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Abstract:  In this work we study the 𝐺-invariant solutions of the Seiberg-Witten equations when 

𝐺 is a cyclic group acting on a manifold 𝑀,  preserving the metric and the orientation. 𝐺 is 

assumed to have a lift to principle 𝑆𝑝𝑖𝑛𝑐 bundle which gives rise to Seiberg-Witten equations 

in question. In this work, we prove that when the dimension 𝑏+
𝐺  of the 𝐺-fixed points of 

harmonic two forms is positive, for a generic choice of an element in this fixed point set, the  

moduli space of invariant solutions of Seiberg-Witten equations is a compact, smooth and 

oriented manifold of dimension 𝑑𝐺 = 𝑖𝑛𝑑 𝐷𝐴
𝐺 − 𝑏+

𝐺 − 1. 

Key words: Gauge Theory, Equivariant Seiberg-Witten theory, Equivariant Seiberg-Witten 

moduli space. 

1. Introduction, 

In 1949 Whitehead [1] classified simply connected, closed, oriented 4-manifolds up to 

orientation-preserving homotopy equivalence by their intersection form. A proof of this 

theorem is given in [4], page 103. Later on M. Freedman in 1982 gave a homeomorphism 

classification of closed, simply connected 4-manifolds [3]. His results were expressed in 

terms of intersection forms. However, the classical tools, like intersection forms, were 

not enough to detect differential structures. Differential topology of 4-manifolds is 

intensively studied by Simon Donaldson during the years of 1980’s. Using moduli space 

of connections on an 𝑆𝑈(2)  bundle, he introduced an invariant which detects differential 

structures. However, as the Yang-Mills equations are nonlinear, to make explicit 

computations was not easy and substantial analysis was necessary. Sometimes, instead of 

using this invariant, mere use of moduli space of Gauge equivalence classes of 

connections on a 𝑆𝑈(2) or 𝑆𝑂(3) bundle itself led to important results. One of these was 

a well-known theorem of Donaldson [2],[8], which states that the only negative definite, 

unimodular form, represented by a closed, smooth, simply connected four manifold, is 

the negative of the standard (diagonal) form.  

In the year 1994, a set of equations, namely Seiberg-Witten equations, were introduced 

by Edward Witten, and with them, most of the main results of Donaldson Theory are 

obtained in a much shorted and simpler work. 

These equations were associated to a 𝑆𝑝𝑖𝑛𝑐(4) structure on the manifold in question and 

they were invariant under the group of bundle automorphisms of the determinant line 

bundle associated to this 𝑆𝑝𝑖𝑛𝑐(4) structure. This group is called Gauge group. As in 

Donaldson theory gauge equivalence classes of solutions of Seiberg-Witten equations 

form a moduli space and give important information about the differential topology of 
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the manifold. In fact, a diffeomorphism invariant, called Seiberg-Witten invariant, was 

introduced using this moduli space (see [5], [7], [2]). 

The moduli space of Gauge equivalence classes of the solutions of the perturbed Seiberg 

Witten equations is compact, and in some cases, for a generic perturbation, is a zero 

dimensional manifold and hence consists of finitely many points. In this case, Seiberg-

Witten invariant is the algebraic sum of the points in the moduli space counted with the 

multiplicities according to the orientation. 

In this work, we construct the moduli space of solutions of Seiberg-Witten equations that 

are invariant under certain cyclic group action. The manifold structure is stated and then 

proven. As a future work, we will concentrate on the special structure near singularities. 

Let 𝐺 be a cyclic group of order α. Suppose 𝐺 acts to preserve orientation on a closed, 

oriented four dimensional manifold. Choose a 𝐺-invariant Riemannian metric and a 

characteristic 𝐺 line bundle 𝐿. We denote the associated principal 𝑈(1)-bundle of 𝐿 by 

𝑃𝐿 and the associated principal 𝑆𝑂(4)-bundle of 𝑇∗𝑀 by 𝑃SO(4). Let 𝑃𝑆𝑝𝑖𝑛𝑐(4) be the 

associated principal 𝑆𝑝𝑖𝑛𝑐(4)-bundle whose determinant bundle is 𝐿.  Assume 𝐺 action 

on 𝑃SO(4) 𝑥 𝑃L  lifts to a 𝐺 action on 𝑃𝑆𝑝𝑖𝑛𝑐(4). Let  𝐷𝐴 denote the Dirac operator associated 

to this 𝑆𝑝𝑖𝑛𝑐(4)-structure. Since 𝐷𝐴  is equivariant under the action of 𝐺, the map 𝐷𝐺  

which is the restriction to the  𝐺-fixed point set of the  domain of Dirac operator 𝐷 makes 

sense. 

The main theorems of this work are following. 

Main Theorem 1: If 𝜋1(𝑀) = 0, for every choice of 𝐺-invariant self dual form 𝛷 ∈ Ω+
𝐺 , 

the moduli space 𝑀  𝛷
𝐺  is compact. 

Main Theorem 2:  If 𝑏+
𝐺 > 0,then for a generic perturbation φ in Ω+

𝐺 , the moduli space 

𝑀𝜑
𝐺  of   Seiberg-Witten equations perturbed by φ  is an oriented smooth manifold  of 

dimension  𝑑𝐺 = 𝑖𝑛𝑑 𝐷𝐴
𝐺 − 𝑏+

𝐺 − 1.  

 

2. Material and Method 

2.1. Bundle Theory 

Definition 1: Let 𝐺 be a Lie group.  A principal 𝐺 -bundle is a triple 𝑃(𝑀, 𝐺, 𝜋) where 𝑃 

is a smooth manifold on which 𝐺 acts from the right freely, and around each point of the 

smooth manifold  𝑀 = 𝑃/𝐺 there exists a neighborhood 𝑈 so that, for the projection  𝜋: 𝑃 

→ 𝑃/𝐺 = 𝑀,  𝑃|𝑈 = 𝜋−1(𝑈) ≅ 𝑈 ×  𝐺 isomorphic as 𝐺-spaces.  𝑃 is called the total 

space, 𝑀 is called the base space and 𝐺  is called the structure group. 

Theorem 1: Isomorphism classes of principal 𝐺-bundles over 𝑀 are in one-to-one 

correspondence with the elements of 𝐻1(𝑀; 𝐺) and also with the elements of [𝑀, 𝐵𝐺], 
that is, homotopy classes of the maps from 𝑀 to the classifying space 𝐵𝐺. 

Definition 2:  Let 𝐹 be a smooth manifold on which 𝐺 acts from left. Then given a 

principal 𝐺-bundle 𝑃(𝑀, 𝐺, 𝜋) over 𝑀, we define 𝑃𝐹 = (𝑃 × 𝐹)/~ where (p, 𝑓) ~ (𝑝 •
 𝑔, 𝑔−1 •  𝑓).  The bundle  𝑃𝐹  → 𝑀  is called as a fiber bundle associated to 𝑃 with fiber 

𝐹. 
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Definition 3:  As a special case of the fiber bundle, defined above, if we take 𝐹 to be a 

vector space 𝑉 and via a representation  𝜌 :𝐺 → 𝐺𝐿(𝑉), define a left action of  𝐺 by 

(𝑔, 𝑣) → 𝜌(𝑔)(𝑣). Then the fiber bundle (𝑃 × 𝑉)/~ we get is called a vector bundle 

modeled on 𝑉 and denoted by (𝑃 ×𝜌 𝑉). 

Theorem 2:  Again as a special case of fiber bundle, take 𝐹 = 𝐻   another Lie group with 

a group homomorphism  𝜌: 𝐺 → 𝐻. Define a left action of 𝐺 on 𝐻 by : 𝑔 • ℎ =  𝜌(𝑔)ℎ  

Then 𝑃𝐻 = 𝑃 ×𝜌 𝐻 is a principal 𝐻-bundle over 𝑀. 

Definition 4: Given two principal bundles 𝑃1(𝑀1, 𝐺1, 𝜋1), 𝑃2(𝑀2, 𝐺2, 𝜋2), and a Lie 

group homomorphism γ: 𝐺1  → 𝐺2 , a map φ:𝑃1 → 𝑃2  is called a bundle map if φ (𝑝 •
𝑔1)= φ (𝑝)  • γ(𝑔1).  Note that φ induces a map on the base spaces φ~: 𝑀1 → 𝑀2, and we 

have φ(𝑝1) ∈ 𝜋2
−1(φ~(𝜋1(𝑝1))) for all 𝑝1 ∈  𝑃1. 

Given γ: 𝐺1  → 𝐺2 and a bundle map φ: 𝑃1  → 𝑃2 consider the map 𝑃1 ×γ 𝐺2  → 𝑃2 

defined by [𝑝1, 𝑔2] → φ(𝑝1) • 𝑔2.  Since [𝑝1 •  ℎ1, γ(ℎ1)
−1𝑔2] →  φ(𝑝1 • ℎ1) •

(γ(ℎ1)
−1 • 𝑔2) =  φ(𝑝1) • γ(ℎ1) • γ(ℎ1)

−1 • 𝑔2 = φ(𝑝1) • 𝑔2, the above bundle map is 

well defined and hence we have 𝑃2 is isomorphic to 𝑃2 ×γ 𝐺2. 

 

Notation: Г(E) denotes the space of smooth sections of the bundle: 𝑝 ∶ 𝐸 →  𝑀.  That 

is, a smooth map ψ∈Г(E)  if ψ:M → 𝐸   satisfies 𝜌 ○ ψ(𝑥)  =  𝑥 for all 𝑥 ∈ 𝑀. We 

usually write Г(M) for Г(TM). 

 

2.2. Connection and  Curvature 

Definition 5: A connection on a vector bundle 𝑝 ∶ 𝐸 →  𝑀 is a map 

▽:Г(M) × Г(E) →Г(E) 

(X,σ)   → ▽𝑋σ =▽ (X,σ) 

which satisfies the following properties: 

 

 ▽𝑋 (𝑓𝜎 + 𝜏) = (𝑋𝑓)(σ)+𝑓 ▽𝑋σ +▽𝑋τ 

 ▽𝑓𝑋+𝑌 (𝜎) = 𝑓 ▽𝑋 (𝜎) +▽𝑌 (𝜎) 

where (𝑋𝑓)(𝑝) = 𝑋(𝑝)𝑓 is the directional derivative. 

An equivalent way of defining a connection on a vector bundle 𝑝 ∶ 𝐸 →  𝑀 is using the 

isomorphism   

Г(𝑇∗M⊗E) ≅ Г(𝐻𝑜𝑚(𝑇𝑀, 𝐸)) ≅ 𝐻𝑜𝑚𝐶∞𝑀(Г(TM), Г(E)); 

It is a map  

𝑑𝐸: Г(E)  → Г(𝑇∗M⊗E) such that 
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𝑑𝐸(𝑓|𝑈𝛼 + 𝜏) = (𝑑𝑓)⊗ 𝜎 + 𝑓𝑑𝐸𝜎 + 𝑑𝐸𝜏. 

 

Note that, after choosing a local trivialization (𝑈𝛼, 𝑔𝛼𝛽) such that over 𝑈𝛼 the bundle is 

trivial, i.e. 𝐸|𝑈𝛼 = 𝑈𝛼 × 𝑅𝑚, any connection restricted to 𝑈𝛼 is of the form 

𝑑𝐸|𝑈𝛼(𝜎𝛼)=d𝜎𝛼 + 𝑤𝛼𝜎𝛼 where 𝜎𝛼 is a section over 𝑈𝛼 and 𝑤𝛼  is a 𝑚 ×𝑚 matrix of one 

forms on 𝑀. That is  

 

𝑑𝐸 (

𝜎1
𝜎2
⋮
𝜎𝑚

) = (

𝑑𝜎1
𝑑𝜎2
⋮

𝑑𝜎𝑚

) +(

𝑤1
1 𝑤2

1 ⋯ 𝑤𝑚
1

𝑤1
2 𝑤2

2 ⋯ 𝑤𝑚
2

⋮ ⋮ ⋱ ⋮
𝑤1
𝑚 𝑤2

𝑚 ⋯ 𝑤𝑚
𝑚

)(

𝜎1
𝜎2
⋮
𝜎𝑚

) 

 

 

Notation: Ω𝑘(𝐸) = Г( 𝛬𝑘(𝑇∗M)⊗E) 

Above definition of connection 𝑑𝐸 can be extended to a 𝑅-linear map 

𝑑𝐸: Ω𝑘(𝐸) → Ω𝑘+1(𝐸) 

by tensoring with deRham complex as in [6]. For, define 

𝑑𝐸(𝜎1 ∧  𝜎2) = 𝑑𝜎1⊗𝜎2 + (−1)𝑘𝜎1 ∧ 𝑑
𝐸𝜎2 

where 𝜎1  ∈ Ω𝑘, 𝜎2  ∈ Ω0(𝐸). 

 

Definition 6: Curvature of a connection 𝑑𝐸: Ω0(𝐸) → Ω1(𝐸) on 𝐸 is defined to be the 

𝐶∞(𝑀)-linear tensor 𝑑𝐸°𝑑𝐸: Ω0(𝐸) → Ω2(𝐸). 

Again, over 𝑈𝛼 we have 𝑑𝐸°𝑑𝐸(𝜎𝛼) = (𝑑𝑤∝ +𝑤∝ ∧𝑤∝)( 𝜎𝛼)= Ω𝛼𝜎𝛼 where Ω𝛼  is a 

matrix of two forms. 

 One final remark about connection and its curvature is about how they transform from 

𝑈𝛼 to 𝑈𝛽.  In order  these locally defined connections and their curvature to be well 

defined globally, on 𝑈𝛼∩ 𝑈𝛽 we must have: 

𝑤∝ = 𝑔𝛼𝛽𝑑𝑔𝛼𝛽
−1 + 𝑔𝛼𝛽𝑤𝛼𝛽𝑔𝛼𝛽

−1and 

Ω𝛼 = 𝑔𝛼𝛽Ω𝛽𝑔𝛼𝛽
−1 

 

Theorem 3:  (Hodge's Theorem): Every deRham cohomology class on a compact 

oriented Riemannian manifold 𝑀 possesses a unique harmonic representative. Thus  

𝐻𝑝(𝑀; 𝑅)  ≅ 𝐻𝑝(𝑀) 

Moreover, 𝐻𝑝(𝑀; 𝑅)  is finite dimensional and Ω𝑝(𝑀)  possesses direct sum 

decompositions 
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Ω𝑝(𝑀) = 𝐻𝑝(𝑀)⊕ 𝑑(Ω𝑝−1(𝑀)) ⊕ 𝛿(Ω𝑝(𝑀)). 

 

2.3. The Groups 𝑺𝑶(𝟒), 𝑺𝒑𝒊𝒏(𝟒) and 𝑺𝒑𝒊𝒏𝒄(𝟒) 

Following [7], we shall consider the quaternions 𝐻 as 2 × 2 complex matrices of the form 

= (
𝑡 + 𝑖𝑧 −𝑥 + 𝑖𝑦
𝑥 + 𝑖𝑦 𝑡 − 𝑖𝑧

) = (
𝑤 −�̅�
𝑤  �̅�

). With this identification, we have  

1̃ = (
1 0
0 1

) ; 𝑖̃ = (
𝑖 0
0 −𝑖

) ;  𝑗̃ = (
0 −1
1 0

) ; �̃� = (
0 −𝑖
−𝑖 0

), 

𝑄 = (
𝑡 + 𝑖𝑧 −𝑥 + 𝑖𝑦
𝑥 + 𝑖𝑦 𝑡 − 𝑖𝑧

) = 𝑡1̃ + 𝑧𝑖̃ + 𝑥𝑗̃ − 𝑦�̃� 

and the matrix multiplication agrees with the quaternion multiplication. 

Since det(𝑄) = 𝑡2 + 𝑥2 + 𝑦2 + 𝑧2 = ⧼𝑄, 𝑄⧽ −Euclidean dot product, regarding 

(𝑡, 𝑧, 𝑥, 𝑦) ∈ 𝑅4as 𝑡 + 𝑖𝑧 + 𝑗𝑥 − 𝑘𝑦 ∈ 𝐻, we can identify the unit sphere in 𝑅4with the 

special unitary group 

𝑆𝑈(2) = {𝑄 ∈ 𝐻; ⧼𝑄, 𝑄⧽ = 1 } = {𝑄 = (
𝑤 −�̅�
𝑤  �̅�

) ; det(𝑄) = 1}. 

 

Definition 7: 𝑆𝑝𝑖𝑛(4) = 𝑆𝑈+(2) × 𝑆𝑈−(2),  where 𝑆𝑈+(2) and 𝑆𝑈−(2) are copies of 

𝑆𝑈(2). 

Definition 8: 𝑆𝑂(4) = (𝑆𝑈+(2) × 𝑆𝑈−(2))/𝑍2. 

A typical element of  𝑆𝑝𝑖𝑛(4) will be represented by (𝐴+, 𝐴−). We have special 

orthogonal representation 

𝜌: 𝑆𝑝𝑖𝑛(4) → 𝑆𝑂(4) =
𝑆𝑈+(2) × 𝑆𝑈−(2)

𝑍2
, 

𝜌(𝐴+, 𝐴−)(𝑄) = [𝐴+, 𝐴−](𝑄) = 𝐴−𝑄𝐴+
−1. 

In fact 𝜌 is surjective and since both 𝑆𝑂(4) and 𝑆𝑝𝑖𝑛(4) are compact Lie groups, it 

induces an isomorphism in the level of Lie algebras and hence 𝑆𝑝𝑖𝑛(4) → 𝑆𝑂(4) is a 

covering space (double cover). 

Elements of 𝑆𝑝𝑖𝑛(4) can also be represented by the 4 × 4  matrices (
𝐴+ 0
0 𝐴−

). This 

representation suggests that we can also consider 𝑆𝑝𝑖𝑛(4) as a subgroup of 

𝑆𝑝𝑖𝑛𝑐(4)where; 

Definition 9: 𝑆𝑝𝑖𝑛𝑐(4) = {(
𝜆𝐴+ 0
0 𝜆𝐴−

) ;  𝜆 ∈ U(1) = 𝑆1 }, which also can be defined as 

𝑆𝑝𝑖𝑛𝑐(4) = ( 𝑆𝑝𝑖𝑛(4) ×U(1) ) / 𝑍2 where 𝑍2acts diagonally. 

We have representation 

𝜌 𝑐: 𝑆𝑝𝑖𝑛𝑐(4) → 𝐺𝐿(𝐻) 
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𝜌 ((
𝜆𝐴+ 0
0 𝜆𝐴−

)) (𝑄) = (𝜆𝐴−)𝑄(𝜆𝐴+)
−1. 

We also have a group homomorphism:   

𝜋: 𝑆𝑝𝑖𝑛𝑐(4) → 𝑈(1), given by 

𝜋 (
𝜆𝐴+ 0
0 𝜆𝐴−

)=𝜆2. 

2.4. 𝑺𝑶(𝟒), 𝑺𝒑𝒊𝒏(𝟒) and 𝑺𝒑𝒊𝒏𝒄(𝟒) Structures on a Manifold 𝑴 

 Definition 10: 𝑆𝑂(4) structure is a collection {(𝑈α, 𝑔αβ);  α, β ∈  Λ} where 𝑈α is an open 

cover of orientable  4 manifold 𝑀, 𝑔αβ: 𝑈𝛼∩ 𝑈𝛽  → 𝑆𝑂(4)satisfying the cocycle 

condition 𝑔αβ𝑔βγ = 𝑔αγ.  An alternative way of defining S𝑂(4) structure is specifying a 

map 𝑓0:𝑀 → 𝐵𝑆𝑂(4). 

Definition 11: An associated 𝑆𝑝𝑖𝑛(4) structure to 𝑆𝑂(4) structure is a collection 

{(𝑈α, �̅�αβ )}; where 𝑔 ̅αβ: 𝑈𝛼∩ 𝑈𝛽  → 𝑆𝑝𝑖𝑛(4) satisfying cocycle condition and 𝜌 ○

�̅�αβ = 𝑔αβ, where 𝜌: 𝑆𝑝𝑖𝑛(4) → 𝑆𝑂(4). Alternatively, an associated 𝑆𝑝𝑖𝑛(4) structure 

to 𝑆𝑂(4) structure is a lifting of 𝑓0:𝑀 → 𝐵𝑆𝑂(4) to 𝑓 ̅0:𝑀 → 𝐵𝑆𝑝𝑖𝑛(4). 

 From the obstruction theory, it is known that the only obstruction for the existence of this 

lifting, that is, for the existence of 𝑆𝑝𝑖𝑛(4) structure, i.e. a bundle with structure group 

𝑆𝑝𝑖𝑛(4), associated to the given 𝑆𝑂(4) structure on the tangent bundle 𝑇(𝑀), is 

𝑤2(𝑇𝑀) ∈ 𝐻2(𝑀, 𝑍2). 

Let 𝑊+and 𝑊− be two copies of 𝐶2.  Consider the representations 𝜌+and 𝜌− given by 

𝜌∓ (
𝐴+ 0
0 𝐴−

)(𝑤∓)= 𝐴∓𝑤∓. 

Definition 12: Given a 𝑆𝑝𝑖𝑛(4) structure,  using the above representations 𝜌+ and  𝜌−, 

we can define  new transition functions 𝜌∓ ○ �̅�αβ: 𝑈𝛼 ∩ 𝑈𝛽 → 𝑆𝑈∓(2), to get two new 

complex bundles also denoted by 𝑊+and  𝑊−, called  Spinor bundles and the  relation 

between these bundles and 𝑇𝑀 is 𝑇𝑀⊗ C ≅ Hom(𝑊+,𝑊−). 

Therefore a 𝑆𝑝𝑖𝑛 structure determines  𝑇𝑀⊗ C ≅ Hom(𝑊+,𝑊−). Moreover if we also 

have a line bundle 𝐿, 𝑇𝑀⊗ C ≅Hom(𝑊+ ⊗L,𝑊− ⊗L), since 𝐿 ⊗ 𝐿∗ is the trivial 

bundle. 

Given a 𝑆𝑝𝑖𝑛(4) structure {(𝑈α, �̅�αβ )}, if we have a line bundle 𝐿 with transition 

functions ℎαβ: 𝑈𝛼 ∩ 𝑈𝛽 → 𝑈(1) then we can define a 𝑆𝑝𝑖𝑛𝑐(4) structure with the 

transition functions ℎαβ ∗ �̅�αβ: 𝑈𝛼 ∩ 𝑈𝛽 → 𝑆𝑝𝑖𝑛𝑐(4), where for 𝑥 ∈  𝑈𝛼 ∩ 𝑈𝛽 if 

�̅�αβ(𝑥) = (
𝐴+ 0
0 𝐴−

) and if ℎαβ(𝑥) = 𝜆 then ℎαβ ∗ �̅�αβ(𝑥) = (
𝜆𝐴+ 0
0 𝜆𝐴−

). Note that 

these maps also satisfy the cocycle condition. 

More generally, a 𝑆𝑝𝑖𝑛𝑐(4) structure can be defined as �̅�αβ: 𝑈𝛼 ∩ 𝑈𝛽 → 𝑆𝑝𝑖𝑛𝑐(4) with 

cocycle condition. That is one doesn't need to have a 𝑆𝑝𝑖𝑛(4)  structure or a line bundle 

in the first place. Combining this with  𝜋 we get a complex line bundle, denoted by 𝐿2. 

Finally, given a 𝑆𝑝𝑖𝑛𝑐(4) structure, associated to it we can define two bundles 𝑊+ ⊗𝐿  
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and 𝑊− ⊗𝐿 although 𝐿 may not exist. 𝑊∓ ⊗L is the bundle whose transition data is 

ρ∓
𝑐 ○ �̅�∓ where ρ∓

𝑐 (
𝜆𝐴+ 0
0 𝜆𝐴−

) (𝑤∓) = 𝜆𝐴∓𝑤∓.  Note that 𝑇𝑀⊗ C ≅ Hom(𝑊+ ⊗

𝐿,𝑊− ⊗𝐿). 

Definition 13: Given an 𝑆𝑂(4) structure on 𝑇(𝑀) and 𝑈(1) structure, that is, a complex 

structure, on line bundle 𝐿 over 𝑀, an associated 𝑆𝑝𝑖𝑛𝑐(4) structure  is a principal 

𝑆𝑝𝑖𝑛𝑐(4) bundle 𝑃 →  𝑀 such that the associated frame bundles satisfy 𝑃𝑆𝑂(4)(𝑇𝑀) = 𝑃 

×ρ𝑐  𝑆𝑂(4) and 𝑃𝑆1(𝐿) = 𝑃 ×𝜋 𝑆1, where  ρ𝑐 [𝐴+, 𝐴−, 𝜆](𝑄) = [𝐴+, 𝐴−](𝑄) =

𝐴−𝑄𝐴+
−1

 and 𝜋 [𝐴+, 𝐴−, 𝜆] =  𝜆
2. 

From the obstruction theory, we know that these liftings exist when 𝐿 is a characteristic 

line bundle, in other words, when the first chern class of 𝐿 is equivalent to the second 

Steifel Withney class of the tangent bundle ( i.e, 𝑐1(𝐿) ≡ 𝑤2(𝑇𝑀) 𝑚𝑜𝑑2 ), as the only 

obstruction for these liftings to exist is 𝑤2(𝑇𝑀⊗ 𝐿) ≡ 𝑐1(𝐿) + 𝑤2(𝑇𝑀) ∈ 𝐻2(𝑀, 𝑍2).  

Note that the assumption 𝑀 is compact oriented smooth 4-manifold guarantees the 

existence of 𝑆𝑝𝑖𝑛𝑐(4) structure. Moreover, the assumption that 𝑀 is simply connected 

ensures   that the liftings considered above are unique. 

2.5.  𝑮𝒂𝒖𝒈𝒆 𝑮𝒓𝒐𝒖𝒑 

Definition 14: A gauge transformation on a line bundle 𝐿 is a bundle homomorphism ℎ ∶
𝐿 →  𝐿 commuting with the action of the structure group 𝑈(1). That is ℎ(𝑔 • 𝑎) = 𝑔 •
ℎ(𝑎) for all 𝑔 ∈ 𝑈(1). 

The set of all gauge transformations of 𝐿 forms a group, denoted by G(𝐿), under 

composition. This group can be considered as maps 𝑓:𝑀 →  𝑆1, see Section 1.7 of [5] 

for details. Hence we have G(𝐿) ≅ Map(M, 𝑆1). 

We define an action of the gauge group G(𝐿) on 𝐴(𝐿) by 𝑔 • 𝑑𝐴 = 𝑑𝐴 + 𝑔𝑑𝑔−1 which 

can also be expressed as 𝑔 ○ 𝑑𝐴 ○ 𝑔
−1. Action of G(𝐿) on Г(𝑊+)  is just complex 

multiplication. 

Note that if we regard G(𝐿) as Map(𝑀, 𝑆1) then, since 𝑀 is simply connected, any 𝑔 ∈ 

G ≅  𝑀𝑎𝑝(𝑀, 𝑆1) can be written as 𝑔 = 𝑒𝑖𝑢 for some 𝑢:𝑀 → 𝑅. According to this 

representation, 𝑔 • ( 𝑑𝐴 − 𝑖𝑎, 𝜓) = (𝑑𝐴0 − 𝑖(𝑎 + 𝑑𝑢), 𝑒𝑖𝑢 𝜓). 

Fix a base point 𝑃0 ∈ 𝑀 and define G0(𝐿) = {𝑔 ∈ G  (𝐿); 𝑔(𝑃0 ) = 1 } 

We have the isomorphism G(𝐿) → G0 (𝐿) × 𝑆1  defined by ℎ → (𝑠−1ℎ, 𝑠) where 𝑠 =

ℎ(𝑃0) ∈ 𝑆1; ℎ ∈ 𝑀𝑎𝑝(𝑀, 𝑆1) = G(𝐿). 

 Note that  G(𝐿)acts freely on 𝐴(𝐿) since 𝑑𝐴 + 𝑔𝑑𝑔−1=𝑑𝐴 means 𝑔𝑑𝑔−1 = 0 that 

𝑑𝑔−1 = 0 which holds if and only if 𝑔=constant.  Elements of 𝑆1 are constant functions 

𝑀 → 𝑆1. Hence 𝑆1 acts trivially on 𝐴(𝐿), whereas it acts freely on Г(𝑊+ − 0) as 

complex multiplication. 

Definition 15: The Dirac operator 𝐷𝐴: Г(𝑊+ ⊗𝐿) →  Г(𝑊+ ⊗𝐿), is defined by 

𝐷𝐴(𝜓) = ∑ 𝑒𝑖 • 𝑑𝐴𝜓(𝑒𝑖) =
4
𝑖=1 ∑ ρ(𝑒𝑖) ▽𝐴 𝜓(𝑒𝑖),

4
𝑖=1  where 𝑑𝐴: Г(𝑊 ⊗ 𝐿) →  Г(𝑇∗M⊗
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(W⊗ 𝐿)) ≅ 𝐻𝑜𝑚𝐶∞(𝑀)(TM,W⊗ 𝐿),  𝑒𝑖 ∈ TM⊗ C ⊆  End(𝑊⊗ 𝐿) and 𝑒𝑖 ∈

𝑇∗M⊗ C are orthonormal basis, ▽𝑒𝑖
 is the covariant derivative along 𝑒𝑖. 

 

 

2.6.  𝑺𝒆𝒊𝒃𝒆𝒓𝒈 −𝑾𝒊𝒕𝒕𝒆𝒏 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏𝒔 

Let 𝑀 be oriented, Riemannian 4-manifold with a 𝑆𝑝𝑖𝑛𝑐(4) structure. We consider the 

pairs (𝑑𝐴,𝜓) where 𝑑𝐴 is a connection on 𝐿2 and 𝜓 ∈ Г(𝑊+ ⊗𝐿).   Let {(𝑑𝐴0 −

𝑖𝑎, 𝜓)} denote the   configuration space. Seiberg-Witten equations are defined as  

𝐷𝐴
+ 𝜓 = 0 

𝐹𝐴
+ = 𝑖𝜎(𝜓) 

where 𝐹𝐴
+ ∈ Г(Ω2(𝑇∗M⊗ iR)) = Ω2(𝑀). 

 

Notation: 𝑀~(𝐿) denotes the moduli space of G0 (𝐿) equivalence classes of the solutions 

of the Seiberg-Witten equations, 𝑀(𝐿) denotes the moduli space of gauge equivalence 

classes of the solutions of the Seiberg-Witten equations. That is 

𝑀(𝐿) = {(𝐴, 𝜓) ∈ 𝐴(𝐿) × Г(𝑊+ ⊗L); 𝐷𝐴
+ 𝜓 = 0 𝑎𝑛𝑑𝐹𝐴

+ = 𝑖𝜎(𝜓)}/ G  

= 𝑀~(𝐿)/𝑆1 

In a similar manner, one can define the perturbed Seiberg-Witten equations:  

𝐷𝐴
+ 𝜓 = 0 

𝐹𝐴
+ = 𝑖𝜎(𝜓) − 𝛷 

and the corresponding perturbed moduli space 𝑀𝛷(𝐿). 

 

3. Results 

Topology of Moduli Space of Invariant Solutions of Seiberg-Witten Equations 

In this section, using the fact that Seiberg Witten equations are invariant under 𝐺-action,   

compactness and the manifold structure on the moduli space, whenever this structure 

exists, will be discussed. 

Given a smooth closed 4-manifold 𝑀 with a Riemannian metric on it and a characteristic 

line bundle 𝐿 over 𝑀. Let 𝐺 be a compact Lie group acting on the base manifold 𝑀 to 

preserve the inner product and orientation, also acting on the characteristic line bundle 𝐿, 

commuting with the base projection and mapping fibers directly to fibers as a complex 

linear map. That is, let 𝐿 be a 𝐺-line bundle. We will also assume that the 𝐺-action on 𝐿 

lifts to the associated 𝑆𝑝𝑖𝑛𝑐(4) bundle whose determinant line bundle is 𝐿. Furthermore, 

we will take 𝐺 a cyclic group of order 𝛼 we will also assume that 𝑀/𝐺 has a positive 
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definite intersection form, and that 𝐻1(𝑀/𝐺; 𝑅) = 0. Note that since 𝐺 is finite and 

preserves the orientation, 𝑀/𝐺 is a real homology manifold, that is 𝑀/𝐺satisfies Poincare 

duality with coefficients in 𝑅. Hence 
𝑀

𝐺
 has a well defined intersection form over 𝑅.  

Moreover Seiberg-Witten equations are invariant under the action of 𝐺. 

Main Theorem 1: If 𝑀 is simply connected, then for every choice of 𝐺-invariant self 

dual form 𝛷 ∈ Ω+
𝐺 , the moduli space 𝑀  𝛷

𝐺  is compact. 

 It is known that every sequence of G0 (𝐿) classes of solutions to the perturbed Seiberg 

Witten equations has a convergent subsequence. A detailed proof is given in section 3.3 

of [5].  Using the continuity of the 𝐺-action, 𝑀  𝛷
𝐺  can be identified with a closed subspace 

of 𝑀  𝛷(𝐿). Being a closed subspace of a compact space,  𝑀  𝛷
𝐺  is also compact. 

Main Theorem 2: Let 𝑀 be a closed, simply connected smooth 4-manifold with a 

𝑆𝑝𝑖𝑛𝑐(4)-structure.   If  dimension of 𝐺-fixed self dual two forms, that is 𝑏+
𝐺 > 0 then,  

𝑀(𝐿)𝛷
𝐺  is, for a generic choice of 𝐺-invariant self-dual two form 𝛷, an oriented smooth 

manifold of dimension 𝑑𝐺 = 𝑖𝑛𝑑𝑅 𝐷𝐴
𝐺 − 𝑏+

𝐺 − 1, where 𝑖𝑛𝑑𝑅 𝐷𝐴
𝐺denotes the index of the 

dirac operator  𝐷𝐴
𝐺 . 

The existence of a reducible solution in  𝑀~(𝐿)𝛷
𝐺 , which causes singularity in 𝑀(𝐿)𝛷

𝐺  

depends on the condition that 𝑐1(𝐿) contains a connection with 𝐹𝐴
+ = 0,  in turn which 

occurs only if 𝛷 ∈ 𝛱𝐺- a subspace of Ω+
𝐺  of codimension 𝑏+

𝐺 .  Since, by the assumption  

𝑏+
𝐺 > 0, these singularities are avoidable. Hence 𝑆1 ⊆ 𝐺 acts freely on 𝑀~(𝐿)𝛷

𝐺 . 

Therefore 𝑀(𝐿)𝛷
𝐺  is an oriented smooth manifold with 𝑑𝑖𝑚(𝑀(𝐿)𝛷

𝐺 ) =
 𝑑𝑖𝑚(𝑀~(𝐿)𝛷

𝐺 ) − 1 = 𝑖𝑛𝑑𝑅 𝐷𝐴
𝐺 − 𝑏+

𝐺 − 1. The orientation of 𝑀(𝐿)𝛷
𝐺  is induced from the 

orientation of 𝑀~(𝐿)𝛷
𝐺 . 

4. Conclusion 

In this work we prove that, under certain conditions on the given group action on the base 

manifold, the compactness of the moduli space and give manifold structure and compute 

the dimension of it. As a future work we will concentrate on the case where 𝑏+
𝐺 = 0 and 

try to understand special structures near singularities 
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