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Abstract: Measurement models need to properly delineate the real aspect 

of examinees’ response processes for measurement accuracy purposes. To 

avoid invalid inferences, fit of examinees’ response data to the model is 

studied through person-fit statistics. Misfit between the examinee response 

data and measurement model may be due to invalid models and/or 

examinee’s aberrant response behavior such as cheating, creative 

responding, and random responding. Hierarchy consistency index (HCI) 

was introduced as a person-fit statistics to assess classification reliability of 

particular cognitive diagnosis models. This study examines the HCI in terms 

of its usefulness under nonhierarchical attribute conditions and under 

different item types. Moreover, current form of HCI formulation only 

considers the information based on correct answers only. We argue and 

demonstrate that more information could be obtained by incorporating the 

information that may be obtained from incorrect responses. Therefore, this 

study considers the full-version of the HCI (i.e., FHCI). Results indicate that 

current form of HCI is sensitive to misfitting item types (i.e., basic or more 

complex) and examinee attribute patterns. In other words, HCI is affected 

by the attribute pattern an examinee has as well as by the item s/he aberrantly 

responded. Yet, FHCI is not severely affected by item types under any 

examinee attribute pattern. 
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1. INTRODUCTION 

Measurement models must play an important role in test construction and result 

interpretation processes of educational assessments. As a recent measurement model, cognitive 

diagnosis modeling has drawn great attention on the grounds of incorporating cognitive 

psychology in testing practices. Cognitive diagnosis models (CDMs) are the statistical models 

used to identify the knowledge and skills students mastered or failed to master in a particular 

domain. To accomplish this, associations between the test items and the measured knowledge 

or skills must be predefined. These measured knowledge, skills, cognitive processes, and 

problem solving steps are referred to as attributes (de la Torre, 2009; de la Torre & Lee, 2010) 

and the matrix reflecting items-by-attributes association is called Q-matrix (Tatsuoka, 1983). 

For example, if an item requires the first two attributes out of three attributes measured by a 

test, q-vector of this item is specified as [110] in the Q-matrix. Here 1 stands for required 
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attribute and 0 indicates not required attribute. This vector signifies the fact that examinees are 

expected to be mastered the first two attributes to reach correct answer. 

Starting with the pioneering work of Tatsuoka (1983), various approaches integrating 

cognitive theory into psychometric practices have been proposed. The rule space methodology 

(RSM: Tatsuoka, 1983), attribute hierarchy method (AHM: Leighton, Gierl, & Hunka, 2004), 

deterministic input, noisy “and” gate (DINA: Junker & Sijtsma, 2001), and generalized-DINA 

(GDINA: de la Torre, 2011) are among the examples of CDMs. In general, based on the 

presence of absence of K measured attributes, at most 2𝐾 latent classes can be formed by a 

CDM where K indicates the number of attributes to be measured. For instance, when a test 

developed for cognitively diagnosis assessment measures three attributes, CDM analysis 

classifies examinees into, at most, eight possible latent classes (i.e., {000}, {100}, {010}, 

{001}, {110}, {101}, {011}, {000}). When an examinee is classified in {100} latent group, 

his/her estimated attribute pattern becomes [100], which indicates that the examinee has 

mastered the first attribute and has not mastered the second and third. The ultimate purpose of 

CDMs is to provide feedback on students’ strengths and weaknesses based on the attribute 

pattern, which could be helpful to modify teaching and learning activities. 

To evaluate examinees’ performance, CDMs establish the relations between examinees’ 

response data and their mastery status of attributes within measured domain. Probability of an 

examinee’s correct response to a test item is modeled as a function of item parameters and 

examinee’s mastery of the attributes (Cui & Leighton, 2009). For example, the DINA model 

assumes that an examinee correctly responds to an item as long as the examinee has mastered 

all the required attributes required for that item. Thus, for one item, examinees are spread into 

two distinct groups (i.e., examinees who have mastered all required attributes for the item and 

examinees lacking at least one required attribute). This group-specific deterministic response 

can be defined by 

𝜂𝑙𝑗 = ∑𝛼𝑙𝑘
𝑞𝑗𝑘

𝐾

𝑘=1

 

where, 𝜂𝑙𝑗 is deterministic response of group l by item j (i.e., 1 or 0); K indicates total number 

of attributes measured by the test; 𝛼𝑙𝑘 is the group l’s mastery status of attribute k; and 𝑞𝑗𝑘 is 

the kth element in the q-vector of item j, which indicates whether or not attribute k is required 

for correct response of item j. 

Item response function (IRF) of the DINA model has a probabilistic component, which 

allows possibility of guessing (i.e., responding correctly when not all attributes are mastered) 

and slip (i.e., giving an incorrect response when all required attributes are mastered). Given 

examinee i’s observed response to item j (i.e., 𝑋𝑖𝑗), these two item parameters are denoted as 

𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜂𝑖𝑗 = 0) and 𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜂𝑖𝑗 = 1) for guessing and slip parameters, 

respectively. Given the item parameters, the IRF of the DINA model is written as  

𝑃(𝑋𝑖𝑗 = 1|𝜶𝑖) = 𝑃(𝑋𝑖𝑗 = 1|𝜂𝑖𝑗) = 𝑔
𝑗

(1−𝜂𝑖𝑗)(1 − 𝑠𝑗)
𝜂𝑖𝑗 

where 𝜶𝑖 is the attribute pattern of examinee i; 𝜂𝑖𝑗 is the expected response of examinee i to 

item j; 𝑋𝑖𝑗 is examinee i’s observed response to item j; and 𝑔𝑗 and 𝑠𝑗 are the guessing and slip 

parameters of item j (de la Torre, 2009). For further information on the estimation and 

classification of the DINA model, readers may refer to de la Torre (2009). 

Measurement accuracy of examinees is directly related to appropriateness of 

measurement model, which need to properly delineate the real aspect of examinees’ response 
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processes (Cui & Leighton, 2009). For instance, when attributes hold a hierarchical structure 

(i.e., some of the attributes are prerequisite to master others), not all 2𝐾 latent classes are 

permissible. Therefore, examinees’ response data should be analyzed accordingly. Thus, 

identification of the attributes, attribute structure, and attribute specifications in the Q-matrix 

must be precise. Otherwise, invalid inferences about examinees’ knowledge states could be 

made. Furthermore, to avoid invalid inferences, fit of examinees’ response data to the model is 

studied through ‘person-fit’ statistics. By means of person-fit statistics, examinees who are not 

being measured well by the test are identified (Cui & Leighton, 2009). Misfit between the 

examinee response data and measurement model may be due to invalid models and/or 

examinee’s aberrant response behavior (e.g., cheating, creative responding, and random 

responding). 

Cui and Leighton (2009) have introduced a person-fit index to assess classification 

reliability of specific cognitive diagnosis models (e.g., attribute hierarchy model [AHM: 

Leighton, Gierl, & Hunka, 2004]). This person-fit index is referred to as hierarchy consistency 

index (HCI) as it was also used by Cui (2007) to measure the accuracy of specified hierarchical 

structure of attributes in AHM. More information on the index is provided below. 

1.1. Hierarchy consistency index (HCI) 

Cui and Leighton (2009) introduced a person-fit statistic to detect misfit between item 

responses and the cognitive model. This fit statistic is called hierarchy consistency index (HCI) 

and ranges from -1.0 to 1.0. Statistics close to 1.0 indicate good fit between examinee responses 

and the model whereas statistics close to -1.0 indicate misfit. Definition of HCI is given in 

equation 1, which is borrowed from Cui and Leighton (2009), p 436. As it would be seen from 

the formula on Figure 1, HCI operates based on the match between an examinee’s observed 

item responses and expected item responses based on a hierarchical relationships among 

measured attributes.  

𝐻𝐶𝐼𝑖 = 1 −
2∑ ∑ 𝑋𝑖𝑗(1 − 𝑋𝑖𝑔)𝑔∈𝑆𝑗𝑗∈𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖

𝑁𝐶𝑖

 

where 𝑋𝑖𝑗 is examinee i’s binary response to item j where 0 indicates incorrect response and 1 

stands for a correct response; 𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖 is an index set that includes items requiring the subset 

of attributes required by item j when examinee’s response to item j is correct; 𝑋𝑖𝑔 is examinee 

i’s response to item 𝑔 where item 𝑔 belongs to 𝑆𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖; and 𝑁𝐶𝑖
 is the total number of 

comparisons for all the items correctly responded by examinee i. 

2. ARGUMENT 

When index is computed solely for the correct responses, some correct responses require 

less comparison than others. For example, imagine a test measuring three hierarchically 

structured attributes, in which attribute-1 (A1) is the most basic and attribute-3 (A3) is the most 

complex attribute. Here, when an item requiring A3 is correctly answered by an examinee, all 

other responses of the examinee are also expected to be correct. Thus, all other item responses 

are considered in index computation. Yet, when an examinee correctly responses an item 

requiring only A1 (i.e., the most basic attribute) only, only the items requiring sole A1 are 

considered for HCI computation. The potential problems in this regard are depicted below in a 

scenario where three hierarchical attributes are measured by a 10-items test, for which the Q-

matrix is given in Table 1 and hierarchical structure of attribute is given in Figure 1.  
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Table 1. Q-matrix for 10-items test 

Items A1 A2 A3 

1 1 0 0 

2 1 1 0 

3 1 1 1 

4 1 0 0 

5 1 1 0 

6 1 1 1 

7 1 0 0 

8 1 1 0 

9 1 1 1 

10 1 0 0 

 

 

When an examinee’s true attribute pattern is [000], expected responses of the examinees to all 

items becomes incorrect (i.e., 0). However, because of probabilistic component of the models, 

this examinee may correctly respond to one item. When we consider this guessed item only in 

HCI computation, all the comparisons we do will yield a misfit. Thus the computed HCI will 

be -1, which will, in turn, indicate that this examinee’s responses do not fit to model. In fact, 

there is only one response that contradicts with the model expectancy. Imagine another 

examinee whose true attribute pattern is [111]. In this case expected responses of this examinee 

will be all correct. When the examinee misses one item, then only the comparisons due to that 

item will be left. Moreover, among the all comparisons conducted for the correct responses, 

only this incorrect response will yield misfit. There will be some reduction in the HCI due to 

this one misfit, yet the impact of this slipped item will not be as large as it is in previous case. 

Furthermost, because it will change the comparisons counted toward HCI, items missed by the 

examinee also matter. 

Table 2. Two examinees and their HCI indices based on hypothetical response patterns 

Examinees Attribute profile Response data HCI 

E1 000 1000000000 -1.000 

E1 000 0010000000 -1.000 

E2 111 0111111111 0.667 

E2 111 1101111111 0.917 

This scenario and resulting HCIs are summarized in Table 2. When E1 (i.e., an examinee 

with an attribute pattern [000]) guesses only one item, than HCI becomes -1. When E2 (i.e., an 

examinee with an attribute pattern [111]) slips one item, than HCI becomes smaller than 1.0, 

yet impact of slipped item is determined by the q-vector of the item. In other words, whether 

slipped item requires basic attribute or complex attribute matters. In above case, when an item 

requiring the most basic attribute is missed, HCI becomes .667. Impact of missed item when it 

requires the most complex attribute is relatively smaller (i.e., computed HCI is .917). As can 

be seen, although there is only one misfitted item in all cases, their impact on examinees’ 

response consistency is different under different conditions.  

2.1. Full Hierarchy Consistency Index 

It should be noted here that guessing does not necessarily mean random guessing in 

cognitive diagnosis modelling framework, rather it means completing a task employing any 

other strategy that is not specified by the model. Therefore, guessing and slip behaviour of 

 

Figure 1. Linear hierarchy of three attributes 
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examinees may be different for items requiring basic ore more complex attributes. From this 

point of view, consistency index should not be dramatically affected by the attribute-and-item 

specification of misfitted item. One possible way to control this is to consider all items for 

examinee response fit, which can be implemented by adding a second component to HCI that 

includes comparisons for item sets consists of items that are expected to be incorrectly 

responded by the examinee. Then the full version of the index may be represented as  

𝐹𝐻𝐶𝐼𝑖 = 1 −
2[∑ ∑ 𝑋𝑖𝑗(1 − 𝑋𝑖𝑗′) + ∑ ∑ (1 − 𝑋𝑖𝑗)𝑋𝑖𝑗′′]𝑗′′∈𝑆𝑗−𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑗𝑗′∈𝑆𝑗−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑗

𝑁𝐶𝑖

 

where 𝑋𝑖𝑗 is examinee i’s binary response to item j where 0 indicates incorrect response and 1 

stands for a correct response; 𝑆𝑗−𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is an index set that includes items requiring the subset 

of attributes required by item j when examinee’s response to item j is correct; 𝑆𝑗−𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 is an 

index set that includes items requiring all the attributes required by item j when the item 

incorrectly answered by the examinee; 𝑋𝑖𝑗′  is examinee i’s response to item 𝑗′ where item 𝑗′ 

belongs to 𝑆𝑗−𝑐𝑜𝑟𝑟𝑒𝑐𝑡; 𝑋𝑖𝑗′′  is examinee i’s response to item 𝑗′′ where item 𝑗′′ belongs to 

𝑆𝑗−𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡; and 𝑁𝐶𝑖
 is the total number of comparisons for all the items responded by 

examinee i. This full version of the index will be referred to as full hierarchy consistency index 

(FHCI) throughout this paper. Computed FHCI indices for two previous examinees with 

certain response patterns are given in Table 3. Results based on FHCI are quite acceptable 

under all conditions. 

Table 3. Two examinees and their FHCI indices based on the response patterns 

Examinees Attribute profile Response data HCI FHCI 

E1 000 1000000000 -1.000 0.765 

E1 000 0010000000 -1.000 0.438 

E2 111 0111111111 0.667 0.429 

E2 111 1101111111 0.917 0.840 

This study aims to focus on the following question: 

 How successfully HCI is used under nonhierarchical attribute conditions (i.e., 

unstructured attribute cases) to identify aberrantly responded examinees, 

 What is the impact of q-vector of a misfitting item on the HCI. More specifically, this 

study aims to unveil the impact of a misfitting item on HCI when it measures basic or 

more complex attributes, 

 What is the distribution of misfitting examinees when number of misfits is equal 

across all permissible latent classes,  

 Current form of HCI formulation only considers the information based on correctly 

answered items. Thus, more information could be obtained by incorporating the 

information that may be obtained from incorrect responses. Therefore, this study 

considers the Full-version of the HCI such that examinees’ all responses rather than 

only correct responses are taken into account for consistency index computation. 

3. METHOD 

A simulation study and a real data analysis were conducted. In the simulation study, 

number of examinees, number of items and number of attributes were fixed to 2000, 20, and 6; 

respectively. Corresponding Q-matrix (i.e., item-by-attribute matrix) is given in Table 4. 

Corresponding Q-matrices for linear and divergent cases are given in Appendices. In the item 

response data generation, uniform examinee distribution was assumed. Two types of 
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hierarchical structures (i.e., linear and divergent) and an unstructured attribute case were 

considered. These hierarchical attribute structures can be seen in Figure 2. Four types of item 

misfits were considered: 

Table 4. Generating Q-matrix 

 Attributes  Attributes 

Items A1 A2 A3 A4 A5 A6 Items A1 A2 A3 A4 A5 A6 

1 1 0 0 0 0 0 11 0 0 0 0 1 1 

2 0 1 0 0 0 0 12 1 0 0 0 0 1 

3 0 0 1 0 0 0 13 1 1 1 0 0 0 

4 0 0 0 1 0 0 14 0 1 1 1 0 0 

5 0 0 0 0 1 0 15 0 0 1 1 1 0 

6 0 0 0 0 0 1 16 0 0 0 1 1 1 

7 1 1 0 0 0 0 17 1 0 0 0 1 1 

8 0 1 1 0 0 0 18 1 1 0 0 0 1 

9 0 0 1 1 0 0 19 1 0 0 0 0 0 

10 0 0 0 1 1 0 20 0 0 0 0 0 1 

1. Creative responding (high guessing and slip in items requiring basic attributes) 

2. Difficult  (high slip in the complex items only) 

3. Logical (high guessing in the items requiring basic attributes and high slip in the items 

requiring complex attributes) 

4. Uniform (distribution of guessing and slip is uniform across all items) 

For the creative response items, the lowest and highest success probabilities (i.e., P(0) 

and P(1)) were generated from U(0.20, 0.30) and  U(0.70, 0.80), respectively, for items 

requiring basic attributes. These probabilities drawn from U(0.10, 0.20) and  U(0.80, 0.90), 

respectively, for items requiring complex attributes. Lowest success probability of both basic 

and complex items in the difficult item case were generated from U(0.10, 0.20). In contrast, the 

highest success probabilities were generated from U(0.80, 0.90) and  U(0.70, 0.80), 

respectively, for the basic and complex items. In the logical item case, the lowest and highest 

success probabilities were generated from U(0.20, 0.30) and  U(0.80, 0.90), respectively, for 

items requiring basic attributes. Corresponding distributions for the complex item case were 

U(0.10, 0.20) and  U(0.70, 0.80), respectively. Lastly, the lowest and highest success 

probabilities of examinees for both basic and complex items were generated from U(0.10, 0.20) 

and  U(0.80, 0.90), respectively. These conditions are summarized in Table 5.  

HCI and FHCI were employed to demonstrate extra information that can be obtained 

from incorrect responses. The data generation was based on the DINA model (de la Torre, 

2009; Junker and Sijtsma, 2001). Throughout the study data generation performed using the 

OxMetrics programming language (Doornik, 2011) and index computation was performed in 

R-version 3.3.3. Simulation study is followed by a real data analysis. Data consist of 2922 

examinees’ binary responses to the 28 items in the grammar section of the ECPE examination. 

The test was developed and administered in University of Michigan English Language Institute 

in 2003. The dataset and the Q-matrix are available in and obtained from the `CDM' package 

(Robitzsch, Kiefer, George, & Uenlue, 2014) in R software environment.  
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Figure 2. Linear and divergent hierarchical structures. 

Table 5. Success probability distributions of item types  

 

Item Types 

Items with basic attributes Items with complex attributes 

P(0) P(1) P(0) P(1) 

Creative response U(0.20, 0.30) U(0.70, 0.80) U(0.10, 0.20) U(0.80, 0.90) 

Difficult U(0.10, 0.20) U(0.80, 0.90) U(0.10, 0.20) U(0.70, 0.80) 

Logical U(0.20, 0.30) U(0.80, 0.90) U(0.10, 0.20) U(0.70, 0.80) 

Uniform U(0.10, 0.20) U(0.80, 0.90) U(0.10, 0.20) U(0.80, 0.90) 

4. RESULTS 

4.1. Simulation Results 

Simulation results based on the HCI are given in Figure 3 as a matrix of scatterplots 

depicting HCI distribution of 2000 examinees where examinees are ordered based on the 

number of attributes they mastered. For instance, first a few hundreds of examinees in the linear 

case have the generating attribute pattern of [000000]; while very last a few hundreds have the 

generating attribute pattern of [111111]. Considering this order and the fact that all examinees’ 

fit levels are approximately equal, it’s very clear from the figure that HCI tends to be negative 

when an examinee has mastered smaller number of measured attributes. This reality emerges 

from the fact that when examinee guesses an item all other items requiring the subset of 

attributes specified in the guessed item are counted toward comparisons employed in index 

computation. HCI may be a good indicator of person fit when examinee has mastered most of 

the attributes, however, it may not be a good indicator for examinees who have lack of many 

attributes.  

It can also be observed from Figure 3 that when number of latent classes decreases (i.e., 

hierarchy becomes more stringent) variance of HCI distribution shrinks. For example, in all 

types of item cases, HCI variance across attribute patterns is smaller when attributes are linearly 

structured. When attributes have no hierarchical structure (i.e., unstructured attribute case), 

HCI for examinees in any latent class are more disperse. Although item types do not make 

substantial differences, slight changes in the scatter plots by item types are observed. For 

A1 

A4 

A6 A5 A3 

A2 

A1 

A3 
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A6 

A5 
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instance, in the difficult item case (i.e., high slips in the complex items only), HCI distribution 

of examinees who mastered more than half of the attributes are more disperse than the 

distribution of examinees who mastered a few attributes. Similarly, when creative item types 

are administered, variance of HCI of examinees lacking complex attributes elevates. These 

results are not surprising because when probabilistic component of item responses increases, 

examinees’ observed responses deviate from the expected responses such that person-fit 

reduces. 
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Figure 3. Matrix of scatterplots of HCI under various item types and attribute hierarchies 
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One major purpose of this study was to unveil the general improvement in identifying 

person-fit when not only correct responses but also incorrect responses are considered in person 

fit index computation. Results based on the FHCI are given in Figure 4. It can easily be seen at 
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Figure 4. Matrix of scatterplots of FHCI under various item types and attribute hierarchies 

first glance that, regardless of item type, attribute structure, and latent class an examinee is in, 

person-fit approximately falls between 0.00 and 1.00. This result suggests that FHCI may be 

considered as a more accurate person-fit index as it is not affected by examinees’ attribute 
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pattern distribution (i.e., it measures fit in the same level of accuracy when examinee has 

mastered all or none of the measured attributes). Moreover, attribute structure does not 

significantly affect the results (i.e., variance of fit indices in the scatterplots are almost equal 

across linear, divergent, and unstructured attribute cases). Lastly, when FHCI is employed, 

small differences arising out of item types (i.e., creative, difficult, logical, and uniform) also 

diminished or even disappeared. 

4.2. Real Data Analysis 

Binary responses of 1922 examinees to 28 grammar items in the examination for the 

certificate of proficiency in English (ECPE) examination were analyzed in terms of examinees’ 

person-fits. Q-matrix of the test and the data were obtained from 'CDM' package in R software 

environment. The data were analyzed previously by Templin and Bradshaw (2014) and 

specified a linear hierarchy among the three attributes (i.e., lexical rules, cohesive rules, and 

morphosyntactic rules) test is measuring. Scatter plots of examinees’ person-fit results obtained 

by employment of HCI and FHCI are given Figure 5. When we look at the figure, FHCI result 

consistent with the simulation results, while HCI shows relatively better person-fit than what 

was observed in the simulation results.  

However, remember that HCI fails to detect true person-fit when examinees did not 

master measured attributes. Assuming that the test truly measured aforementioned attributes 

and Q-matrix is correctly specified, correct answer proportions (proportion-corrects) of items 

may reflect attribute-pattern distribution of examinees. Proportion-correct of items are given 

in Table 6. Minimum and maximum proportion-corrects are .45 and .90, respectively. 

Moreover, 19 out of 28 items have been correctly answered by and over 70% of examinees, 

while only three items have been correctly answered by less than 50% of examinees. These 

results imply that many examinees in the sample have mastered two to three attributes. In the 

light of above information, person-fit result based on HCI could be more reflective of 

simulation results if there were more examinees lacking more than half of the attributes in the 

sample. 

 

  
Figure 5. Scatter plots obtained by HCI and FHCI for ECPE data 
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Table 6. Proportion correct 

Items Proportion 

correct 

Items Proportion 

correct 

Items Proportion 

correct 

Items Proportion 

correct 

1 .80 8 .90 15 .88 22 .63 

2 .83 9 .70 16 .70 23 .81 

3 .58 10 .66 17 .89 24 .53 

4 .71 11 .72 18 .85 25 .62 

5 .89 12 .43 19 .71 26 .70 

6 .85 13 .75 20 .46 27 .45 

7 .72 14 .65 21 .76 28 .82 

min.=.43; mean=.71; max.=.90 

5. CONCLUSION 

HCI and FHCI have been employed under various conditions in this research. In data 

generation procedure guessing and slip for any item types did not exceed .30 (i.e., maximum 

P(0) = U(.20, .30) and minimum P(1) = U(.70, .80)). Thus, all examinees with different attribute 

patterns fit to the model equally well. Results suggested that HCI is a good indicator of person-

fit as long as examinee has mastered most of the attributes. However, it fails to capture fitting 

examinees when examinees lack of many attributes. Conversely, FHCI may be considered as 

a more accurate person-fit index as it is not affected by examinees’ attribute pattern distribution 

(i.e., it measures fit in the same level of accuracy when examinee has mastered all or none of 

the measured attributes). 

Furthermore, FHCI is robust to different types of items such that impacts of misfit on 

basic and complex items are comparable. Therefore, more correct results yielding accurate 

inferences may be obtained by employment of FHCI. Study results demonstrated that 

regardless of item type, attribute structure, and latent class an examinee is in, FHCI 

approximately falls between 0.00 and 1.00. These results may be considered to form a cut-off 

to make a decision when FHCI is used to determine whether an examinee’s responses fit to 

model. So, as long as an examinee’s FHCI is positive (i.e., larger than .00), we may postulate 

this person’s fit to model as acceptable. Lastly, in cases where we use FHCI as a measure of 

hierarchy consistency (i.e., whether assumed hierarchy for the model is acceptable), we should 

look for the distribution of examinees’ FHCI, which need to be ranging from .00 to 1.00. 
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7. APPENDICES 

Appendix A. Q_matrix by the linear attribute structure 

 Attributes  Attributes 

Items A1 A2 A3 A4 A5 A6 Items A1 A2 A3 A4 A5 A6 

1 1 0 0 0 0 0 11 1 1 1 1 1 1 

2 1 1 0 0 0 0 12 1 1 1 1 1 1 

3 1 1 1 0 0 0 13 1 1 1 0 0 0 

4 1 1 1 1 0 0 14 1 1 1 1 0 0 

5 1 1 1 1 1 0 15 1 1 1 1 1 0 

6 1 1 1 1 1 1 16 1 1 1 1 1 1 

7 1 1 0 0 0 0 17 1 1 1 1 1 1 

8 1 1 1 0 0 0 18 1 1 1 1 1 1 

9 1 1 1 1 0 0 19 1 0 0 0 0 0 

10 1 1 1 1 1 0 20 1 1 1 1 1 1 

 

Appendix B. Q_matrix by the divergent attribute structure 

 Attributes  Attributes 

Items A1 A2 A3 A4 A5 A6 Items A1 A2 A3 A4 A5 A6 

1 1 0 0 0 0 0 11 1 0 0 1 1 1 

2 1 1 0 0 0 0 12 1 0 0 1 0 1 

3 1 1 1 0 0 0 13 1 1 1 0 0 0 

4 1 0 0 1 0 0 14 1 1 1 1 0 0 

5 1 0 0 1 1 0 15 1 1 1 1 1 0 

6 1 0 0 1 0 1 16 1 0 0 1 1 1 

7 1 1 0 0 0 0 17 1 0 0 1 1 1 

8 1 1 1 0 0 0 18 1 1 0 1 0 1 

9 1 1 1 1 0 0 19 1 0 0 0 0 0 

10 1 0 0 1 1 0 20 1 0 0 1 0 1 
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Appendix C. R Scripts written to compute HCI and FHCI 

########### HCI ######### 

setwd("~/Desktop/FHCI/data") 

data<-read.table("ResponseData.txt", header=F, sep="") 

q<-read.table("Q_matrix.txt", header=F, sep="") 

p<-matrix(NA,1,nrow(data)) # person sayisisi kadar (samplesize) 

for(i in 1:nrow(data)){ 

J=nrow(q) 

m<-matrix(NA,1,nrow(q)) # misfit: madde sayisisi kadar 

nci<-matrix(NA,1,nrow(q)) # total number of comparison: madde sayisisi kadar 

for(j in 1:J){ 

    c<-matrix(NA,1,nrow(q)) # comparison for item j 

    for(l in 1:J){ 

    c[,l]<-ifelse(data[i,j]==1,(ifelse(sum(ifelse(q[j,]>=q[l,],1,0))==ncol(q),1,0)),0)} 

    cj<- (sum(c)-(sum(data[i,]*c))) # number of misfit by item j 

    m[,j]<-ifelse(data[i,j]==1,cj,0) 

    nci[,j]<-sum(c)  # item j is compared with itselft, which should not be counted} 

    HCIi<-1-(2*(sum(m)/(sum(nci)-sum(data[i,])+.000001)))  # .0001 is to avaid NaN result for 0 

response vectors 

    p[,i]<-HCIi} 

plot(p[1,], xlab="Examinee", ylab="HCI") 

########### FHCI ######### 

setwd("~/Desktop/FHCI/data") 

data<-read.table("ResponseData.txt", header=F, sep="") 

q<-read.table("Q_matrix.txt", header=F, sep="") 

data1<-matrix(NA,nrow(data),nrow(q)) 

for(i in 1:nrow(data)) { 

  for(j in 1:nrow(q)){ 

  data1[i,j]<-ifelse(data[i,j]==0,1,0)}} 

 p<-matrix(NA,1,nrow(data)) # person sayisisi kadar (samplesize) 

 for(i in 1:nrow(data)){ 

 J=nrow(q) 

 m<-matrix(NA,1,nrow(q)) # misfit: madde sayisisi kadar 

 nci<-matrix(NA,1,nrow(q)) # total number of comparison: madde sayisisi kadar 

 m1<-matrix(NA,1,nrow(q)) # misfit: madde sayisisi kadar 

 nci1<-matrix(NA,1,nrow(q)) # total number of comparison: madde sayisisi kadar 

 for(j in 1:J){ 

    c<-matrix(NA,1,nrow(q)) # comparison for item j 

    c1<-matrix(NA,1,nrow(q)) # comparison for item j 

    for(l in 1:J){ 

    c[,l]<-ifelse(data[i,j]==1,(ifelse(sum(ifelse(q[j,]>=q[l,],1,0))==ncol(q),1,0)),0) 

    c1[,l]<-ifelse(data1[i,j]==1,(ifelse(sum(ifelse(q[j,]<=q[l,],1,0))==ncol(q),1,0)),0)} 

    cj<- (sum(c)-(   sum(data[i,]*c))) # number of misfit by item j 

    m[,j]<-ifelse(data[i,j]==1,cj,0) 

    nci[,j]<-sum(c)  # item j is compared with itselft, which should not be counted 

    cj1<- (sum(c1)-(sum(data1[i,]*c1))) # number of misfit by item j 

    m1[,j]<-ifelse(data1[i,j]==1,cj1,0) 

    nci1[,j]<-sum(c1)  # item j is compared with itselft, which should not be counted} 

HCIi<-1-(2*((sum(m)+sum(m1))/(sum(nci)-sum(data[i,])+sum(nci1)-sum(data1[i,])+.000001)))  # 

.0001 is to avaid NaN result for 0 response vectors 

p[,i]<-HCIi} 

plot(p[1,], xlab="Examinee", ylab="FHCI", ylim=c(-1,1)) 

 


