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Abstract 

 

Breast cancer (BC) and gynecological cancers have emerged as significant threats to women’s health and are known to be 

among the primary causes of cancer-related fatalities in women. Innovative treatments and early detection may significantly cut 

mortality rates for these diseases. In this study, potential hub genes were thoroughly evaluated in the contexts of BC, ovarian cancer 

(OC), and endometrial cancer (EC). Initially, a total of 374 overlapping differentially expressed genes (DEGs) were identified within 

the microarray datasets. The STRING database and Cytoscape software analyzed protein-protein interaction (PPI) network structure, 

whereas FunRich found hub genes. The five hub genes that were ultimately discovered are PTEN, SMAD2, FASN, CYCS, and KRAS. 

As a result, these genes may serve as potential biomarkers for the aforementioned diseases. Importantly, this study offers valuable 

insights into all three diseases based on recent molecular advancements. However, further investigation is required to precisely 

measure these biomarkers’ effectiveness. 
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1. Introduction 

 

Today, breast cancer (BC) and gynecological cancers have 

become a major threat to women’s health (Zhang et al., 2019). 

In addition to the aging population, the incidence increases due 

to risk factors such as smoking, excess weight, and physical 

inactivity (Arakal et al., 2021). According to statistics in 2020, 

more than 2 million new cases of breast cancer were seen in 

women (BCS, 2023). Statistics show that BC is the most 

common cancer seen worldwide. However, gynecological 

cancers are among the deadliest cancers in the world (Yadav et 

al., 2020). Again, statistics in 2020 show that EC is the 6th most 

common cancer in women (ECS, 2023). With more than 

313,000 new cases in 2020, OC is the 8th most common cancer 

in women and the 18th most common cancer overall (OCS, 

2023). The incidence of these cancers, which seriously threaten 

women’s health, continues to increase worldwide despite 

medical advances (Zhang et al., 2022). 

Both OC and EC occur as part of Lynch syndrome or 

hereditary nonpolyposis colorectal cancer (Gayther et al., 2010). 

With the increase in obesity, mortality rates caused by EC are 

increasing in developed countries (Li et al., 2020). Studies have 

shown that BRCA1- and BRCA2 gene mutations are important 

hereditary risk factors for the development of breast and ovarian 

cancer (Petrucelli et al., 2022). Microarray and sequencing 

technologies are commonly used today to identify biomarkers 

(Xue et al., 2021), but the hub genes shared by BC and EC have 

not yet been fully clarified (Rahman et al., 2019). Despite 

numerous researches into the molecular mechanisms of cancer, 

the processes of gynecological cancers are still not well 

understood. Therefore, the search for new biomarkers for early 

detection is very important (Zhang et al., 2019). 

Next-generation sequencing technologies offer remarkable 

sequencing speed and lower costs (Lee et al., 2013; Toss et al., 
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2015). Despite these developments, the survival rate of OC is 

low. Therefore, it is of great importance to detect OC at an early 

stage (Yadav et al., 2020). 

This study aims to use bioinformatics tools to analyze 

microarray data, identify new biomarkers, and explore the 

molecular mechanisms of BC, OC, and EC. It is collected 

microarray datasets of BC, OC, and EC from Gene Expression 

Omnibus (GEO). Searching for a possible biological link 

between BC, OC, and EC disease, sequencing data from patients 

with specified diseases from GEO databases was used. 

 

2. Materials and methods  

 

The microarray datasets GEO42568, GEO27651, and 

GEO17025 were downloaded from GEO database. These three 

datasets were analysed and normalized using the GEO2R tool to 

find common DEGs. PPI network structure was performed using 

STRING (Szklarczyk et al., 2010) database and Cytoscape 

(Shannon et al., 2003) software, respectively. A brief workflow 

is indicated in Fig. 1. 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 1. Overall workflow of methodology. Microarray data was 

obtained from the GEO database. The number of samples in the study 

was 273, of which 238 were cancerous and 35 were normal tissue. The 

largest samples in the database belong to the breast tissues. 

 

2.1. Data acquisition 

 

In this study, three cancer-related gene expression profiles 

with GEO accession numbers GSE42568 (GSE42568, 2023), 

GSE27651 (GSE27651, 2023), and GSE17025 (GSE17025, 

2023) were extracted from the GEO database, and DEGs were 

obtained using GEO2R. There is total of 121 patient samples in 

dataset GSE42568, 49 patient samples in dataset GSE27651, and 

103 patient samples in dataset GSE17025 (see Table 1). 

 

2.2. Data processing 

 

All patient records were selected as test and control using 

the GEO2R tool, which was used to compare two or more sets 

of samples to identify DEGs under experimental conditions (see 

Fig. 2). Results are obtained as a table of genes ordered in order 

of importance. After processing each examined dataset with the  

 
Table 1 

Datasets obtained from GEO. 

GEO2R tool, thousands of DEGs were obtained. 

 

2.3. Selection of DEGs 

 

DEG lists downloaded using the GeoR tool, as shown in 

Fig. 3, were filtered according to p-value and log2 fold-change 

(Log2FC) values, and genes belonging to the related disease 

were obtained (Sarkar et al., 2021). The Benjamini–Hochberg 

approach was used to adjust the p-values (Benjamini et al., 

1995). 

 

2.4. Method for identification of DEGs 

 

A systematic approach using the FunRich tool (version 

3.1.3) (Fonseka et al., 2021) was used to identify DEGs in this 

study. Initially, gene expression data were extracted from three 

different datasets from GEO database. The main criteria for 

selecting these datasets were their relevance to the research topic 

and the quality of the data. 

For each dataset, gene expression data were normalized for 

comparability. Then, statistical methods were used to find genes 

with significant expression differences between test and control 

groups, using criteria of a log2 fold change| ≥ 0.5 and an adjusted 

p-value of < 0.05 to identify DEGs. 

The Venn diagram function in FunRich was then used to 

visually represent and identify common genes across the three 

datasets. This step was crucial for locating hub genes that 

consistently showed different expressions across multiple 

datasets. The Venn diagram (see Fig. 4) shows the overlap of 

DEGs and helps isolate the most important candidates for further 

analysis. 

In summary, the identification of DEGs involved several 

steps: normalizing the data, analyzing it statistically to find 

differences in expression, and using graphs to identify common 

genes in different datasets. This comprehensive strategy 

guaranteed that DEGs were statistically significant. 

 

2.5. Network analysis of DEGs 

 

Network analysis of DEGs was necessary for the study to 

better understand the complex gene interactions. All shared 

DEGs from the FunRich tool were brought into STRING during 

this step. This allowed for a comprehensive exploration of the 

dynamic interactions and functional relationships that shape the 

molecular landscape of BC, OC, and EC. 

 

3. Results 

 

3.1. Identification of DEGs 
 

After the data was downloaded, a significance threshold 

was defined with a p-value<0.05 and a log2FC (fold change) ≥ 

0.5. Adhering to these criteria, a total of 5676 genes out of 54675 

in BC (GSE42568), 10219 genes out of 54675 in OC 

(GSE27651),  and  5824 genes out of 54675  in  EC  (GSE17025)  

 

 

Disease Accession number of the dataset #of patients Diseased samples / Test species Healthy samples / Control species 

Breast Cancer GSE42568 121 104 17 

Ovarian Cancer GSE27651 49 43 6 

Endometrial Cancer GSE17025 103 91 12 

Total: 273 238 35 
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Fig. 2. Box plots of gene expression values (a) BC (GSE42568), (b) OC (GSE27651), (c) EC (GSE17025). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Basic steps of selection of DEGs. 

 

were selected for further analysis. This rigorous filtering process 

resulted in the identification of 3816 DEGs in BC, 7660 DEGs 

in OC, and 4306 DEGs in EC, providing a more refined subset 

for subsequent investigation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. The Venn diagram shows 374 common hub genes. 

 

3.2. Common DEGs analysis 

 

Venn diagram analysis yielded 374 genes reflecting dataset  
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intersections. 

 

3.3. Common DEGs network 

 

3.3.1. Construction of PPIs network 

 

Protein-Protein Interaction (PPI) networks helped uncover 

hub genes for various illnesses. All 374 common DEGs related 

to these disorders were imported into the STRING, constructing 

a comprehensive network with 355 nodes and 964 edges. The 

resulting PPI network exhibited an average node degree of 5.43 

and a clustering coefficient of 0.328, visually represented in Fig. 

5 and Fig. 6. This network analysis provides a holistic view of 

the interconnected relationships among the differentially 

expressed genes, offering valuable insights into the molecular 

dynamics underlying breast cancer, ovarian cancer, and 

endometrial cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. PPIs network produced by STRING. 

 

3.3.2. Hub gene analysis 

 

In this study, the identification of hub genes was achieved 

by combining advanced bioinformatics tools and network 

analysis techniques. Initially, the STRING database (Szklarczyk 

et al., 2010) was used to construct a PPI network based on DEGs 

associated with BC, OC, and EC. This network forms the basis 

for identifying key genes that play central roles in these cancers. 

Cytoscape software (Shannon et al., 2003), a powerful tool, 

was then used to develop the analysis and visualize molecular 

interaction networks. The Cyto-Hubba plugin was used in 

Cytoscape, a module specifically designed to identify hub genes 

in a network. Cyto-Hubba ranks genes within the network based 

on various topological algorithms such as degree centrality, 

closeness centrality, and betweenness centrality (Zhou et al., 

2021). These algorithms calculate the importance of each gene 

in the network based on their connections and positions. In this 

study, degree filters were used. The top 20 genes with the highest 

scores in these degree centrality measurements were selected as 

centrality genes. These genes are shown in Fig. 7, which shows 

their positions and interactions within the network. By 

integrating these computational tools, the precision of hub gene 

selection has been increased and focused information has been 

provided on key players within the PPI network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 6. K-means clustering applied in PPIs network. 

 

 

 

 

 

 

 

 

 

 
Fig. 7. Hub genes were identified using the plug-in cytoHubba in 

Cytoscape software. 

 
Table 2  

List of common Hub genes using degree centrality ranking methods. 

 

Table 2 serves as a comprehensive overview, summarizing 

the list of common hub genes based on degree centrality ranking 

methods. Notably, CYCS emerges as the hub gene with the 

highest degree of interaction, underscoring its potential 

significance, while UBE2L3 stands out as the least connected 

node among the top 20 hub genes. 

No. Gene Name No. Gene Name 

1 “CYCS” 11 “PTPN11” 

2 “PTEN” 12 “ITGB1” 

3 “KRAS” 13 “TKT” 

4 “ACO2” 14 “PDHA1” 

5 “HSPA9” 15 “NDUFS1” 

6 “ATP5B” 16 “FASN” 

7 “SMAD2” 17 “UBE2V2” 

8 “SUMO1” 18 “SDHC” 

9 “MAP2K1” 19 “PPP2R5E” 

10 “UBE2D2” 20 “UBE2L3” 



S. Atasever  Front Life Sci RT 5(1) 2024 74-82 

    78 
 

3.3.3. miRNA’s interaction network 

 

Upon identification, the top 20 hub genes were 

subsequently integrated into the miRNet 2.0 software (Chang et 

al., 2022), allowing for a comprehensive exploration of their 

intricate interactions with miRNAs, as visually depicted in Fig. 

8. This multi-layered analysis not only sheds light on the hub 

genes but also unravels potential regulatory relationships 

between these genes and miRNAs, offering a more holistic 

understanding of their roles in the molecular landscape of breast 

cancer, ovarian cancer, and endometrial cancer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Interaction between miRNA and 20 common genes of BC, OC 

and, EC obtained via miRNet 2.0. The five large nodes indicate the hub 

genes. 

 
Table 3 

miRNet 2.0 screening results. 

 
Table 4  

A list of common biomarker candidates. 

 

Table 3 shows a list of central genes with their connections 

(degree) and importance (betweenness) in the network. Nodes 

with higher node degree act as hubs in a network (miRNet, 

2024). PTEN, with the highest degree of 160, is the most 

connected gene in this network, followed by SMAD2, FASN, 

CYCS, and KRAS. A higher betweenness centrality score can 

indicate a gene’s strategic role in the communication within the 

network. PTEN has the highest betweenness centrality at 

23099.09, indicating it may play a significant role in the flow of 

information in the network. 

 

3.3.4. Survival analysis 

 

A method using both statistical significance and biological 

importance selected 5 hub genes for survival analysis (Table 4). 

These genes, central in the PPI network, are vital for cancer-

related cellular processes. Their high interaction and central role 

in the network highlight their potential regulatory importance in 

cancer pathways. This study analyzed overall and disease-free 

survival (DFS) data for 1,668 patients with BC, OC, and EC 

using the GEPIA online service.  

Fig. 9A shows a Kaplan-Meier curve for the OS of patients 

grouped by their high or low PTEN, SMAD2, FASN, KRAS, and 

CYCS gene expression levels. Fig. 9B does the same for DFS. In 

both figures, the blue line shows patients with low expression, 

and the red line shows those with high expression. Both groups 

start with a DFS probability of 1.0 (or 100%), which decreases 

over time as events (recurrence of disease) occur. 

In summary, Kaplan-Meier survival curves showed that 

higher expression levels of the PTEN, SMAD2, FASN, and KRAS 

genes were associated with longer OS, whereas higher 

expression of CYCS was associated with lower OS. Therefore, 

the PTEN, SMAD2, FASN, and KRAS genes could be considered 

a positive prognostic biomarker for patients with BC and 

gynecological cancers. 

In summary, Kaplan-Meier survival curves showed that 

higher expression levels of the PTEN, SMAD2, FASN, and KRAS 

genes were associated with a longer period of DFS. Therefore, 

the expression levels of these genes (PTEN, SMAD2, FASN, and 

KRAS) may serve as a prognostic biomarker for BC and 

gynecological cancers. 

 

3.4. Pathways analysis 

 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathway enrichment analyses were 

conducted using the “Enrichr” online platform (Enrichr, 2024) 

to decipher crucial biological processes. This was accomplished 

for the top 20 hub genes, thereby illuminating significant 

insights. 

The 374 overlapping DEGs were analyzed for GO 

enrichment, revealing the top 10 enriched terms in biological 

processes, cellular components, and molecular functions in Fig. 

10A, including significant enrichment in “negative regulation of 

organ growth” and “cell-cell adhesion mediated by integrin”. 

KEGG analysis showed significant enrichment in pathways like 

the “citrate cycle” and “central carbon metabolism in cancer” 

(Fig. 10B). 

Fig. 10(a) provides a list of biological processes from GO, 

a major bioinformatics initiative that aims to unify the 

representation of gene and gene product features across all 

species. Each listed process is accompanied by a unique 

identifier (e.g., GO:0046621 for “negative regulation of organ 

growth”), allowing easy reference and cross-database 

comparisons.  

Highlighted processes include various regulatory functions 

such as “negative regulation of organ growth”, “cell-cell 

adhesion mediated by integrin”, and “neuroinflammatory 

response”. There are also specific pathways like “ribosome 

phosphate  metabolic  process”,  “regulation  of  inward  rectifier  

Hub genes Degree Betweenness 

PTEN 160 23099.09 

SMAD2 107 12475.8 

FASN 106 12336.65 

CYCS 104 12544.66 

KRAS 99 10806.33 

Hub genes Roles of the Biomolecules Reference 

PTEN 
Phosphatase and tensin 

homolog 

(Chou et al., 2014;  

Smith et al., 2016) 

SMAD2 Cancer-related genes 
(Martinez-Ledesma et al., 

2015) 

FASN Fatty acid synthase (Fernández et al., 2020) 

CYCS Cytochrome c, somatic (Emmanuel et al., 2011) 

KRAS 
Regulation of cell 

proliferation 
(Emmanuel et al., 2011) 
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Fig. 9. Overall survival (OS) analysis of the candidate hub genes. (A) OS analysis. (a) PTEN, (b) SMAD2, (c) FASN, (d) CYCS, and (e) KRAS. (B) 

DFS analysis. (a) PTEN, (b) SMAD2, (c) FASN, (d) CYCS, and (e) KRAS. The threshold Log-rank p<0.05 was considered as statistically significant. 

A 

B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



S. Atasever  Front Life Sci RT 5(1) 2024 74-82 

    80 
 

Fig. 10. Bioinformatics analysis of DEGs in the progression of BC, OC and EC cancers.  Functional enrichment analysis of the overlapping DEGs. 

The GO enrichment analysis of DEGs in the categories of (a) biological process, (b) The KEGG pathway enrichment analysis of the overlapping 

DEGs. The top 10 enriched KEGG pathways were shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

potassium channel activity”. The functional enrichment analysis 

indicated that the overlapping DEGs were mainly associated 

with “negative regulation of organ growth” and “cell-cell 

adhesion mediated by integrin”, “ribose phosphate metabolic 

process”, and so on.  

The analysis used in Fig. 10(b) is used to identify important 

biological pathways enriched in a set of DEGs. The bar chart 

shows the top 10 enriched KEGG pathways among the 

overlapping DEGs analyzed in this study. From the list, we can 

see that it includes metabolic pathways such as the “Citrate cycle 

(TCA cycle)” and “Central carbon metabolism in cancer”, as 

well as pathways directly related to various cancers like 

“Colorectal cancer”, “Endometrial cancer”, “Renal cell 

carcinoma”, “Melanoma”, “Glioma”, and “Chronic myeloid 

leukemia”. The “PD-L1 expression and PD-1 checkpoint 

pathway in cancer” indicates a focus on immunological 

pathways that are targeted in cancer immunotherapy. In cancer 

treatment, tumor microenvironment is sensitive to treatment 

with immune checkpoint such as the PD-1/PD-L1 pathway 

because of radiotherapy (Du et al., 2020). The “Sphingolipid 

signaling pathway” is involved in signaling mechanisms that can 

affect cell growth, survival, differentiation, and apoptosis, which 

are processes relevant to cancer biology. Members of the 

sphingolipid family are widely involved in cancer cell growth, 

migration, invasion, and other biological processes (Sun et al., 

2022). 

 

4. Discussion 

 

Numerous studies have been conducted in recent years to 

identify genetic markers for cancer (Banno et al., 2012; Toss et 

al., 2015; Walsh et al., 2016; Zhang et al., 2022). The US 

National Cancer Institute (NCI) defines a biomarker as “a 

biological molecule found in the blood, other body fluids, or 

tissues that is a sign of a normal or abnormal process, or a 

condition or disease” (Banno et al., 2012). New biomarkers are 

revealed by next-generation sequencing. This will allow 

clinicians to present in the most informative way 

recommendations for administering new treatments modifying 

existing treatments and adjusting dosage (Walsh et al., 2016). 

The generation of high-throughput technologies has improved 

our understanding of complex biological features such as tumors 

(Wang et al., 2022). Despite surgical and chemotherapy 

treatment applications in various cancer types such as EC, 

mortality rates are still increasing in recent years. Therefore, it 

is necessary to better understand the mechanisms that cause 

cancer (Li et al., 2020). In this study, by downloading three 

cancer  datasets,  374  common  DEGs  were  screened  out. From 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

their study of colorectal cancer patients treated with cetuximab, 

Li et al. (2010) concluded that KRAS mutation and PTEN protein 

expression were significantly associated with patient response 

rate and survival time. 

The study by Zhang et al. (2024) identified 13 ferroptosis-

related genes in Crohn’s disease (CD) using bioinformatics 

analysis of two Gene Expression Omnibus datasets and further 

validated three of these genes (IL-6, PTGS2, and DUOX2) as key 

regulators of ferroptosis in CD through qPCR analysis of clinical 

samples. These findings suggest new biomarkers and therapeutic 

targets for CD, offering fresh insights into its pathogenesis and 

potential treatment strategies. 

In recent years, efforts have been made to identify new 

biomarkers for gynecological cancer. For example, upregulation 

of TRIM44 predicts poor prognosis in OC. Previous studies have 

found SMYD2 to be an oncogene in several types of cancer. 

MMP8 has been reported to be associated with BC. HSDL2 acts 

as an oncogene in OC (Zhang et al., 2019). PTEN gene encodes 

a tumor suppressor phosphatase that has been found to be 

frequently mutated in patients with OC and EC (Smith et al., 

2016). 

In this study, a Venn diagram obtained using the FunRich 

tool was analyzed to identify hub genes. By determining 20 hub 

genes by the degree centrality method, in the analysis of 

common hub genes, “negative regulation of organ growth” and 

“cell-cell adhesion mediated by integrin”, “ribose phosphate 

metabolic process”, etc. It has been determined that there are 

genes associated with five unreported genes in BC, OC, and EC. 

The results may help us understand the development of BC, OC, 

and EC and guide further experiments. 

In Fig. 8, the five large nodes (PTEN, SMAD2, FASN, 

CYCS, and KRAS) represent hub genes that are likely central in 

the network due to their high degree of connections, indicating 

they may play key roles in the regulatory processes across the 

three types of cancer. The study by Davies et al. (2014) showed 

that mutations in PTEN and KRAS alone predispose mice to a 

spectrum of serrated lesions reflective of the serrated pathway 

of colorectal cancer progression in humans. The study by Qian 

et al. (2022) stated that SMAD2 was related to colorectal cancer, 

KRAS was related to ovarian cancer, and KRAS and PTEN were 

related to endometrial cancer. In another study (Stebbing et al., 

2014), the alterations observed in phosphatases and the resulting 

malignancies were associated with the PTEN gene in cervical, 

ovarian, and breast cancers. 

In the literature, studies have been carried out examining 

various gene expressions to evaluate their ability as prognostic 

markers. Yndestad et al. (2017) conducted a study indicating 

that high PTEN gene expression is a negative prognostic marker 
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in human primary breast cancers with preserved p53 function. 

Another study showed that loss of PTEN expression was 

associated with worse survival (Ferraldeschi et al., 2015). 

Although Liu et al. (2020) found that SMAD2, p-SMAD2, and 

SMAD4 are not independent predictors by multivariate analysis, 

SMAD4 positivity correlates with longer OS and progression-

free survival. They also found that combined p- SMAD2 and 

SMAD4 expression can serve as an independent prognostic 

factor, suggesting that testing for these proteins in breast ductal 

carcinoma biopsies could offer extra prognostic insights. 

Ramanathan et al. (2017) showed that although VEGFA alone 

did not correlate with survival, high ANG2 and high VEGFA co-

expression correlated with decreased OS for breast cancer. 

Inferences made with Kaplan-Meier curves are generally 

not sufficient to fully understand the prognostic value of a gene. 

Kaplan-Meier analysis evaluates OS or DFS by grouping 

patients based on a given gene expression level and produces 

survival curves for each group. This analysis is useful for 

visualizing the impact of a gene’s high or low expression on 

patient survival, but this relationship is not definitive and does 

not account for other influencing factors. Multivariate analysis 

is necessary to support Kaplan-Meier results because it 

considers other important variables such as age, gender, type of 

treatment, stage, and other potential confounding factors. In 

their study, Scaglia et al. (2013) in addition to the Kaplan-Meier 

method, also used the Cox proportional hazards regression 

model to evaluate the effect of potential confounding factors and 

adjust their effects in the comparison between genders. Methods 

such as the Cox proportional hazards model (Liu et al., 2020) are 

used in multivariate analysis to determine whether the effect of 

a gene on survival is independent of all other variables. 

Therefore, complementing Kaplan-Meier analysis with 

multivariate analysis is crucial to confirm whether a gene is an 

independent prognostic marker, which is one of the limitations 

of this study. 

 

5. Conclusion 

 

In this study, it was aimed to analyze microarray samples 

by using bioinformatics tools to identify new biomarkers. 

Searching for a possible biological link between BC, OC, and 

EC disease, sequencing data from patients with specified 

diseases from GEO databases was used. 374 DEGs were 

common, and five of them came to the fore. These include the 

PTEN, SMAD2, FASN, CYCS, and KRAS genes. The functional 

enrichment analysis indicated that the overlapping DEGs were 

mainly associated with “negative regulation of organ growth” 

and “cell-cell adhesion mediated by integrin”, “ribose phosphate 

metabolic process”, and so on. Higher PTEN, SMAD2, FASN, 

and KRAS gene expressions correlate with increased overall and 

disease-free survival, unlike CYCS, which shows reduced 

overall survival with no significant impact on disease-free 

survival. However, further work is required to quantify the 

potency of these biomarkers. Understanding the role of the key 

genes identified in this study in signal transduction could help in 

creating targeted drugs for cancer treatment, either alone or 

combined with other therapies. 

 

Conflict of interest: The author declares that she has no conflict 

of interests. 

 

Informed consent: The author declares that this manuscript did 

not involve human or animal participants and informed consent 

was not collected. 

References
 

 

Arakal, N. G., Sharma, V., Kumar, A., Kavya, B., Devadath, N. G., Kumar, 

S. B., ... & Murahari, M. (2021). Ligand-based design approach of 

potential Bcl-2 inhibitors for cancer chemotherapy. Computer Methods 

and Programs in Biomedicine, 209, 106347. 

Banno, K., Kisu, I., Yanokura, M., Tsuji, K., Masuda, K., Ueki, A., ... & 

Aoki, D. (2012). Biomarkers in endometrial cancer: Possible clinical 

applications. Oncology letters, 3(6), 1175-1180. 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: 

a practical and powerful approach to multiple testing. Journal of the 

Royal Statistical Society: Series B (Methodological), 57(1), 289-300. 

BCS, (2023). Breast Cancer Statistics, https://www.wcrf.org/cancer-

trends/breast-cancer-statistics/, Last Accessed on December 16, 2023. 

Chang, L., & Xia, J. (2022). MicroRNA regulatory network analysis using 

miRNet 2.0. In: Song Q., Tao Z. (eds) Transcription Factor Regulatory 

Networks (pp. 185-204). Springer, Humana, New York. 

Chou, W. C., Cheng, A. L., Brotto, M., & Chuang, C. Y. (2014). Visual 

gene-network analysis reveals the cancer gene co-expression in human 

endometrial cancer. BMC Genomics, 15(1), 1-12. 

Davies, E. J., Marsh Durban, V., Meniel, V., Williams, G. T., & Clarke, A. 

R. (2014). PTEN loss and KRAS activation leads to the formation of 

serrated adenomas and metastatic carcinoma in the mouse intestine. The 

Journal of Pathology, 233(1), 27-38. 

Du, Z., Yan, D., Li, Z., Gu, J., Tian, Y., Cao, J., & Tang, Z. (2020). Genes 

involved in the PD-L1 pathway might associate with radiosensitivity of 

patients with gastric cancer. Journal of Oncology, 2020. 

Emmanuel, C., Gava, N., Kennedy, C., Balleine, R. L., Sharma, R., Wain, 

G., ... & deFazio, A. (2011). Comparison of expression profiles in 

ovarian epithelium in vivo and ovarian cancer identifies novel 

candidate genes involved in disease pathogenesis. PloS One, 6(3), 

e17617. 

ECS, (2023). Endometrial Cancer Statistics, https://www.wcrf.org/cancer-

trends/endometrial-cancer-statistics/, Last Accessed on December 16,  

 

 

2023. 

Enrichr, (2024). Enrichr Database, https://maayanlab.cloud/Enrichr/, Last 

Accessed on December 16, 2023. 

Fernández, L. P., de Cedron, M., & de Molina, A. (2020). Alterations of 

lipid metabolism in cancer: Implications in prognosis and treatment. 

Frontiers in Oncology, 10, 577420. 

Ferraldeschi, R., Rodrigues, D. N., Riisnaes, R., Miranda, S., Figueiredo, I., 

Rescigno, P., ... & de Bono, J. (2015). PTEN protein loss and clinical 

outcome from castration-resistant prostate cancer treated with 

abiraterone acetate. European Urology, 67(4), 795-802. 

Fonseka, P., Pathan, M., Chitti, S. V, Kang, T., & Mathivanan, S. (2021). 

FunRich enables enrichment analysis of OMICs datasets. Journal of 

Molecular Biology, 433(11), 166747. 

Gayther, S. A., & Pharoah, P. D. P. (2010). The inherited genetics of ovarian 

and endometrial cancer. Current Opinion in Genetics & Development, 

20(3), 231-238. 

GSE17025, (2023). National Center for Biotechnology Information, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17025, Last 

Accessed on December 16, 2023. 

GSE27651, (2023). National Center for Biotechnology Information,  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27651, Last 

Accessed on December 16, 2023. 

GSE42568, (2023). National Center for Biotechnology Information, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42568, Last 

Accessed on December 16, 2023. 

Li, F. H., Shen, L., Li, Z. H., Luo, H. Y., Qiu, M. Z., Zhang, H. Z., ... & Xu, 

R. H. (2010). Impact of KRAS mutation and PTEN expression on 

cetuximab-treated colorectal cancer. World Journal of 

Gastroenterology: WJG, 16(46), 5881. 

Li, Y., & Li, L. (2020). Bioinformatic screening for candidate biomarkers 

and their prognostic values in endometrial cancer. BMC Genetics, 

21(1), 1-13. 



S. Atasever  Front Life Sci RT 5(1) 2024 74-82 

    82 
 

Liu, N., Qi, D., Jiang, J., Zhang, J., & Yu, C. (2020). Expression pattern of 

p-Smad2/Smad4 as a predictor of survival in invasive breast ductal 

carcinoma. Oncology Letters, 19(3), 1789-1798. 

Martinez-Ledesma, E., Verhaak, R. G. W., & Treviño, V. (2015). 

Identification of a multi-cancer gene expression biomarker for cancer 

clinical outcomes using a network-based algorithm. Scientific Reports, 

5(1), 11966. 

miRNet, (2024). miRNet Tutorial Starting with a List, 

https://www.mirnet.ca/miRNet/resources/data/tutorials/Start_with_list

.pdf, Last Accessed on January 24, 2024. 

OCS, (2023). Ovarian Cancer Statistics, https://www.wcrf.org/cancer-

trends/ovarian-cancer-statistics/, Last Accessed on December 16, 2023. 

Petrucelli, N., Daly, M. B., & Pal, T. (2022). BRCA1-and BRCA2-

associated hereditary breast and ovarian cancer. GeneReviews. 

Qian, F., Kong, W., & Wang, S. (2022). Exploring autophagy-related 

prognostic genes of Alzheimer’s disease based on pathway crosstalk 

analysis. Bosnian Journal of Basic Medical Sciences, 22(5), 751. 

Rahman, M. F., Rahman, M. R., Islam, T., Zaman, T., Shuvo, M. A. H., 

Hossain, M. T., ... & Moni, M. A. (2019). A bioinformatics approach to 

decode core genes and molecular pathways shared by breast cancer and 

endometrial cancer. Informatics in Medicine Unlocked, 17, 100274. 

Ramanathan, R., Olex, A. L., Dozmorov, M., Bear, H. D., Fernandez, L. J., 

& Takabe, K. (2017). Angiopoietin pathway gene expression associated 

with poor breast cancer survival. Breast Cancer Research and 

Treatment, 162, 191-198. 

Sarkar, D., Chakraborty, S., Bhowmick, S., & Maiti, T. (2021). In-silico 

analysis: common biomarkers of NDs. BioRxiv, 2021-2029. 

Scaglia, N. C., Chatkin, J. M., Pinto, J. A., Tsukazan, M. T. R., Wagner, M. 

B., & Saldanha, A. F. (2013). Role of gender in the survival of surgical 

patients with nonsmall cell lung cancer. Annals of Thoracic Medicine, 

8(3), 142. 

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., 

... & Ideker, T. (2003). Cytoscape: a software environment for 

integrated models of biomolecular interaction networks. Genome 

Research, 13(11), 24982504. 

Smith, I. N., & Briggs, J. M. (2016). Structural mutation analysis of PTEN 

and its genotype-phenotype correlations in endometriosis and cancer. 

Proteins: Structure, Function, and Bioinformatics, 84(11), 1625-1643. 

Stebbing, J., Lit, L. C., Zhang, H., Darrington, R. S., Melaiu, O., Rudraraju, 

B., & Giamas, G. (2014). The regulatory roles of phosphatases in 

cancer. Oncogene, 33(8), 939-953. 

Sun, Y.,  Xu,  Y.,  Che,  X., &  Wu,  G.  (2022).  Development  of  a  novel  

sphingolipid signaling pathway-related risk assessment model to 

predict prognosis in kidney renal clear cell carcinoma. Frontiers in Cell 

and Developmental Biology, 10, 881490. 

Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., 

Minguez, P., ... & Mering, C. V. (2010). The STRING database in 2011: 

functional interaction networks of proteins, globally integrated and 

scored. Nucleic Acids Research, 39(suppl_1), D561-D568.  

Toss, A., Tomasello, C., Razzaboni, E., Contu, G., Grandi, G., Cagnacci, 

A., ... & Cortesi, L. (2015). Hereditary ovarian cancer: not only BRCA 

1 and 2 genes. BioMed Research İnternational, 2015. 

Walsh, M. F., Nathanson, K. L., Couch, F. J., & Offit, K. (2016). Genomic 

biomarkers for breast cancer risk. Novel Biomarkers in the Continuum 

of Breast Cancer, 1-32. 

Wang, Y., Wang, J., Hu, Y., Shangguan, J., Song, Q., Xu, J., ... & Zhang, 

Y. (2022). Identification of key biomarkers for STAD using filter 

feature selection approaches. Scientific Reports, 12(1), 19854. 

Xue, H., Sun, Z., Wu, W., Du, D., & Liao, S. (2021). Identification of hub 

genes as potential prognostic biomarkers in cervical cancer using 

comprehensive bioinformatics analysis and validation studies. Cancer 

Management and Research, 117-131. 

Yadav, G., Vashisht, M., Yadav, V., & Shyam, R. (2020). Molecular 

biomarkers for early detection and prevention of ovarian cancer—A 

gateway for good prognosis: A narrative review. International Journal 

of Preventive Medicine, 11. 

Yndestad, S., Austreid, E., Knappskog, S., Chrisanthar, R., Lilleng, P. K., 

Lønning, P. E., & Eikesdal, H. P. (2017). High PTEN gene expression 

is a negative prognostic marker in human primary breast cancers with 

preserved p53 function. Breast Cancer Research and Treatment, 163, 

177-190. 

Zhang, S., Jiang, H., Gao, B., Yang, W., & Wang, G. (2022). Identification 

of diagnostic markers for breast cancer based on differential gene 

expression and pathway network. Frontiers in Cell and Developmental 

Biology, 9, 811585. 

Zhang, W., Li, Z., Li, H., & Zhang, D. (2024). Identification of 

differentially expressed genes associated with ferroptosis in Crohn’s 

disease. Experimental and Therapeutic Medicine, 27(2), 1-12. 

Zhang, X., & Wang, Y. (2019). Identification of hub genes and key 

pathways associated with the progression of gynecological cancer. 

Oncology Letters, 18(6), 6516-6524. 

Zhou, C., Guo, H., & Cao, S. (2021). Gene Network Analysis of 

Alzheimer’s Disease Based on Network and Statistical Methods. 

Entropy, 23(10), 1365.

 

 

 

 

 

Cite as: Atasever, S. (2024). Identification of potential hub genes as biomarkers for breast, ovarian, and endometrial cancers. Front Life Sci RT, 5(1), 74-

82.

 


