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Abstract: The Homotopy Perturbation Method (HPM) has been shown to be effective in solving
both linear and nonlinear differential equations in mathematics, making it useful in a wide range of
applications in the fields of physics and engineering. In this study, the Homotopy Perturbation
Method was applied to the neutron diffusion equation for a one-dimensional time-independent
approach. The Laplace operator of the neutron diffusion equation was considered for Cartesian,
spherical and cylindrical coordinates. The critical radius values obtained for three different systems
were calculated for all possible values of the relevant material parameter B. The results show that
the solution of the neutron diffusion equation is agree with the literature.

Homotopi Perturbasyon Metodunun Noétron Difuzyon Denklemine Uygulanmasi

Anahtar Kelimeler:

Homotopi Pertiirbasyon Yontemi,
ndtron difiizyon denklemi, ikinci
derece diferansiyel denklemler,
kiiresel ve silindirik koordinatlar

Ozet: Homotopi Pertiirbasyon Yénteminin (HPM), matematikte hem dogrusal hem de dogrusal
olmayan diferansiyel denklemlerin ¢dziimiinde etkili oldugu, fizik ve miihendislik alanlarmdaki
genis bir uygulama yelpazesinde faydali oldugu gosterilmistir. Bu calismada, tek boyutlu zamandan
bagimsiz yaklasim igin nétron diflizyon denklemine Homotopi Pertiirbasyon Yo6ntemi
uygulanmustir. Notron diflizyon denkleminin Laplace operatorii kartezyen, kiiresel ve silindirik
koordinatlar igin dikkate alindi. Ug farkli sistem icin elde edilen kritik yarigap degerleri, ilgili
malzeme parametresi B’nin tiim olasi degerleri igin hesaplandi. Sonuglar nétron difiizyon

denkleminin ¢6ziimiiniin literatiirle uyumlu oldugunu gostermektedir.

*ligiliyazar: halidecelikten@gmail.com
DOI: 10.58688/kujs.1407648

1. INTRODUCTION

The Homotopy Perturbation Method introduced by Ji-
Huan He in 1998, combines elements of the traditional
perturbation method with Homotopy in topology. Extensive
research has been conducted, both analytically and
numerically, investigating its effectiveness in handling linear
and nonlinear differentials as well as integral equations
(Yener, 2009). In particular, HPM has demonstrated
successful applications in the solution of the Laplace equation
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and demonstrated rapid convergence of solution series in a
wide variety of situations (Es, 2022).

HPM is a technique that provides reliable results for many
equations and has attracted a great deal of interest from
researchers over past years. The solution of nonlinear
equations (Daghan et al., 2017), solution of partial differential
equations (Ozpinar, 2020), solution of hyperbolic equations
(Cigek and Mondali, 2022), solution of higher order
differential equations (Es, 2022) solution of neutron diffusion
equation (Shqair, 2019), solution of neutron diffusion
equation in spherical and cylindrical coordinates (Dababneh
et al., 2011), solution of diffusion equations of systems with
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different geometries (Koklu et al., 2016), have been studied
with HPM.

In this study, the derivation of the neutron diffusion
equation in the reactor for three different geometries (cube,
sphere and infinite cylinder) has been carried out using the
HPM method. In order to analyze the accuracy of the
calculations, the reactor radius obtained from the neutron
diffusion equation was calculated for many values of the
material parameter buckling value B between zero and one.

In literature the critical size is found according to some
certain buckling value in nuclear reactor studies. In respect to
mathematical perspective, buckling value is taken into
account as a number in terms of reactor media from zero to
one. (Khasawneh, 2009; Dababneh, 2010).

It is well-known that the material parameter and the
critical size is an inverse relationship in reactor engineering.
When the material buckling is increased the critical size
decrease up to a certain value. So, the results are in line with
this expectation.

A(w) - f(r) =0,

If B is the boundary condition,

After calculating critical size for all different geometrical
systems for many materials buckling values B, the graphs of
the flux equations for all geometrical systems are also drawn
to verify the roots that refers to the critical size of the assumed
system. It is shown that the roots in the graphs are also
consistent with the results of the calculations. In this way, it
can be seen from the tables and graphs that the Homotopy
Perturbation Method gives consistent and accurate results.

2. MATERIALS AND METHODS
2.1. Homotopy Perturbation Method and Applications

In this section, the homotopy perturbation method will be
introduced to obtain analytical or approximate solutions of
linear or nonlinear differential equations (He, 2000).

A is the general differential operator, f(r) is an analytical
function and, I': Q is the limit of boundary. A nonlinear
differential equation given by;

r el 1)

2

A is a differential operator, L is a linear operator and N is a nonlinear operator. If they are substituted into Eq. (1)

L(w) + N() = f(r),

refl 3)

is found. Here v(r, p)= Q x[0, 1]—R Homotopy can be occurred. p € [0, 1] and u, are the initial approximations that satisfies

the boundary conditions;

H(v,p) = (A-p)[Lw)-Lug) ] + p[A@) -f(r)] = 0, r€Q, “)

The Eq. (4) is formed. From the Eq. (1),

H(,p) = L) — L(ug) — plL(v) — L(up) —AW) + f(r)] = 0 Q)
= L(v) - L(ug) +pL(ug) - p[L(v) —A(w) + f(r)] =0

And it is obtained that

L(v) = L(uo) + pL(tg) — pL(v) = 0 ©)

Eq. (3) can be rewritten as

L) =—=N@) + f(r) ()
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It can be put into Eq. (6)

L) = L(uo) + pL(utg) —p[-N@) + f(r)] = 0

So the Eq. (4) becomes as;

H(v,p) = L(w)-L(uo) + pL(uy) + p[N(v) = f(r)] = 0

©)

©)

As the parameter p changes from 0 to 1, the function v(r, p) also changes from u, to ur.

H(v,0) = L(v) —L(uy) =0
and

Hwv,1)=Lw)+Nw)—f(r) =0

(10)

(11)

Here, when p=0, equation (4) becomes a simple linear differential equation, and when p=1, the original nonlinear differential
equation we discussed is obtained. In the Homotopy perturbation method, where p is a very small parameter, the solution of Egs.

(4) and (9) can be written as a power series of p.

v = vy +pv, +p%v, +piug + - =Zp"vn
n=0

The approximate solution of the Eq. (1) is found as;

u= lirr%(v0 + pv; + p?vy + )
p—)

(12)

(13)

=Vy+ U+ V=YV

This case is proposed by Ji Huan He to clarify HPM and many researchers in mathematics and physic are used the method.

(Dababneh, 2010; Shqair, 2022).

2.1.1. HPM Application to the Cube

Neutron diffusion theory is a methodology used to
estimate the distribution of neutrons within a nuclear reactor
by employing the diffusion equation, like molecular
transport. This theory involves solving the diffusion equation
to approximate the spatial, distribution of neutrons. It was
extensively employed in the design of many early reactors to
model and understand neutron behaviour within the reactor
core.

The Homotopy Perturbation Method is applied to the
neutron diffusion equation written for a general time-
independent, steady state, one-dimensional geometry with
vacuum boundary conditions (Lamarsh and Baratta, 2001).

Vi () + B*p(r) = 0 (14)

It is the best-known form of the neutron diffusion
equation. Here the gradient operator can be reorganised for
the geometry of the system.

The neutron diffusion equation can be written for the one-
dimensional cartesian geometry;
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d?p(x 15
d('i;(z ) + B%p(x) =0 (19)
Here B? is the material buckling known as the
2V Z'f _Za . e e .
B = T . Here s is the macroscopic fission cross

section, Y 4 is the macroscopic absorption cross section, D is
the diffusion length v is the number of delayed and prompt
neutrons numbers in a fission chain reaction. It is known that
the neutron diffusion equation is widely used in nuclear
reactor calculation. The parameters for material buckling are
related with the material of the reactor core. The exact values
of them can be found in the evaluated nuclear data library
center or the others. However, in our study we want to show
the application of the HPM method solving for three different
geometrical reactor core systems. In this reason when the
critical radius calculations are done, the material parameter B
value is taken into consideration in the range of zero to one.
So, we can check the Homotopy Perturbation method used in
the neutron diffusion equation solution. The Homotopy is

. L dfpx) | o2 _ ing
applied to the equation i +B?%¢ (x) = 0 as following:
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(16)
H(p,p) = x*¢p“(x) + pB*¢p (x) = 0 p € [0,1]

The variation of p from zero to unity corresponds to the variation of Eq. (16); which is an initial approximation obtained

when p=0. The basic assumption of HPM is that the solution of Eq. (16) can be expressed as a power series in p,

d ()= po(xX)+ p P () + P?p, () + ... (17)

The Eq. (17) is substituted into Eq. (16) and then the power series of p is found as;

p°= ¢y"(x) =0

p' = ¢:"(x) + B*po(x) =0

P> = ¢"(x) + B> ¢y(x) =0
) (18)

P*=¢r"(x) + B¢y (x) =0
Itis assumed that ¢, (0) = C. So, it becomes ¢,”(0) = 0. The initial condition of ¢, (x) is applied to Eq. (18) and it is found
that,
¢,"(x) = —B*C (19)

¢+ (x) can be obtained by integrating of the Eq. (19) as;

$1(x) = —B2C % (20)

When the resultant equation (20) is substituted into Eq. (18), the other fluxes can be obtained as,

2
$:(0) = —B%C =

4

X
— 4
6200 = 8" 735 (22)
— _ Ro6
¢s () =—B°C o97=2
B2C B*C BSC

4 3 6

234" P 23456t

Pr(x) =C— P—— x* + p®

When the approximation of the results with the limit is taken

B2C B*C BSC (22)
li C— 2 2 4 _ .3 6
Wm[C = po=x" +P o3 ¥ ~P 33256 © T

If the series expansion of Eq. (22) is made and the general form of the equation is written:

= (=1)F(Bx)?*.C (23)
s = 3 CC

s (2k)!
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2.1.2. HPM Application to the Sphere

The neutron diffusion equation is organized for r dependent;

Vi) +B*p(r) =0 (24)
If the Laplacian operator (V?2) is written for spherical coordinates;
1d do(r) (25)
— (42 2 _
rzdr< dr )+B¢(r) 0

After arranging,

1
= (2r¢/(r) + 7" (1)) + B¢(r) = 0

The Eq. (25) is multiplied by r? and the transformation of x = Br is done;

X2 P"(x) + 2x ' (x) + x*¢p (x) = 0 (26)

Thus, the equation dependent on the x variable is obtained. By constructing the HPM to Eq. (26)

H(¢,p) =x%¢"(x) + 2x ¢'(x) + px*p (x) = 0 p € [01] (27)

By using the initial boundary value of p as 0, the flux function is found as

P(x) = Po(x) + p P1(x) + P>, (x) + - (28)

From the Eq. (28), it is shown that ¢p,(x) = C. Now the Eq. (28) is substituted into Eq. (27). Then one can obtain,

H(¢,p) = 2x(¢0'(x) +poy () + p2¢2’(x)) +x? (¢0”(x) +ppy(x) + p2¢2”(x))
+px?(o(x) + p p1(x) + PP, (X)) (29)

The power series of p is organized as;

2x¢o (x) +x%2¢y " (x) = 0

2xp; (x) + %%, (x) + X2y (x) = 0

p? = 2x¢," (x) + x%¢," (x) + x*¢1(x) = 0 (30)
P® = 2x¢p3’ (x) + x2p3" (x) + X2, (x) = 0

Pk = 2xp () + 2" (1) + X2es () = O

The assumption ¢, (x) = Ax* + Bx + C is substituted into Eq. (30) and the series solution of the flux function can be ordered

as
_ ¢,
$1(x) = _gX
_C
(%) —ng
$3(x) = —Mxﬁ 31

C C C
2 2_" L4 _ 3 61 ...
Pu() = €= pex® +p 55Xt = p’ e X +
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The approximate result is found by taking the limit of the Eq. (31)
(32)

BG) = ImIC — pox? + P2 o xh = pd x4 o]
p-1 6 120 5040
The limit value in Eq. (32) is substituted into Eq. (29) and the sum of the exponent series come together and x = Br is used

in the general form of the flux equation

o (—DEC (33)

¢(Br) = a 2K+ D! (Br)%

2.1.3. HPM Application to the Infinite Cylinder

The neutron diffusion equation is used in Eq (24). However, the Laplacian is formed in cylindrical coordinates only for r

1d /[ dp) (34)
;E<T dr

1
;(¢'(T) +71¢" (1) +B*p() =0

) +B2%¢p(r) =0

Again, r is the radius of the cylinder and B is the buckling of the system. The Eq. (34) is multiplied by r?, then the neutron
diffusion equation can be rewritten as,

@' (1) +1¢"(r) +rB2p(r) =0 (35)

Now the well-known transformation x = Br is applied to Eq. (35) and the derivations are performed,

r’B2¢" (x) + Br¢'(x) + r?B2¢(x)=0 (36)

Here the variables of the Eq. (36) transform r to x.

x2¢" (%) + x¢'(x) + x*¢(x) = 0 @37)

The solution of the Eq. (37) is done by constructing the Homotopy Perturbation method as following,

H($,p) = x¢"(x) +x*¢" (x) + px*¢(x) = 0 p € [01] (38)

Within this context, the parameter 'p' ranges between 0 and 1. The initial solution of Eq.-(31) is derived by solving the
condition when 'p' equals 0. The solution to Eq.-(32) manifests as a power series dependent on the variable 'p'

() = () + p 1 () + p?p, (¥) + - (39)

The series of the flux equation as shown in Eq. (33) is applied to Eq. (32) and the power series of p is listed below,
P° =x2o" (x) + x¢5'(x) = 0 (40)

X291 (x) + x¢; (x) + x2Po(x) = 0

p' =
p* =x20,"(X) + x¢p," (x) + x>, (x) = 0

Pk = 20" (%) + 2y () + X261 () = 0

For zero value of p, it is known the initial value of ¢,(x) = C by solving Eq. (38) as finite.

¢p(x) = Ax* +Bx +C (41)
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The Eqg. (41) is substituted into Eq. (40) and the series of the neutron fluxes are founded as;

C
1 (x) = __X
)= C
¢, (x TR
__ 6 (42)
¢ = —17536"
) =C- ¢ + ¢ x*—p3 ¢ 6+
Prc(x R e TR AT
The power series of p can be combined as
C C C (43)
=C— 4 —n3 6
$0) = C—pgx® +p* rext —p’ e x® +

the approximate result of the Eq. (37) can be obtained by taken limit of Eq. (43)

C C (44)
=1 C_ — Z_I_ 2 4 _ .3 6 e
¢ = lim |C = p g x* +p* mex® =P 7eae X
C C
— C 2 4 6 vee
2 T116% 216365 T

The enclosed form of the Eq. (44) can be written by displaying the change of variable x = Br .

B(Br) = Z

k=0

3. RESULTS AND DISCUSSION

The radius of different geometric systems can be
calculated from the flux equations obtained by solving the
neutron diffusion equation by employing the Homotopy
Perturbation Method. The parameter B can only take values
between zero and one for any combination of materials. The
flux equation provides us with an understanding of how
material in a medium affects its radius, which is based on a
range from 0 to 1 for all possible values. In this case, the
radius values are based on the [0, 1] range of B, which
includes all possible values regardless of the specific material
in the environment. The Table 1 shows the results of the
radius r calculated against varying B values. The calculations
were performed using the Mathematica program. In the radius
calculations according to the B values, it was observed that
the radius value decreased as the B value increased. While
this decrease was very fast in the first steps, it was observed
that a slower decrease was observed over time.

The graphs present the angular flux roots derived from the
cubic geometrical system, as delineated in Eqg. (23).
Specifically, the graphs delineate the correspondence
between radius and Buckling B values.

(-Dkc
4K 1Kl
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(Bry?™ )

The cubic flux equation as shown in Eq. (23)
demonstrates the relation between material parameter B and
the radius of the system. The root of the flux equation gives
the radius as following graphs as shown in Figure 2. The
change of the neutron flux depending on B and r is presented
in the Figure 3 by three-dimensional graph.

The roots of the angular flux for spherical geometrical
system obtained in Eq. (33) are demonstrated in the graphs.
The graphs are drawn for radius to Buckling B values
respectively.

The roots of the flux equation calculated for spherical
system in Eq. (33) is displayed in the Figure 4

The graphs depict the angular flux roots for an infinite
cylindrical geometric system, as obtained from Eq. (45). They
display the association between radius and Buckling B
values, respectively.

Lastly, the flux solution of the neutron diffusion equation
is demonstrated as graphs with varying values of B in Figure
6. The roots can be localized from the graphs for all B values.

The results of r corresponding to the changing values of
B are shown in Figure 7 in a three-dimensional graph
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Table 1. Radius Values for Different Geometric Systems.

Cube (cm) Sphere (cm) Cylinder (cm)

0.1 15,708 31,415 24,05
0.2 7,853 15,707 12,025
0.3 5,235 10,471 8,016
0.4 3,926 7,853 6,012
0.5 3,141 6,283 4,81
0.6 2,617 5,235 4,008
0.7 2,243 4,487 3,435
0.8 1,963 3,926 3,006
0.9 1,745 3,490 2,672
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Figure 1. Comparison of All Radii Corresponding to all B for Different Geometric Systems.
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15

Figure 3. Flux Equation of Cubic System Graph for Changing r and B in 3D
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r-02-

Figure 4. The roots of the Flux Equation for Spherical System with B=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
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Figure5. Flux Equation of Spherical System Graph for Changing r and B in 3D The neutron flux in spherical geometry for
various B and r is shown in Figure 5 as a three-dimensional graph
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Figure 6. The Roots of the Flux Equation for Infinite Cylindrical System with B=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

82



AKTAS&KOKLU

Figure7. The Flux Equation of Infinite Cylindrical System Graph for Changing r and B in 3D.

4. CONCLUSION

The Homotopy perturbation method is used for the
solution for the neutron diffusion equation in three different
geometric systems. In each geometric system contains own
mathematical structure. When making the calculations, the
Homotopy perturbation method had been tried the
performance of solving spherical, cylindrical and cartesian
coordinates systems. The root of the neutron diffusion
equation implies the critical radius of the one-dimensional
geometric system. It is well-known that when the material
parameter increases, the critic radius of the system decreases.
The behaviour of the roots meets the expectation of the
neutron diffusion equation. The critical sizes for each
geometrical system are listed in tables and also the results are
shown in graphs. All values obtained from the solution of the
neutron diffusion equation with the Homotopy Perturbation
method are in line with the literature results mentioned in
introduction section that are calculated for the certain
material buckling values.
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