  Let α ∶  I →  𝔼௡  and  𝛼∗: I →  𝔼௡  be two differentiable curves, the Frenet 
frames of these curves are respectively { T, 𝑁ଵ, 𝑁ଶ … , 𝑁௡ିଵ} and {𝑇 ∗ , 𝑁ଵ ∗  , 𝑁ଶ ∗, . . . , 𝑁௡ିଵ ∗} and 𝑁ଵ(𝑠) 
the principal normal vector of the curve 𝛼,  of the curve 𝑁ଵ ∗(s)  the principal normal vector of the curve 
𝛼∗. If the principal normal vectors 𝑁ଵ(𝑠) and 𝑁ଵ ∗(s) are linearly dependent then the (α, 𝛼∗ ) is called 
Bertrand curves pair, 𝛼 curve is also called a Bertrand curve (Hacısalihoğlu, 2000). 

 

Figure 1. Bertrand Curve Pair  

Definition 4.2. Let 𝛾: 𝐼 →  𝑆ଶ be a unit spherical curve with arc parameter 𝜎. The unit tangent 

vector of 𝛾 at 𝜎 is given by 𝑇(𝜎) = �̇�(𝜎) where �̇� =
ௗఊ

ௗఙ
  . Together with the vector 𝑆(𝜎), defined as 

𝑆(𝜎) = 𝛾(𝜎) ×  𝑇(𝜎) we obtain an orthonormal frame {𝛾(𝜎), 𝑇(𝜎), 𝑆(𝜎)}  along   𝛾. This frame is called 
the Sabban Frame of the 𝛾 curve (Izumiya ve Takeuchi, 2002). 

Theorem 4.1. Let 𝛾: 𝐼 →  𝑆ଶ be a spherical curve. The spherical Frenet formulas for the unit 
spherical curve are as follows, 

�̇�(𝜎) = 𝑇(𝜎)

�̇�(𝜎) = −𝛾(𝜎) + 𝐾௚(𝜎)𝑆(𝜎)

�̇�(𝜎) = −𝐾௚(𝜎)𝑇(𝜎)

 

Here 𝐾௚(𝜎), is the geodesic curvature of 𝛾 in 𝑆ଶ given by 𝐾௚(𝜎) = det (𝛾(𝜎), 𝑇(𝜎), �̇�(𝜎)) 
(Izumiya ve Takeuchi, 2002). 

Theorem 4.2. Given a spherical curve 𝛾(𝜎), with unit speed then 

𝛾෤(𝜎) = 𝑎 ∫ 𝛾(𝜐)𝑑𝜐 + 𝑎𝑐𝑜𝑡𝜃 ∫ 𝑆(𝜐)𝑑𝜐 + 𝑐
ఙ

ఙబ

ఙ

ఙబ
                                       (3.6) 

the space curve 𝛾෤(𝜎) defined by (3.7) is a Bertrand curve, and all Bertrand curves can be 
constructed by this method. Here 𝑎 and 𝜃 are constant numbers and 𝑐 is a constant vector (Izumiya ve 
Takeuchi, 2002). 
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5. Bertrand PH-Curves in Euclidean 3-Space 

 Since there is no spherical PH-curve in Euclidean space as shown in Theorem 3.1.1, the 
curve obtained by the method in Theorem 4.2. cannot be a Bertrand PH-curve. When this study was 
carried to Minkowski space, the existence of a spherical PH-curve was seen. Thus, spherical PH-curves 
and Bertrand PH-curves were studied in Minkowski space. 

6. Conclusion 

This study considers the spherical PH-curves in 3-dimensional Euclidean space. We studied 
these curves in 3-dimensional Euclidean space and we proved that there is no spherical PH-curve in 3-
dimensional Euclidean space. Afterwards we concluded that Bertrand PH-curves cannot characterized 
by the method given in Theorem 4.2. But spherical PH-curves can be studied in Minkowski space. 
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