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Abstract
Mathematically precise modeling is important to be established to accurately examine the quantitative
relationship between software testing and software reliability. Software testing process is complex
since it is concerned with various factors such as test case execution, defect debugging, tester expertise,
test case selection, and so forth. For this reason, it is required to be meticulous in formulating the
software testing process in a manner which is mathematically concise. The software release life cycle or
sequential release timeline, referring to the process related to the development, testing and distribution
of a software product comprises several critical stages, and the length of this particular life cycle reveals
variations depending on different factors like the type of product, the intended use of it, industry
security, general standards and compliance. One consideration software engineers have is related to
the release date of the software so that future commitments about the software’s release time can be
formulated beforehand. In view of these aspects, a multi-step strategy for predicting software release
dates is proposed in the current study along with the following stages: firstly, the proposed technique
selects the utmost reliability growth model that very well fits the observed test data halfway through
the testing period, and then employs it to forecast the probable date of release. This technique entails
approximating the unknown parameters of suitable Software Reliability Growth Models (SRGMs).
Finally, the chosen SRGM is used to forecast the release date of the software under test by fitting it
to available fault data. The proposed method is straightforward and applied to test on a total of ten
actual datasets collected from the literature. The results of the proposed technique reveal that in the
majority of the situations, nearly exact approximation of date of release can be made halfway through
the testing period. Moreover, the proposed method’s performance is also compared to that of a number
of previous strategies present in the literature. The outcomes obtained by our study demonstrate that
the proposed strategy may be used to forecast the release date of software in practical situations.
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1 Introduction

Mathematical modeling, describing a system by a set of equations and variables, is employed
for establishing relationships among them, and in control of the system, it has a critical value for
the accurate examination of the quantitative relationship between software testing and software
reliability. Software testing process, as a complex one, is concerned with various factors such as test
case execution, defect debugging, tester expertise, test case selection, and so on. For this reason,
it is required to be meticulous in formulating the software testing process in a reliable manner.
Computer software is used in practically every facet of human endeavor, and it is of utmost
significance to devise, build and test the software appropriately before being released. Software
development takes a long time and comes with a substantial amount of financial burden. When
software is developed, it is thoroughly tested before being released to ensure that it is bug-free
and hence trustworthy. In reality, reliability is the most crucial characteristic for a well-designed
software application. Accordingly, a software reliability model indicates the form of a random
process defining the behavior of software failures to time, and these models have emerged as more
understanding has become a requisite to examine the features of the way and reason software
fails, with an attempt to quantify software reliability. Musa and Okumoto [1] defined reliability of
any software application as the likelihood of operation with no failures in any given environment
for a specific amount of time. In practice, project managers find it challenging to assess software
reliability. A variety of Software Reliability Growth Models (SRGMs) has been proposed since
the early 1970s [1–4] for the evaluation of reliability growth of systems throughout software
developments specially during the completing and testing periods of the software concerned.
The number of expected failures within a certain time period is a widely accepted indicator
for assessing a product’s reliability. Failures are the result of software code faults, and even a
single flaw can result in several failures. Furthermore, software engineers are often interested
in projecting the software’s expected release date while it is still in development so that future
delivery commitments can be made timely. With this in mind, software engineers used specialized
development approaches to reduce the overall risk and support rapid change. As a result, there is
a significant issue in predicting the likely release date of software in development with sufficient
accuracy. Existing techniques, such as a cumulative flow methodology, release backlogs are used
in software development to anticipate and set release dates; however, because this does not take
software reliability into account when projecting release dates, there is a risk that software at the
predicted release date may be unreliable. Software system availability depends on reliability, and
SRGMs can be used to determine whether sufficient defects have been eliminated in order to
release the software.
A software economic policy was developed by Huang et al. [5] offering a thorough examination
of software based on test efficiency and cost. Project managers may also benefit from the strategy
by using it to assist them decide when to finish testing in preparation for market release. A
SRGM that takes into account the impact of imprecise fault debugging and error creation was
proposed by Kapur et al. [6]. The suggested model is used to define the release time problem,
which minimizes the estimated cost while meeting the minimal dependability level that must
be met by the release time. By creating a software cost model with a risk component, Singh
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and Kumar [7] provided a technique for determining when to conclude the testing phase and
deliver the program to the end user. They addressed the question of how to determine when to
finish testing and release the product. A method for building a software reliability growth model
based on the Non-Homogeneous Poisson Process was presented by Quadri et al. [8]. Despite the
fact that several testing-effort functions based on the non-homogeneous Poisson process (NHPP)
have been developed for the software reliability growth model. They examined the scenario in
which the Generalized Exponential Distribution (GED) describes the time-dependent behaviors of
testing-effort expenditures. The NHPP is used to create SRGMs, which include the (GED) testing-
effort spent during the software-testing phase. A mathematical modeling approach for numerous
software product releases is proposed by Kapur et al. [9]. Their suggested model uses a Cobb
Douglas production function to simulate the failure process using a software reliability growth
model, accounting for the combined effects of schedule pressure and resource constraints. A
technique for choosing SRGMs to forecast the overall amount of errors in software was suggested
by Panwar and Lal [10]. To assess how effectively the technique predicts the predicted total
number of software failures, it is used to a case study consisting of three datasets of defect reports
from system testing of three versions of a big medical record system. In order to offer more
accurate predictions, Choudhary and Baghel [11] provide an efficient software dependability
modeling based on Cuckoo Search optimization, Ensemble Empirical Mode Decomposition, and
Autoregressive Integrated Moving Average (ARIMA) modeling of time series. Panwar and Kaur
[12] suggest a method for estimating the number of software defects that remain by utilizing both
perfect and imperfect software reliability growth models. A software metrics-based technique
for software reliability prediction is presented by Shi et al. [13]. Metric measurement outcomes
are linked to quantitative reliability forecasts by taking into account defect data and operational
conditions.

Although numerous models have been presented researched, and implemented, the majority
of them are failure count models that do not account for the many development scenarios like
developers team structure or a substantial reduction in development time. As a result, standard
models are unable to reliably estimate the release dates. Hence, in the present study, a method
for obtaining reliability estimations is proposed which can determine the product’s likely release
date during the product testing stage. Previously, only basic SRGMs were employed in the
studies, however the proposed method, as a novelty, suggests that NHPP SRGMs can model the
circumstances more practically. The objective of this study is to respond to the following questions:

• Is it possible to forecast software release dates using NHPP SRGMs?
• Is our proposed method more accurate than the previously proposed methods in terms of

predicting the release dates?

The following can be put forth among the contributions to the proposed work.

• A multi-step strategy for predicting software release time by dividing development time into
various degrees of testing.

• A method for estimating the release date forecast precision by specifying a desired level of
confidence.

• An evaluation result demonstrating that our prediction method outperforms previous models.

The following is a breakdown of the paper’s structure. Section 2 provides a basic introduction
to SRGMs. Section 3 describes the suggested strategy, which is then tested on 10 real datasets in
Section 4 to see how effective it is. Finally, in Section 5, conclusions based on the current study
along with the future directions are drawn and discussed.
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2 Non-homogeneous Poisson process software reliability growth models

NHPP class of SRGMs has been broadly used in the literature [14–18]. These models use test
data from failure history, predicting the software application’s projected total number of faults
and forthcoming reliability. This class of models can also be used to approximate the sum of
remaining software faults and the amount of time period it will take to identify these. Mean
value function is used is each model of this category, which is dependent on diverse conventions
about the equations of error content and the defect finding rate. The NHPP SRGMs models are
commonly categorized as follows based on the patterns of their mean value functions, which are
the concave models and S-shaped models.
The defect debugging process is depicted naturally in concave models, in which the faults discov-
ered accumulate as the testing activity proceeds, and the aggregated faults propagates at a gradual
pace before approaching asymptotic behaviour as the software behavior stabilizes. On the other
side, S-shaped curve models show a steady fault discovery at the beginning of the debugging
stage [19]. As testing progresses, the rate of defect identification increases, and the cumulative
defects curve finally approaches asymptotic behavior [20]. This class also distinguishes between
finite and infinite failure models. Finite failure models presume that a fault-free product may be
developed in the end, as well as an asymptotic methodology to a predictable value. The failure
models of infinite class, on the other hand, presume that the count of observed faults is inestimable,
implying that the function of mean value is unrestrained. Numerous models similarly imply that
whilst correcting existing issues, new bugs may be introduced inadvertently. These are denoted as
imperfect debugging models [21]. Five concave, nine S-shaped, and two more models that can
perform as a concave otherwise S-shaped are employed in our proposed study.

3 Multi-step mathematical model-based predictive strategy

In the literature, various methods and practices for selecting appropriate SRGM are suggested
[22–32]. However, the majority of those are dependent on the particular situation and may not
be applied with certainty in all situations. Present study proposes a method for selecting the
best SRGM along with using that one to forecast the likely date of release with the intention to
make required arrangements and revisions ahead of time to fulfil any deadlines. The procedure is
straightforward and has shown to be beneficial in the recent study. It entails choosing an SRGM
that almost fits the existing error content and then use it next to forecast the date of software
release. The proposed technique demands calculating the unknown variables/parameters of
applicable SRGMs before ordering these according to their behavior on observed failure data.
Finally, best chosen SRGM is utilized for forecasting the date of release of any software under test.
The strategy proposed is not scenario-specific and can be used to any situation. It works in the
way whose specific details are provided in the remaining parts of our study.

Estimation of model parameters

NHPP SRGM has some unknown parameters that must be determined from observed test failure
data. Maximum Likelihood Estimation (MLE) or Least Squares Estimate (LSE) are the two methods
which can be used on the currently available test data, to determine the value of these unknown
parameters [33, 34]. The MLE method estimate these parameters by solving a set of simultaneous
equations whereas LSE reduces the TSS (total sum of square of variation) between observed and
probable faults depending on the hypothetical chosen model. There are also a number of tools
available to estimate the value of these unknown parameters like Curve Fitting MATLAB [35]
which is based on the LSE technique. Moreover, our individual proficiency has also proved that
the LSE provides more appropriate parameter values as contrasted to MLE, allowing the model
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Figure 1. Estimation of unknown parameters by MATLAB curve fitting tool

to better fit the actual data. As a result, we chose to employ the LSE technique for parameter
estimation in using MATLAB’s curve fitting tool. After analyzing the existing test data, we first
determine which models appear to be more suitable for fitting this data, and then calculate the
values of RSq and RMSE for each of these SRGMs to determine which one best matches the data.
Figure 1 shows how the Curve Fitting tool fits the SRGM to the given test data and computes the
values of parameters that are unknown in nature.

Ranking of models

In the second step of proposed technique, a comparison criterion (1) is proposed to compare
models realistically in order to examine the efficiency of software reliability growth models
employed in the proposed study. Based on our experience, using a vast set of comparison criteria
is not necessary, and in most situations, it does not even assure trustworthy forecasts. Hence, we
discovered that the subsequent modest criterion may be implemented to rank rival models of
software reliability in order to choose an optimal SRGM for more accurate release date predictions.

Rank Index =
1
2

[
RSqj

maxn
j (RSqj)

+
minjn(RMSEj

RMSEj)

]
. (1)

The relative amount of variation in the actual test data and the test data estimated by the matching
SRGM is shown by RSq. The higher the RSq score, the greater variation there is in the actual and
estimated test data values. The RSq is computed as the proportion of the residuals sum of squares
(SSR) and the total sum of squares (SST). Here, j denotes the number of the SRGM as provided in
Table 1. Also, we have

RSq =
SSR
SSQ

, (2)

where SSR is defined as

SSR =

( n∑
i=1

m̂(ti)−
n∑

i=1

(m(ti))

n

)2

. (3)

The sum of squares about the mean, or SST, is defined as: In (3) and (4) i signifies the test period
and m(ti) the real number of faults discovered up to time ti. Next m(ti) represents the calculated
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value of cumulative failures until time ti as determined by SRGM under study and m(t) represent
the mean value of reported total failures. The regression’s fit standard error is denoted by RMSE
in (1). It is a calculation of the random component’s standard deviation, and it is defined as:

RMSE =
√

MSE. (4)

MSE = SSE/v is the “mean square error” or “the residual mean square” whereas SSE is the
aggregate divergence of the genuine measured faults from the approximated of faults using
SRGM. SSE can be calculated by using equation SSE =

∑n
i=1 (m(ti)− (mti)

2 and v is the degree
of freedom. The number of fitted coefficients m subtracted from the total count of response values
n is the degree of freedom. All competing models’ rank index values are obtained in (1), and next
they are ordered in increasing sequence of these values. The model with the highest rank index
value receives rank 1. If it results in a draw (any two or more models have identical values of
rank index), they are together regarded to be of same rank. The most appropriate model that best
captures the behavior of the test data is model ranked one.

Forecasting the release date

In the next step, using the chosen model and the error content function (a(t)) of the selected rank
1 SRGM, we estimate the total number of predicted errors in the software. The total number of
errors that may occur in software over its lifetime is the value of the error content function. The
error content function (a(t)) of each model is given in Table 1. The following equation is used
to measure the software’s reliability over time using the mean value function and error content
function stated in Table 1.

R(t) = m(t)/a(t). (5)

The conditional reliability (R(s|t)) in interval (t, t + s) is estimated using

R(s|t) = e[m(t+s)−m(t)]. (6)

The likelihood that the obtained reliability at any point of time t may not alter in this gap is given
by conditional reliability (t, t + s). By increasing the value of time t stepwise in Eq. (5) and Eq. (6)
the future prediction about reliability and conditional reliability is done. We increase the value
of t by 1 in each step and finally time of release t is considered the time when R(t) ≥ 0.960 and
R(s|t) ≥ 0.500 for s = 1 and R(s|t) ≥ 0.350 for s = 2.

The proposed method with its relevant stages

• Estimate the length of the testing period when the program is ready for testing and continue
testing until at least 50% of the testing time has passed.

• Choose the acceptable models from Table 1 that should fit the data into the best of your ability.
• Calculate the unknown parameters of the selected models using Section 3, Then use Section 3 to

choose the model with the highest rank.
• This model is then used to calculate R(t) and R(s|t).
• Take this as the time of release if R(t) which meets the necessary level of reliability and R(s|t)

for the next two-time units is acceptable. If the anticipated release date is to be met, adapt the
testing infrastructure accordingly. When around 75% of the expected release time has passed, it
is often recommended to update the estimations again.
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Table 1. SRGMs investigated

No Model Category Mean Value (m(t)) Equation Remarks

1 Goel-Okumoto
(GO) [2]

Concave m(t) = a(1 − e−bt),
a(t) = a, b(t) = b,

Known as the exponential growth
model

2 Generalized
Goel [2]

Concave m(t) = a(1 − e−btc
),

a(t) = a, b(t) = b,
Goodness-of-fit is better than the
GO-Model. For c = 1, the same as
the GO-Model

3 Modified Duane
[19]

Concave m(t) = a[1 − (b/(b + t))c],
a(t) = a, b(t) = b,

Assume independence of failure oc-
currences

4 Musa-Okumoto
[2]

Concave m(t) = a ln(1 + bt),
a(t) = a, b(t) = b,

Assumes that the severity of failure
decreases exponentially as the pre-
dicted number of errors increases

5 Yamada
Exponential [36]

Concave m(t) = a(1 − erα(1 − eβt)),
a(t) = a, b(t) = rαβe−βt,

Make an attempt to account for the
time spent testing

6 Gompert [37] S-Shaped m(t) = ake−bt,
a(t) = a,
b(t) = b,

Estimates the severity of software
errors. In addition, it forecasts de-
mand, economic growth, and fu-
ture population

7 Inflection
S-Shaped [38]

S-Shaped m(t) = (a(1 − ebt))/(1 + βe−bt),
a(t) = a,
b(t) = b/1 + βe−bt,

With the GO model, a technical
problem is solved. If k = 0, the
result is the same as GO-Model

8 Logistic
Growth [24]

S-Shaped m(t) = a/(1 + ke−bt), Calculates the amount of error in
software systems

9 Delayed
S-Shaped [36]

Concave m(t) = a(1 − (1 + bt)e−bt,
a(t) = a,
b(t) = (b2t)/(1 + bt),

The GO model has been modified
to become S-shaped

10 Yamada-
Imperfect-
Debugging
Model I [36]

S-Shaped m(t) = ab/(α + b)(eαt − ebt),
a(t) = aeαt,
b(t) = b,

Assumes a constant fault detection
rate and an exponential fault con-
tent function

11 Yamada-
Imperfect-
Debugging
Model II [36]

S-Shaped m(t) = a[1 − e−bt][1 − α/b]
+ αat,
a(t) = a(1 + αt),
b(t) = b,

Assumes constant rate of introduc-
tion α and a constant rate of fault
detection

12 Yamada-
Rayleigh [36]

S-Shaped m(t) = a(1 − e−rα(1−e(βt2/2))),
a(t) = a,
b(t) = rαβte−βt2/2,

Make an effort to report the time
spent testing

13 Pham-Zhang-
IFD [39]

S-Shaped m(t) = a − ae−bt(1 + (b + d)t
+ bdt2),
a(t) = a,
b(t) = b,

Maintains an initial constant func-
tion fault count and an imperfect
detection rate of fault considering
fault introduction phenomenon

14 Zhang-Teng-
Pham [40]
model
(ZT Pham)

S-Shaped m(t) = a/(p − β)[(1 − (1 +
α)e−bt/1 + αe−bt)(c/b(p−β))],
a(t) = β(t)m(t),
b(t) = c/(1 + αe−bt), β(t) = β,

Considers a constant rate of fault
introduction and a non-decreasing
function of fault detection rate

15 Pham-
Nordman-
Zhang [41]
(PNZ Model)

S-Shaped
&
Concave

m(t) = (a(1 − e−bt)(1 − α/b)
+ αat)/(1 + βe−bt),
a(t) = a(1 + αt),
b(t) = b/(1 + βe( − bt)),

Considers that the fault detection
rate is non-decreasing and the in-
troduction rate is a linear

16 Pham-Zhang
model
(PZ Model) [40]

S-Shaped
&
Concave

m(t) = 1/(1 + βe−bt)
((c + a)(1 − e−bt)
− ab/(b − α)(e−αt − e−bt)),
a(t) = c + a(1 − e−αt),
b(t) = b/(1 + βe−bt),

The exponential rate of introduc-
tion is and non-decreasing rate of
fault detection
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Table 2. Tandom computer software failure (dataset 1)

Time (in weeks) Processor hours Faults found Time (in weeks) Processor hours Faults found
1 519 16 11 6539 81
2 968 24 12 7083 86
3 1430 27 13 7487 90
4 1893 33 14 7846 93
5 2490 41 15 8205 96
6 3058 49 16 8564 98
7 3625 54 17 8923 99
8 4422 58 18 9282 100
9 5218 69 19 9641 100

10 5823 75 20 10000 100

4 Implementation on testing data

In this section, the suggested approach is applied on 10 real datasets from the literature [4, 22,
23, 25, 26, 42]. In this study, 16 NHPP SRGMs, which are given in Table 1 are applied on all the
datasets. In the same table, the characteristics of these SRGMs are also summarized. The proposed
strategy is used at three levels of testing, when 50% of the testing is finished, next after 75% of
the testing is ready, and lastly, once the testing of software finished. The presented technique’s
operation is described in more depth using various examples below.

Example 1 A dataset (DS1) with 100 observed faults was gathered from the public domain of literature for
examination; the dataset is listed in Table 2 and was acquired from a subsection of artifacts for four different
Tandem Computers Company software versions. The count of errors was normalized as 0 to 100 to eliminate
confidentiality concerns, and the amount of energy consumed was translated correspondingly into the scale
(0 to 10,000) [23, 25, 26].
To evaluate the unknown parameters of SRGMs, LSE approach was utilized for NHPP SRGMs considered
under study, with confidence bounds of 95%. The parameters were estimated using MATLAB at time
t = 10 weeks, as indicated in Section 3; this is when 50% of the testing is completed. Table 3 shows the
estimated values of the parameters for each of the 16 models. Following that, using Eqs. (2)-(5), the values
of the comparison criteria (RSq and RMSE) presented in this study paper were obtained. Table 4 shows the
estimated RSq and RMSE values for dataset 1 with t = 10 weeks (i.e. this is the time when almost half of
the testing is complete).
The rank index is then determined using (1). The models are next ranked accordingly in descending rank
index values based on the value of the derived rank index (i.e. model with the highest value of rank index is
allotted rank 1). Table 5 shows the predicted rank index values and model ranking of dataset 1 considering
the fault data of ten weeks.
Table 5 further demonstrates that at this stage of testing, when only half of the test data is available,
Gompertz has ranked one model. As a result, Gompertz is now utilized to predict software delivery dates
utilizing Eqs. (5) and (6). With the given level of reliability and conditional reliability, the projected release
time at this stage of testing is 35 weeks. Table 6 shows the estimated value of the release date, reliability, and
conditional reliability with this data.
The same process is repeated again when testing has been done up to 15 weeks (i.e., 75% test plan is
complete). At this point, the top-ranking model has been identified as logistic growth. Table 6 shows the
estimated time of release with conditional reliability and reliability which can be reached upon this day. The
method was again repeated using 20 weeks of full test data to get the conditional reliability and reliability
values at the factual date of release. Table 6 summarizes all the results. We may deduce from the outcomes of
this dataset that predicting the release is doable even when only 50% of the failure data is available. We
also tried to see if we could make accurate forecasts sooner than ten weeks. For this, we carried out the
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Table 3. Unknown parameter approximation of SRGMs for dataset 1

Model Name Values
Delayed S-Shaped a = 126.8, b = 0.2426
Generalized Goel a = 172.5, b = 0.04078, c = 1.235
Goel Okumoto a = 528, b = 0.01773
Gompertz a = 152.7, b = 0.08441, c = 0.8835
Inflection S-Shaped a = 127.3, b = 0.2412, β = 3.524
Logistic Growth a = 104, b = 0.2767, k = 6.371
Modified Duane a = 420.7, b = 27.19, c = 1.206
Musa Okumoto a = 497.8, b = 0.0188
Pham Zhang IFD a = 127.4, b = 0.2414, d = 0.22e − 14
Pham Nordman Zhang (PNZ Model) a = 9.163, α = 0.709, b = 21.89, β = 0.001809
Pham Zhang model (PZ Model) a = 0.001194, α = 3570, b = 0.2412, β = 3.524, c = 127.2
Yamada Exponential a = 300, α = 2.307, β = 0.006354, r = 2.361
Yamada Imperfect Debugging Model 1 a = 528.1, α = 1.595e − 08, b = 0.01773
Yamada Imperfect Debugging Model II a = 8.997, α = 0.7221, b = 49.81
Yamada Rayleigh a = 142.2, α = 1.198, β = 0.02026, r = 1.302
Zeng Teng Pham a = 29.91, α = 5.214, b = 0.2286, β = 0.6015, c = 0.841,

p = 0.8238

Table 4. Estimation of RSquare and RMSE using ten weeks failure data for dataset 1

Model Name RSq RMSE
Delayed S-Shaped 0.903 6.524
Generalized Goel 0.984 2.852
Goel Okumoto 0.972 3.529
Gompertz 0.994 1.707
Inflection S-Shaped 0.972 3.773
Logistic Growth 0.993 1.849
Modified Duane 0.984 2.849
Musa Okumoto 0.974 3.382
Pham Zhang IFD 0.903 6.524
Pham Nordman Zhang (PNZ Model) 0.993 2.001
Pham Zhang model (PZ Model) 0.991 2.515
Yamada Exponential 0.927 6.532
Yamada Imperfect Debugging Model 1 0.975 3.544
Yamada Imperfect Debugging Model II 0.993 1.853
Yamada Rayleigh 0.866 8.860
Zeng Teng Pham 0.995 2.204

computations at seven weeks (about 35% data) also but the results obtained at this stage were not compatible
with the later date of prediction.

Example 2 We used a separate dataset to assess the applicability of the suggested technique to diverse
datasets [23]. This failure dataset was compiled out of three versions of a big medical record software with
188 components. Numerous files are included in each component. The package originally comprised of
173 software components. All the three updates have improved the product’s functionality. A total of 15
components were added to the three releases. In each release, three to seven new components were included.
As a result of the increased capability, some other components were adjusted in all three editions. Table 7
shows the results of applying the proposed approach to release 1 of this dataset. The same step-by-step
process was used for this dataset as it was for the SRGM rating and release date prediction in Example 1.
Table 8 provides the results, which show that logistic growth is ranked first using the results acquired (1).
The same model of logistic growth is ranked 1 in all stages of testing for this dataset. At all three stages, the
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Table 5. SRGMs ranking using rank index for dataset 1 at t = 10 weeks

Model Name Rank Index Rank
Delayed S-Shaped 0.5848 14
Generalized Goel 0.7939 8
Goel Okumoto 0.7303 11
Gompertz 0.9999 1
Inflection S-Shaped 0.7147 12
Logistic Growth 0.9609 2
Modified Duane 0.7943 7
Musa Okumoto 0.7420 9
Pham Zhang IFD 0.5848 15
PNZ Model 0.9259 4
PZ Model 0.8376 6
Yamada Exponential 0.5968 13
Yamada Imperfect Debugging Model 1 0.7310 10
Yamada Imperfect Debugging Model II 0.9601 3
Yamada Rayleigh 0.5316 16
Zeng Teng Pham 0.8873 5

Table 6. SRGMs ranking using rank index for dataset 1 at t = 10 weeks

The dataset
as well as the
actual
release date

Testing data
used (in
weeks)

Model
chosen

Date of
expected
release (in
weeks)

Expected
level of
reliability
(R(t))

Conditional
reliability

(R(s|t)) to be
accom-

plished
For s = 1 For s = 2

10 Gompertz 35 0.970 0.570 0.350
(20 weeks) 15 Logistic

Growth
21 0.980 0.590 0.400

20 ZT Pham 18 0.980 0.580 0.400

Table 7. Data of a significant medical record system’s failures: release-1 (dataset 2)

Weeks Aggregated failures Weeks Aggregated failures
1 28 10 125
2 29 11 139
3 29 12 152
4 29 13 164
5 29 14 164
6 37 15 165
7 63 16 168
8 92 17 170
9 116 18 176

estimated release date is the same. As a result, it can be stated that if the selected model is the same at each
step of testing, more accurate predictions about the software release date can be made.

Similarly, eight more datasets from the available literature were used to assess the applicability of
the suggested approach. Table 9 shows the anticipated value of release time for all the datasets,
as well as to be expected value of conditional reliability and reliability. We have also evaluated
the anticipated date of release by our presented technique with the factual date of release and
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Figure 2. Comparison for dataset 1 using the models identified by presented methodology with the best model
considered in existing studies

Figure 3. Comparison for dataset 2 using the models identified by presented methodology with the best model
considered in existing studies

Figure 4. Comparison for dataset 3 using the models identified by presented methodology with the best model
considered in existing studies
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Figure 5. Comparison for dataset 4 using the models identified by presented methodology with the best model
considered in existing studies

Figure 6. Comparison for dataset 5 using the models identified by presented methodology with the best model
considered in existing studies

Figure 7. Comparison for dataset 6 using the models identified by presented methodology with the best model
considered in existing studies
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Figure 8. Comparison for dataset 7 using the models identified by presented methodology with the best model
considered in existing studies

Figure 9. Comparison for dataset 8 using the models identified by presented methodology with the best model
considered in existing studies

Figure 10. Comparison for dataset 9 using the models identified by presented methodology with the best model
considered in existing studies
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Table 8. Predicted dataset 2 release time, with expected values of conditional reliability and reliability

The dataset
as well as the
actual
release date

Testing data
used (in
weeks)

Model
chosen

Date of
expected
release (in
weeks)

Expected
level of
reliability
(R(t))

Conditional
reliability

(R(s|t)) to be
accom-

plished
For s = 1 For s = 2

Dataset 2
10 Logistic

Growth
24 0.990 0.550 0.350

(18 weeks) 15 Logistic
Growth

24 0.990 0.690 0.520

18 Logistic
Growth

22 0.990 0.610 0.430

Figure 11. Comparison for dataset 10 using the models identified by presented methodology with the best model
considered in existing studies

the estimated date of release by the best models identifies in existing studies for the datasets
utilised in current study to evaluate the performance of our proposed method. From Figure 2 to
Figure 11 depict the comparison. The findings shown in Figure 11 reveal that with the exception
of datasets 3 and 6, our suggested approach can forecast dependability early and timely virtually
in all circumstances.

5 Conclusions, outcomes and future directions

Formulating the software testing process in a mathematically rigorous manner is important in
software testing which acts as a major apparatus for software quality assurance, and this process
is known to be complex since it comprises many factors such as test case execution, test case
selection, defect debugging, tester’s knowledge and experience, and so forth. This study has
investigated how to choose the best software reliability model for predicting the most likely
release date. Section 3 outlines the proposed strategy, allowing the user to anticipate the expected
release date even after nearly half of the estimated test period has passed. We used the proposed
approach at various phases of testing (e.g., once 50% of the testing is done, 75% of the testing is
accomplished, at the actual release date). Our findings reveal that when the current technique is
employed to the test dataset 7 and 50% of the test plan period has passed, the proposed method’s
anticipated release date is nearly identical to the actual release date. In the case of datasets 1, 2, 4,
5, 7, 8, 9, and 10, the anticipated date of release based on 50% of the data is inside 1 to 2 weeks of
the factual release date. The expected date of release for dataset 3 is, however, significantly sooner
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Table 9. Anticipated time of release for datasets considered in present work with expected to be attained value of
conditional reliability and reliability

Factual date
of release
(in weeks and
dataset)

Prediction
time
(in weeks)

Selected model Release
date
(in
weeks)

Expected
level
of reliability

To be
attained con-
ditional relia-
bility
For s = 1 For s = 2

Dataset 1 10 Gompertz 35 0.970 0.570 0.350

(20 weeks) 15 Logistic Growth 21 0.980 0.590 0.400

20 ZT Pham 18 0.980 0.580 0.400

Dataset 2 10 Logistic Growth 24 0.990 0.550 0.350

(18 weeks) 15 Logistic Growth 24 0.990 0.690 0.520

18 Logistic Growth 22 0.990 0.610 0.430

Dataset 3 10 ZT Pham 10 1.000 0.900 0.860

(17 weeks) 15 Logistic Growth 11 0.990 0.540 0.370

17 Logistic Growth 12 0.990 0.640 0.480

Dataset 4 7 Logistic Growth 9 0.980 0.530 0.400

(13 weeks) 14 Gompertz 14 0.980 0.620 0.440

Dataset 5 10 Generalized
Goel

19 0.990 0.560 0.360

(21 weeks) 15 Generalized
Goel

27 0.980 0.580 0.370

21 Generalized
Goel

30 0.980 0.580 0.360

Dataset 6 55 Generalized
Goel

232 0.970 0.590 0.350

(111 weeks) 84 Generalized
Goel

90 0.980 0.600 0.370

111 Inflection
S-Shaped

85 0.980 0.620 0.390

Dataset 7 10 Logistic Growth 19 0.990 0.610 0.430

(19 weeks) 15 Logistic Growth 18 0.980 0.560 0.370

19 Logistic Growth 19 0.980 0.590 0.400

Dataset 8 7 Logistic Growth 14 0.980 0.600 0.440

(12 weeks) 12 ZT Pham 10 0.980 0.740 0.650

Dataset 9 10 Inflection
S-Shaped

15 0.980 0.750 0.620

(19 weeks) 15 Delayed
S-Shaped

26 0.970 0.770 0.620

19 Generalized
Goel

20 0.960 0.690 0.520

Dataset 10 13 Generalized
Goel

23 0.960 0.690 0.520

(25 weeks) 19 Gompertz 25 0.970 0.590 0.380

25 PZ Model 28 0.990 0.590 0.350
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Figure 12. Comparison of the expected release time of the datasets in the proposed study with the actual release
date, as well as the best models provided in the literature

than the actual release date. Interestingly, when 50% of the dataset is used to forecast the release
date, the estimated date is 232 weeks, which is substantially far ahead than the actual date of 111
weeks. When a likelihood is generated using around 75% of the data, the estimated date of release
is once again quite near to the factual release date, and it is dramatically lowered to 90 weeks.
Even if all available data is used, the estimated release timeframe is 85 weeks. This indicates that
testing may have been overdone, or that software adjustments were made in the interim. In all
situations, we also tried with lower than 50% of test plan data and found that estimates were
not reliable in common. Table 9 and Figure 11 show that when utilizing the proposed method,
the anticipated release dates with models picked by us, even when using midway test data, are
generally better than the similar outcomes achieved for these datasets when exploring the methods
given in literature. Since NHPP SRGMs cannot handle time-dependent variables, the suggested
approach is limited to software development circumstances that are time-independent. We intend
to change the time-dependence of these models in the future, which will allow us to more exactly
anticipate the number of faults found. We also intend to apply the proposed strategy to other
software development methodologies, such as agile development. The comparison of the results
with those available in literature shows that the proposed approach is able to select a model that
fits the present data closely. Therefore, the selected model can be used for future predictions, and
the selected models estimates by our proposed method are closer to the actual number of failures
found by that time in each case.
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