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that the circumstances can be mitigated in the Korovkin theorem. 
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1. INTRODUCTION 
 

Let (𝑋, 𝑑) and (𝑌, 𝜌) be metric spaces, (𝑓𝑛) be a sequence of functions from 𝑋 to 𝑌 and 𝑓 be a function 

from 𝑋 to 𝑌. In this study, there are two main types of convergence of sequences of functions: 

“exhaustiveness” and “almost uniform convergence”. In 2008, V. Gregoriades and N. Papanastassiou   

introduced the notion of exhaustiveness which is closely connected to the notion of equicontinuity as 

follows: 

 

Definition 1.1. [16] The sequence (𝑓𝑛) is called exhaustive at 𝑥0 ∈ 𝑋, if for every 𝜀 > 0 there exists 

𝛿 > 0 and 𝑛0 ∈ ℕ such that for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿) and all 𝑛 ≥ 𝑛0 we have that 𝜌(𝑓𝑛(𝑥), 𝑓𝑛(𝑥0)) < 𝜀, 

where 𝐵𝑑(𝑥0, 𝛿) is the ball with radius 𝛿 centered at 𝑥0 according to the metric 𝑑. 

 

The concept of exhaustiveness allows us to understand the convergence of a sequence of functions based 

on properties of the sequence itself, rather than properties of individual functions within the sequence 

[16]. In the following years, many generalizations of this concept were carried out. Z.H. Toyganozu and 

S. Pehlivan introduced the concept of exhaustiveness in the context of asymmetric metric spaces and 

examined several of its properties [21].  A. Caserta and Lj.D.R. Kočinac defined statistical versions of 

notions, exhaustiveness and weak exhaustiveness. Moreover, they presented several findings regarding 

the continuity of the statistical pointwise limit of a sequence of functions and elucidated the relationships 

between st-exhaustiveness and other forms of st-convergence [7]. E. Athanassiadou et al. introduced 
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and examined the fundamental properties of I-exhaustiveness and I-convergence in sequences of real-

valued functions, providing certain characterizations [4].  Subsequently, H. Albayrak and S. Pehlivan 

[1] introduced the concepts of ℱ-exhaustiveness, where ℱ represents a filter on ℕ. See also [15]. 

 

The concept “almost uniform convergence” was defined by J. Ewert in 1993 [13]: 

 

Definition 1.2. The sequence (𝑓𝑛) is called  almost uniformly convergent at 𝑥0 to a function 𝑓 and 

denoted by “𝑓𝑛 →
𝑎.𝑢.

𝑓  at 𝑥0”  if for every 𝜀 > 0 there exists 𝛿(𝜀, 𝑥0) > 0 and 𝑛0 ∈ ℕ such that for all 

𝑛 ≥ 𝑛0 and for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿) implies 𝜌(𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀. 

Ewert provided instances of this form of convergence that exist between the concepts of uniform 

convergence and quasi-uniform convergence. Ewert also proved in which cases these are equivalent 

concepts [13].  R. Drozdowski et al. discussed Ewert's concept of “almost uniform convergence” with 

the same name but with a different approach [11]. 

 

Korovkin's Theorem stands as one of the fundamental theorems in constructive approximation theory 

[18]. While the original theorem was given according to the concept of uniform convergence, in recent 

years it has been given according to many different concepts of convergence and summability methods. 

A seminal paper discussing Korovkin-type theorems in the context of statistical convergence can be 

found in [14]. In the paper by K. Demirci et al. [9], the concept of relative uniform convergence of a 

sequence of functions at a specific point was introduced and they utilized this new form of convergence 

to prove a Korovkin-type approximation theorem. Additionally, they delved into the investigation of 

convergence rates in their study. Numerous studies have also been conducted on Korovkin-type 

theorems that are closely linked to convergence connected with summability methods, statistical 

convergence and filter convergence ([3,5,6,10,12,14,17,19,22,23]). 

 

As of 2020, with the work of N. Papanastassiou [20], in addition to the ones mentioned above, semi-

types of many convergence types for function sequences have been defined and their relationships with 

each other have been examined. See for example [8]. 

 

This paper focuses on dealing the Korovkin-type theorems that are contingent upon the semi-types of 

“exhaustiveness” and “almost uniform convergence”. Since it is known that the convergence types 

mentioned above are between point-wise and uniform convergence, it will be noticed that the 

circumstances can be mitigated in the classical Korovkin's Theorem. 

 

2. DEFINITIONS AND AUXILIARY RESULTS 

 

Let (𝑋, 𝑑) and (𝑌, 𝜌) be metric spaces, (𝑓𝑛) be a sequence of functions from 𝑋 to 𝑌 and 𝑓 be a function 

from 𝑋 to 𝑌. For  𝑥0 ∈ 𝑋 and 𝛿 > 0, 𝐵𝑑(𝑥0, 𝛿) denotes the ball with radius 𝛿 centered at 𝑥0 according 

to the metric 𝑑.  Let us recall the definitions of exhaustiveness, semi-exhaustiveness, almost uniform 

convergence and semi-uniformly convergence. 

 

Definition 2.1. [20] The sequence (𝑓𝑛) is called semi-exhaustive at 𝑥0 ∈ 𝑋 if for every 𝜀 > 0 there exists 

𝛿 > 0 such that for all 𝑛 ∈ ℕ there exists 𝑚 ∈ ℕ (𝑚 > 𝑛) such that for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿) we have that 

𝜌(𝑓𝑚(𝑥), 𝑓𝑚(𝑥0)) < 𝜀. 

 

From the definition, an exhaustive sequence of functions is semi-exhaustive, although the reverse 

implication may not hold. In [20] (Remark 4.2 (2) (Example 3.3)), the given example is accidentally 

overlooked. For correction, one can use the following example: 

 

Example 2.2.  Let 𝑓𝑛: (−1,1) → ℝ,  𝑓𝑛(𝑥) = {
𝑛𝑥, 𝑛  is odd

𝑥/𝑛, 𝑛  is even
.  It is evident that while (𝑓𝑛) is semi-

exhaustive at 𝑥 = 0 but lacks exhaustiveness at the same point. 
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Proposition 2.3. Let 𝑥0 ∈ 𝑋. The sequence (𝑓𝑛) is semi-exhaustive at 𝑥0 iff there exists a strictly 

increasing sequence of positive integers (𝑛𝑘)  such that (𝑓𝑛𝑘
) is exhaustive at 𝑥0. 

 

Proof. 

Let 𝜀 > 0 and 𝑥0 ∈ ℝ are given. Let's assume we have a sequence of positive integers, denoted by (𝑛𝑘), 

which strictly increases such that (𝑓𝑛𝑘
) is exhaustive at 𝑥0. From exhaustiveness there exists 𝛿 > 0 and 

𝑘∗ ∈ ℕ such that for all 𝑘 ≥ 𝑘∗ and for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) we have 𝜌(𝑓𝑛𝑘
(𝑥), 𝑓𝑛𝑘

(𝑥0)) < 𝜀. Since 𝑛𝑘 ≥

𝑛𝑘∗ ≥ 𝑘∗ so that 𝑛𝑘∗+𝑛 ≥ 𝑘∗ + 𝑛 > 𝑛  for all  𝑘 ≥ 𝑘∗, then if we choose  𝑚 = 𝑛𝑘∗+𝑛 for all 𝑛 ∈ ℕ then 

for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) we have  

 𝜌(𝑓𝑚(𝑥), 𝑓𝑚(𝑥0)) = 𝜌(𝑓𝑛𝑘∗+𝑛
(𝑥), 𝑓𝑛𝑘∗+𝑛

(𝑥0)) < 𝜀. 

 Now, assume that the sequence (𝑓𝑛) semi-exhaustive at 𝑥0. From here we construct the desired 

subsequence (𝑛𝑘) as follows: From the Definition 2.1., there exists 𝑛1 ≥ 1 such that 

𝜌(𝑓𝑛1
(𝑥), 𝑓𝑛1

(𝑥0)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). Similarly, there exists 𝑛2 ≥ 𝑛1 + 1 such that 

𝜌(𝑓𝑛2
(𝑥), 𝑓𝑛2

(𝑥0)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). If it continues in this way, there exists 𝑛𝑘 ≥ 𝑛𝑘−1 + 1 

such that 𝜌(𝑓𝑛𝑘
(𝑥), 𝑓𝑛𝑘

(𝑥0)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). Consequently, we get a strictly increasing 

sequence of positive integers (𝑛𝑘) such that 𝑓𝑛𝑘
 is exhaustive at 𝑥0. 

∎ 
 

Definition 2.4. [22] The sequence (𝑓𝑛) is called uniformly exhaustive on X if for every 𝜀 > 0 there 

exists 𝛿(𝜀) > 0 and 𝑛0 ∈ ℕ such that for all 𝑛 ≥ 𝑛0 and for all 𝑥, 𝑦 ∈ 𝑋 that satisfy 𝑑(𝑥, 𝑦) < 𝛿 implies 

𝜌(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) < 𝜀. 

 

Definition 2.5. The sequence (𝑓𝑛) is called semi-bounded on 𝑋 if there exists 𝑀 > 0 such that for all 

𝑛 ∈ ℕ there exists 𝑚 ∈ ℕ (𝑚 > 𝑛) such that the sequence 𝜌(𝑓𝑚(𝑥),0) ≤ 𝑀 for all 𝑥 ∈ 𝑋 . 

 

Definition 2.6. The sequence (𝑓𝑛) is called semi-boundedly exhaustive at 𝑥0 if for all  𝜀 > 0 there exists 

𝛿 > 0 such that for all 𝑛 ∈ ℕ there exists 𝑚 ∈ ℕ (𝑚 > 𝑛) such that 

i. 𝜌(𝑓𝑚(𝑥), 𝑓(𝑥0)𝑚) < 𝜀 for all 𝑥 ∈ 𝐵(𝑥0, 𝛿)  

ii. 𝜌(𝑓𝑚(𝑥0),0) < 𝑀 

where 𝑀 > 0 is a constant independent from 𝜀 and 𝑛. 
 

Definition 2.7. The sequence (𝑓𝑛) is called almost uniformly bounded on 𝑋 if there exists 𝑛0 ∈ ℕ and 

𝑀 > 0 such that 𝜌(𝑓𝑛(𝑥),0) ≤ 𝑀 for all 𝑛 ≥ 𝑛0 and all 𝑥 ∈ 𝑋. 

 

Remark 2.8. It is clear that the uniform boundedness of a sequence implies almost uniformly 

boundedness. The inverse of this assertion is not true. For example, for 𝑓𝑛: (1, ∞) → ℝ, 𝑓𝑛(𝑥) = 𝑥2𝑛−𝑛2
, 

the sequence  (𝑓𝑛) is not uniformly bounded, but almost uniformly bounded. 

 

Definition 2.8. The sequence (𝑓𝑛) is called locally almost uniformly bounded on 𝑋, if for all 𝑥 ∈ 𝑋, 

there exists 𝛿 > 0 such that the sequence (𝑓𝑛) is almost uniformly bounded on 𝐵𝑑(𝑥, 𝛿). 

 

Proposition 2.9. If the sequence (𝑓𝑛) is exhaustive at 𝑥0 and (𝑓𝑛(𝑥0)) is bounded then (𝑓𝑛) is almost 

uniformly bounded in a neighborhood at 𝑥0. 

 

Proof. 

By boundedness of the sequence (𝑓𝑛(𝑥0)), there exists a number 𝑀 > 0 such that 𝜌(𝑓𝑛(𝑥0),0) ≤ 𝑀 for 

all 𝑛 ∈ ℕ. From exhaustiveness of the sequence (𝑓𝑛) at 𝑥0, there exists 𝛿 > 0 and 𝑛0 ∈ ℕ such that for 

all 𝑛 ≥ 𝑛0 and 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿) we have 𝜌(𝑓𝑛(𝑥), 𝑓𝑛(𝑥0)) < 1. Since 𝜌(𝑓𝑛(𝑥),0) ≤ 1 + 𝜌(𝑓𝑛(𝑥0),0) ≤
1 + 𝑀 for all 𝑛 ≥ 𝑛0 and all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿), we get the desired result. 

∎ 
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Corollary 2.10. Let the sequence (𝑓𝑛) is exhaustive and pointwise bounded on 𝑋  then (𝑓𝑛) is locally 

almost uniformly bounded on 𝑋. 

 

Proposition 2.11. If  (𝑓𝑛) →
𝑎.𝑢.

𝑓 at 0x ,  then   (𝑓𝑛𝑘
) →

𝑎.𝑢.
𝑓 at 𝑥0, for any strictly increasing sequence of 

positive integers (𝑛𝑘). 

 

Proof. Let strictly increasing sequence of positive integers (𝑛𝑘) and 𝑥0 ∈ ℝ are given. From almost 

convergency of (𝑓𝑛) to 𝑓 at 𝑥0 there exists 𝛿 > 0 and 𝑛∗ ∈ ℕ such that for all 𝑛 ≥ 𝑛∗ and for all 𝑥 ∈
𝐵(𝑥0, 𝛿) we have 𝜌(𝑓𝑛(𝑥), 𝑓(𝑥)) < 𝜀 for all 𝜀 > 0. For given 𝜀 > 0 if we choose  𝛿∗ = 𝛿 and 𝑘∗ =
min{𝑘  :  𝑛𝑘 ≥ 𝑛∗} then for all 𝑘 ≥ 𝑘∗ and for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) we have 𝜌(𝑓𝑛𝑘

(𝑥), 𝑓(𝑥)) < 𝜀. 

∎ 
Definition 2.12. [20] The sequence (𝑓𝑛) is called semi-uniformly convergent to a function 𝑓 at 𝑥0 if  

i. 𝑓𝑛(𝑥0) → 𝑓(𝑥0) 

ii. For every 𝜀 > 0 there exists 𝛿 > 0 such that for all 𝑛 ∈ ℕ there exists 𝑚 ∈ ℕ 

               (𝑚 > 𝑛) such that for all  𝑥 ∈ 𝐵(𝑥0, 𝛿) implies 𝜌(𝑓𝑚(𝑥), 𝑓(𝑥)) < 𝜀. 

 

The notation "𝑓𝑛 →
𝑠𝑒𝑚𝑖−𝑢𝑛.

𝑓  at 𝑥0" will be used for semi-uniformly convergence of the sequence (𝑓𝑛) 

to 𝑓 at 𝑥0. 

 

Remark 2.13. Obviously, if a sequence of functions converges almost uniformly to a function at a 

specific point, then it can be inferred that the sequence converges semi-uniformly to the same function 

at the same point. Nevertheless, it should be noted that the converse statement does not hold true. For 

instance, considering the sequence provided in Example 2.2. even though it converges semi-uniformly 

to the function 𝑓 = 0 at the point 𝑥 = 0, it is not characterized by almost uniform convergence. 

 

Proposition 2.14.  Let  𝑥0 ∈ 𝑋. The sequence (𝑓𝑛) semi-uniformly converges to 𝑓 at 𝑥0 iff  

i.  𝑓𝑛(𝑥0) → 𝑓(𝑥0)  

ii. There exists a strictly increasing sequence of positive integers (𝑛𝑘)  such that (𝑓𝑛𝑘
) is almost 

uniformly convergent to 𝑓 at 𝑥0. 

 

Proof. Let 𝜀 > 0 and 𝑥0 ∈ ℝ are given. Assume that  (𝑓𝑛(𝑥0)) converges to 𝑓(𝑥0) and there exists a 

strictly increasing sequence of positive integers (𝑛𝑘) such that (𝑓𝑛𝑘
) is almost uniformly convergent to 

𝑓 at 𝑥0. From almost uniform convergency there exists 𝛿 > 0 and 𝑘∗ ∈ ℕ such that for all 𝑘 ≥ 𝑘∗ and 

for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) we have 𝜌(𝑓𝑛𝑘
(𝑥), 𝑓(𝑥)) < 𝜀. Since 𝑛𝑘 ≥ 𝑛𝑘∗ ≥ 𝑘∗ so that 𝑛𝑘∗+𝑛 ≥ 𝑘∗ + 𝑛 > 𝑛  

for all  𝑘 ≥ 𝑘∗, then if we choose  𝑚 = 𝑛𝑘∗+𝑛 for all 𝑛 ∈ ℕ then for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) we have  

𝜌(𝑓𝑚(𝑥), 𝑓(𝑥)) = 𝜌(𝑓𝑛𝑘∗+𝑛
(𝑥), 𝑓(𝑥)) < 𝜀. 

 

Now, assume that the sequence (𝑓𝑛) semi-uniformly converges to 𝑓 at 𝑥0. From here we construct the 

desired subsequence (𝑛𝑘) as follows: From the second condition of Definition 2.12. there exists 𝑛1 ≥ 1 

such that 𝜌(𝑓𝑛1
(𝑥), 𝑓(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). Similarly, there exists 𝑛2 ≥ 𝑛1 + 1 such that 

𝜌(𝑓𝑛2
(𝑥), 𝑓(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). If it continues in this way, there exists 𝑛𝑘 ≥ 𝑛𝑘−1 + 1 such 

that 𝜌(𝑓𝑛𝑘
(𝑥), 𝑓(𝑥)) < 𝜀 for all 𝑥 ∈ 𝐵𝑑(𝑥0, 𝛿). Consequently, we get a strictly increasing sequence of 

positive integers (𝑛𝑘) such that 𝑓𝑛𝑘
→

𝑠𝑒𝑚𝑖−𝑢𝑛.
𝑓.   

∎ 
With the proposition mentioned earlier serving as motivation, a specific type of semi-exhaustiveness 

can be defined by incorporating the concept of natural density. However, before delving into this 

definition, let's review the definition of natural density. For 𝐴 ⊆ ℕ, we denote the natural density of A  

by  
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 𝑑(𝐴) = lim
𝑛→∞

|{𝑘∈𝐴 ∶ 𝑘≤𝑛}|

𝑛
 

if the limit exists, where |𝐴| denotes of the cardinality of the finite set A . Let A . Then A  is 

called 

• a statistically thin set is 𝑑(𝐴) = 0 

• a statistically thick set is 𝑑(𝐴) ≠ 0 

• a statistically dense set if 𝑑(𝐴) = 1. 

It is well known that if 𝑑(𝐴1) = 𝑑(𝐴2) = 1 for 𝐴1, 𝐴2 ⊂ ℕ then 𝑑(𝐴1 ∩ 𝐴2) = 1  [8]. 

 

Definition 2.15. It is called that the sequence (𝑓𝑛) is densely semi-exhaustive at 𝑥0 ∈ 𝑋 if there exists a 

strictly increasing sequence of positive integers (𝑛𝑘), with 𝑑({𝑛𝑘}) = 1,  such that (𝑓𝑛𝑘
) is exhaustive 

at 𝑥0. 

 

It's clear that if a function sequence is densely semi-exhaustive then it is semi-exhaustive. Reverse 

implication could not be true. For example, the sequence (𝑓𝑛) defined by  𝑓𝑛: (−1,1) → ℝ,  

 𝑓𝑛(𝑥) = {
𝑛𝑥, 𝑛   is prime

𝑥/𝑛, 𝑛   is non-prime
 

is semi-exhaustive at 𝑥0 = 0, however it is not densely semi-exhaustive at 𝑥0 = 0. 

 

Definition 2.16. 

It is called that the sequence (𝑓𝑛) is densely semi-uniformly converges to 𝑓 at 𝑥0 ∈ 𝑋 if there exists a 

strictly increasing sequence of positive integers (𝑛𝑘), with 𝑑({𝑛𝑘}) = 1,  such that (𝑓𝑛𝑘
) almost 

converges to 𝑓 at 𝑥0. 

 

It's clear that if a function sequence is densely semi-uniformly convergent then it is semi-uniformly 

convergent. Reverse implication could not be true. For instance, consider the sequence (𝑓𝑛) defined by: 

𝑓𝑛: (−1,1) → ℝ, 

 𝑓𝑛(𝑥) = {

𝑥

𝑛
, 𝑛 is  prime

𝑛𝑥,  𝑛 is not prime
 

is semi-uniformly convergent at 𝑥0 = 0, it is not densely semi-uniformly convergent at 𝑥0 = 0.  

 

Let 𝐶(𝑋) denote the space of real valued continuous functions and  𝐵(𝑋) denote the space of real valued 

bounded functions on the metric space (𝑋, 𝜌). We will deal with the positive and linear operators defined 

on these spaces. The positivity of an L  operator defined on these spaces will be understood as the fact 

that the 𝐿(𝑓) function is also positive for every positive function 𝑓. Let be 𝑒𝑘(𝑥) = 𝑥𝑘 for 𝑘 ∈ ℕ0: =
ℕ ∪ {0} and 𝑥 ∈ ℝ. For 𝑋 = [𝑎, 𝑏], let us give Korovkin's Theorem to deal with an approximation 

property of the sequences of positive and linear operators on 𝐶(𝑋): 

 

Theorem 2.17. [18] Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶[𝑎, 𝑏]. If the sequence 

𝐿𝑛(𝑒𝑘) converges uniformly to 𝑒𝑘 on [𝑎, 𝑏], for 𝑘 = 0,1,2 then the sequence 𝐿𝑛(𝑓) converges uniformly 

to 𝑓 on [𝑎, 𝑏] for all 𝑓 ∈ 𝐶[𝑎, 𝑏]. 
 

In the next section, we deal with Korovkin-type theorems depending upon the kind of convergences 

such as almost uniform convergence, semi-uniformly convergence and the notion of semi-

exhaustiveness. 
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3. MAIN RESULTS 

 

Let (𝑋, 𝜌) be a metric space for a bounded set 𝑋 ⊂ ℝ and 𝐶𝑏(𝑋) be the space of real valued, bounded 

and continuous functions on the metric space (𝑋, 𝜌). For every 𝑥 ∈ 𝑋 denote by 𝐵(𝑥; 𝛿), the set {𝑦 ∈
𝑋: 𝜌(𝑦, 𝑥) < 𝛿} and by 𝜌𝑥 the function 𝜌𝑥(𝑦) = 𝜌(𝑥, 𝑦),  (𝑦 ∈ 𝑋).  It is clear that 𝜌𝑥 ∈ 𝐶𝑏(𝑋).  In [2], 

Altomare's contribution involved extending Korovkin's Theorem to include metric spaces, thus 

presenting a broader and more encompassing version of the theorem. 

 

Theorem 3.1. [2] Let (𝐿𝑛)𝑛≥1 be a sequence of positive linear operators on 𝐶(𝑋) and assume that for 

some compact subset 𝐾  of 𝑋 the following properties hold true:  

                • lim
𝑛→∞

𝐿𝑛(𝑒0) = 𝑒0 uniformly on 𝐾.     • lim
𝑛→∞

𝐿𝑛(𝜌𝑥) = 0 uniformly on 𝐾. 

Then for every function 𝑓 ∈ 𝐶(𝐾), 𝑙𝑖𝑚𝑛→∞𝐿𝑛(𝑓) = 𝑓 uniformly on 𝐾.  

Using similar method in [2], we give the Korovkin-type theorems based on the concept of semi-

exhaustiveness, almost uniform convergence and semi-uniformly convergence. 

 

Theorem 3.2. Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶(𝑋) and 𝑥0 ∈ 𝑋. If 𝐿𝑛(𝑒0) →
𝑎.𝑢.

𝑒0 

and  𝐿𝑛(𝜌𝑥0
𝑟 ) is almost uniformly converges to 0  at 𝑥0  for some 𝑟 > 0, then 𝐿𝑛(𝑓) →

𝑎.𝑢.
𝑓 at 𝑥0 for all 

𝑓 ∈ 𝐶𝑏(𝑋). 

 

Proof. Let 𝑓 ∈ 𝐶𝑏(𝑋) and 𝑥0 ∈ 𝑋.  By the continuity of f  at 𝑥0, there exists 𝛿 > 0  such that    

 |𝑓(𝑡) − 𝑓(𝑥0)| < 𝜀 

holds for all 𝑡 ∈ 𝑋 that satisfies 𝜌(𝑥0, 𝑡) < 𝛿. On the other hand, in the case 𝜌(𝑥0, 𝑡) ≥ 𝛿,  we have 

 |𝑓(𝑡) − 𝑓(𝑥0)| ≤ 2sup
𝑥∈𝑋

|𝑓(𝑥)| ≤
2𝑀

𝛿
𝜌(𝑥0, 𝑡) 

where 𝑀: = sup
𝑥∈𝑋

|𝑓(𝑥)|. Let 𝑟 > 0. From the discussion above, the inequality pertaining to the set 𝑋 can 

be written as follows:    

 |𝑓(𝑡) − 𝑓(𝑥0)| ≤ 𝜀𝑒0 +
2𝑀

𝛿𝑟 𝜌𝑥0
𝑟 . 

By almost uniformly convergence of (𝐿𝑛(𝑒0)) at 𝑥0, there exists 𝛿1 > 0 and 𝑛1 ∈ ℕ such that for all 

𝑛 ≥ 𝑛1 and for all 𝑥 ∈ 𝐵(𝑥0, 𝛿1) we have 

 |𝐿𝑛(𝑒0; 𝑥) − 𝑒0(𝑥)| < 1. 

Also, by almost uniformly convergence of (𝐿𝑛(𝜌𝑥0
𝑟 )) at 𝑥0, there exists 𝛿2 > 0 and 𝑛2 ∈ ℕ such that 

for all 𝑛 ≥ 𝑛2 and for all 𝑥 ∈ 𝐵(𝑥0, 𝛿2) we have 

 𝐿𝑛(𝜌𝑥0
𝑟 ; 𝑥) <

𝜀𝛿2

6𝑀
. 

By utilizing the well-known properties of positive and linear operators, we can establish the following: 
|𝐿𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝐿𝑛(|𝑓 − 𝑓(𝑥)|; 𝑥)

                                                   ≤ 𝜀𝐿𝑛(𝑒0; 𝑥) +
2𝑀

𝛿𝑟
𝐿𝑛(𝜌𝑥0

𝑟 ; 𝑥)

                                                                                        ≤
𝜀

3
|𝐿𝑛(𝑒0; 𝑥) − 𝑒0(𝑥)| +

2𝑀

𝛿𝑟
𝐿𝑛(𝜌𝑥0

𝑟 ; 𝑥) +
𝜀

3
𝑒0(𝑥)

                        <
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀

 

for all 𝑛 ≥ 𝑛0 and for all 𝑥 ∈ 𝐵(𝑥0, 𝛿) where 𝑛0 = max{𝑛1, 𝑛2} and 𝛿0 = min{𝛿1, 𝛿2, 𝛿} .   

Consequently, we obtain the almost uniform convergence of the sequence (𝐿𝑛(𝑓)) to 𝑓 at 𝑥0. 

∎ 
 

Corollary 3.3. Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶(𝑋). If 𝐿𝑛(𝑒0) →
𝑎.𝑢.

𝑒0 and  

𝐿𝑛(𝜌𝑥0
𝑟 ) is almost uniformly converges to 0  on 𝑋  for some 𝑟 > 0, then 𝐿𝑛(𝑓) →

𝑎.𝑢.
𝑓 on 𝑋 for all 𝑓 ∈

𝐶𝑏(𝑋). 
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Example 3.4. For 𝑋 = (0,2), consider the operators 𝐿𝑛 on 𝐶𝑏(𝑋)   

 𝐿𝑛(𝑓; 𝑥) = {
𝑓(1) + 𝑛𝑓(𝑥), 𝑥 ≤ 1/2𝑛

𝑓(𝑥), 𝑥 > 1/2𝑛.
 

It is evident that the operators 𝐿𝑛 possess both linearity and positivity. While the sequence (𝐿𝑛) does 

not meet the conditions of Theorem 3.1, it does satisfy the conditions outlined in Theorem 3.2. 

 

Remark 3.5. Korovkin's Theorem is not true for the concept of semi-uniformly convergence. However, 

as we can see in the next theorem, it can be written for densely semi-uniformly convergence. An example 

is given after the next theorem. 

Theorem 3.6. Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶𝑏(𝑋) and 𝑥0 ∈ 𝑋. If the sequence 

(𝐿𝑛(𝑒0)) densely semi-uniformly convergent to 𝑒0 and the sequence  𝐿𝑛(𝜌𝑥0
𝑟 ) densely semi-uniformly 

convergent to 0, for some 𝑟 > 0, at 0x , then 𝐿𝑛(𝑓) densely semi-uniformly convergent to 𝑓 at 𝑥0 for all 

𝑓 ∈ 𝐶𝑏(𝑋).   

 

Proof. Let 𝑓 ∈ 𝐶𝑏(𝑋) and 𝜀 > 0 be given. Since  the sequence (𝐿𝑛(𝑒0)) has densely semi-uniformly 

convergent to 𝑒0 at 𝑥0, then  there exists a strictly increasing sequence of positive integers (𝑛𝑘
(1)

), with 

𝑑({𝑛𝑘
(1)

}) = 1,  such that (𝐿
𝑛𝑘

(1)(𝑒0)) is almost uniformly convergent to 𝑒0 at 𝑥0. Similarly,  since  the 

sequence (𝐿𝑛(𝜌𝑥0
𝑟 )) has densely semi-uniformly convergent to 0 at 𝑥0 then  there exists a strictly 

increasing sequence of positive integers (𝑛𝑘
(2)

), with 𝑑({𝑛𝑘
(2)

}) = 1,  such that (𝐿
𝑛𝑘

(2)(𝜌𝑥0
𝑟 )) is almost 

uniformly convergent to 0 at 𝑥0. Because of the densely semi-uniformly convergence implies the semi-

uniformly convergence , if we take the strictly increasing sequence of positive integers 0 in the set 

{𝑛𝑘
(1)

} ∩ {𝑛𝑘
(2)

} which has natural density 1, we obtain that 𝐿𝑛𝑘
(𝑒0) →

𝑎.𝑢
𝑒0 and  𝐿𝑛𝑘

(𝜌𝑥
𝑟) almost uniformly 

converges to 0  at 0x  by using Proposition 2.11. Now, the desired result follows from Theorem 3.2. 

∎ 
Example 3.7. Let the linear positive operators 𝐿𝑛 on 𝐶[0,1] defined by  

 𝐿𝑛(𝑓; 𝑥) = {
𝑓(

1

2
),                        𝑥 =

1

2

∫ 𝑓(𝑡)𝐾𝑛(𝑡, 𝑥)
1

0
𝑑𝑡, 𝑥 ≠

1

2

 

where 𝐾𝑛(𝑡, 𝑥) = (𝑚 + 1)𝑥𝑚 +
1

𝑛
|𝑥 −

1

2
|  with 𝑛 ≡ 𝑚(mod3) for 𝑛 ∈ ℕ. It’s obvious that  

𝐿𝑛(𝑒𝑖) →
semi−𝑢

𝑒𝑖 at 
1

2
 for 𝑖 = 0,1,2  but 𝐿𝑛(𝑓) does not semi-uniformly converge to 𝑓 at 

1

2
 for 𝑓(𝑥) = 𝑥3. 

 

In the next theorem, let 𝑋 ⊂ ℝ be any set, bounded or unbounded. 

 

Theorem 3.8. Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶(𝑋). If (𝐿𝑛(𝑒0)) is semi-

exhaustive and bounded at 𝑥0 ∈ 𝑋,  then (𝐿𝑛(𝑓)) is semi-exhaustive at 𝑥0 for all 𝑓 ∈ 𝐶(𝑋). 

 

Proof. 

Let 𝑓 ∈ 𝐶(𝑋), 𝑥0 ∈ 𝑋 and 𝜀 > 0 be given. By semi-exhaustiveness of (𝐿𝑛(𝑒0)) at 𝑥0, there exists 𝛿0 >
0 and for all 𝑛 ∈ ℕ there exists 𝑚 ∈ ℕ such that for all 𝑥 ∈ 𝑋  satisfying 𝜌(𝑥, 𝑥0) < 𝛿0, we have 

 |𝐿𝑚(𝑒0; 𝑥) − 𝐿𝑚(𝑒0; 𝑥0)| <
𝜀

3(|𝑓(𝑥0)|+1)
: = 𝐴1(𝜀). 

By boundedness of the sequence (𝐿𝑛(𝑒0; 𝑥0)), there exists 𝑀 > 0 such that 𝐿𝑛(𝑒0; 𝑥0) ≤ 𝑀. By the 

continuity of 𝑓 at 𝑥0, there exists 𝛿1 > 0 such that for all 𝑥 ∈ 𝑋 that satisfies 𝜌(𝑥, 𝑥0) < 𝛿1, we get  

 |𝑓(𝑥) − 𝑓(𝑥0)| <
𝜀

3(𝐴1(𝜀)+𝑀)
: = 𝐴2(𝜀). 

From properties of positive linear operators, we have 

 𝐿𝑛(|𝑓 − 𝑓(𝑥0)|; 𝑥) < 𝐴2(𝜀)|𝐿𝑛(𝑒0; 𝑥) − 𝐿𝑛(𝑒0; 𝑥0)| + 𝐴2(𝜀)|𝐿𝑛(𝑒0; 𝑥0)|. 
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Now, if we choose 𝛿 = min{𝛿0, 𝛿1} and for all 𝑛 ∈ ℕ, 𝑚∗ = 𝑚 (𝑚∗ > 𝑛) then for all 𝑥 ∈ 𝐵(𝑥0; 𝛿), we 

have  
|𝐿𝑚(𝑓; 𝑥) − 𝐿𝑚(𝑓; 𝑥0)|    ≤ |𝐿𝑚(𝑓; 𝑥) − 𝐿𝑚(𝑓(𝑥0); 𝑥)| + |𝐿𝑚(𝑓(𝑥0); 𝑥) − 𝐿𝑚(𝑓(𝑥0); 𝑥0)|

+|𝐿𝑚(𝑓(𝑥0); 𝑥0) − 𝐿𝑚(𝑓; 𝑥0)|

                                   ≤ 𝐿𝑚(|𝑓 − 𝑓(𝑥0)|; 𝑥) + |𝑓(𝑥0)||𝐿𝑚(𝑒0; 𝑥) − 𝐿𝑚(𝑒0; 𝑥0)|

+𝐿𝑚(|𝑓 − 𝑓(𝑥0)|; 𝑥0)  

≤ 2𝐴2(𝜀)(𝐴1(𝜀) + 𝑀) + |𝑓(𝑥0)|𝐴1(𝜀)
< 𝜀.

 

Hence (𝐿𝑚(𝑓)) is semi-exhaustive at 0x .         ∎ 

Theorem 3.8 can also be expressed as follows: 

 

Theorem 3.9. Let (𝐿𝑛) be a sequence of positive linear operators on 𝐶(𝑋). If (𝐿𝑛(𝑒0)) is semi-

boundedly exhaustive at 𝑥0 ∈ 𝑋,  then (𝐿𝑛(𝑓)) is semi-exhaustive at 𝑥0 for all 𝑓 ∈ 𝐶(𝑋). 

 

Theorem 3.10. Let (𝐿𝑛) be positive linear operators on 𝐶(𝑋). If (𝐿𝑛(𝑒0)) is semi-exhaustive and 

pointwise bounded on 𝑋  then (𝐿𝑛(𝑓)) is semi-exhaustive on 𝑋 for all 𝑓 ∈ 𝐶(𝑋). 

 

Proof. 

Let 𝑓 ∈ 𝐶(𝑋), 𝑥0 ∈ 𝑋 and 𝜀 > 0 be given. From Proposition 2.3. there exists an increasing sequence of 

positive integers (𝑛𝑘) such that (𝐿𝑛𝑘
) is exhaustive at 𝑥0. Then by exhaustiveness of (𝐿𝑛𝑘

(𝑒0)) at 𝑥0, 

there exists 𝛿0 > 0 and 𝑘0 ∈ ℕ such that for all 𝑥 ∈ 𝑋 and for all 𝑘 ≥ 𝑘0 that satisfy 𝜌(𝑥, 𝑥0) < 𝛿0, we 

have 

 𝜌(𝐿𝑛𝑘
(𝑒0; 𝑥), 𝐿𝑛𝑘

(𝑒0; 𝑥0)) <
𝜀

3(|𝑓(𝑥0)|+1)
= 𝐴1(𝜀). 

Exhaustiveness and pointwise boundedness of (𝐿𝑛(𝑒0)) on 𝑋 implies locally almost uniformly 

boundedness from Corollary 2.10. Consequently, there is a positive real number that exists 𝑀 > 0, 𝛿1 >
0 and 𝑘1 ∈ ℕ such that for all 𝑥 ∈ 𝑋 that satisfy 𝜌(𝑥, 𝑥0) < 𝛿1 and for all 𝑘 ≥ 𝑘1, we have 

|𝐿𝑛𝑘
(𝑒0; 𝑥)| ≤ 𝑀. By the continuity of 𝑓 at 𝑥0, there exists 𝛿2 > 0 such that for all 𝑥 ∈ 𝑋 that satisfies 

𝜌(𝑥, 𝑥0) < 𝛿2, we have   

 |𝑓(𝑥) − 𝑓(𝑥0)| <
𝜀

3𝑀
. 

From properties of positive linear operators, we have 

 𝐿𝑛𝑘
(|𝑓 − 𝑓(𝑥0)|; 𝑥) <

𝜀

3𝑀
|𝐿𝑛𝑘

(𝑒0; 𝑥)|. 

Now, if we choose 𝛿 = min{𝛿0, 𝛿1, 𝛿2} and for all 𝑛 ∈ ℕ, 𝑚 = 𝑛𝑘(𝑚 > 𝑛𝑘 > 𝑛) then for all 𝑥 ∈
𝐵(𝑥0, 𝛿),  we have  

 

 

|𝐿𝑚(𝑓; 𝑥) − 𝐿𝑚(𝑓; 𝑥0)| ≤ |𝐿𝑚(𝑓; 𝑥) − 𝐿𝑚(𝑓(𝑥0); 𝑥)| + |𝐿𝑚(𝑓(𝑥0); 𝑥) − 𝐿𝑚(𝑓(𝑥0); 𝑥0)|

   + |𝐿𝑚(𝑓(𝑥0); 𝑥0) − 𝐿𝑚(𝑓; 𝑥0)|

                              ≤ 𝐿𝑚(|𝑓 − 𝑓(𝑥0)|; 𝑥) + |𝑓(𝑥0)||𝐿𝑚(𝑒0; 𝑥) − 𝐿𝑚(𝑒0; 𝑥0)|

   + 𝐿𝑚(|𝑓 − 𝑓(𝑥0)|; 𝑥0)

 ≤ 2
𝜀

3𝑀
|𝐿𝑚(𝑒0; 𝑥)| + |𝑓(𝑥0)|𝐴1(𝜀)             

< 𝜀.

 

Hence (𝐿𝑛(𝑓)) is semi-exhaustive at 𝑥0. Thus (𝐿𝑛(𝑓)) is semi-exhaustive on 𝑋. 

∎ 
 

Example 3.11. Scrutinize the linear positive operators 𝐿𝑛 on 𝐶[−1,1] defined by  

 𝐿𝑛(𝑓; 𝑥) = {

𝑓(𝑥)/𝑛, 𝑥 ≤ 0 and n is prime

𝑓(𝑥)/2𝑛, 𝑥 > 0 and n is prime

𝑓(0),              n is not prime.
  

It is clear that (𝐿𝑛(𝑒0)) is semi-exhaustive at 𝑥 = 0 and bounded on [−1,1], so for every 𝑓 ∈ 𝐶[−1,1], 
(𝐿𝑛(𝑓)) is semi-exhaustive at 𝑥 = 0. Indeed, for every 𝜀 > 0, we choose 𝛿 < 1/2 and for every 𝑛 ∈ ℕ 
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we choose m to be the least prime integer that greater than 𝑛, then |𝐿𝑚(𝑓; 𝑥) − 𝐿𝑚(𝑓; 0)| < 𝜀 hold for 

all 𝑥 ∈ 𝐵(0, 𝛿). 

 

Example 3.12. Consider the linear positive operators 𝐿𝑛 on 𝐶(0,1) defined by  

 𝐿𝑛(𝑓; 𝑥) = {
𝑓(𝑥) + 𝑛𝑓(𝑥0), 𝑛 is odd

𝑛𝑓(𝑥), 𝑛 is even
 

 and 𝑥0 ∈ (0,1) be fixed. For a function 𝑓 ∈ 𝐶(0,1) with 𝑓(𝑥0) ≠ 0. the sequence (𝐿𝑛(𝑓)) does not 

converge uniformly on (0,1), but it is semi-exhaustive on (0,1). 

 

Remark 3.13. The condition about boundedness cannot remove from Theorem 3.8. 

 

Example 3.14. Consider the linear positive operators 𝐿𝑛 on 𝐶[0,1] defined by 𝐿𝑛(𝑓; 𝑥; ) = 𝑛2𝑓(𝑥). It’s 

clear that (𝐿𝑛(𝑒0)) is not bounded. Although (𝐿𝑛(𝑒0)) is semi-exhaustive, the sequence (𝐿𝑛(𝑓)) is not 

semi-exhaustive on [0,1] for every 𝑓 ∈ 𝐶[0,1] which is not constant. 
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