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ABSTRACT. One of the important classes of modules is the class of multipli-
cation modules over a commutative ring. This topic has been considered by
many authors and numerous results have been obtained in this area. After
that, Tuganbaev also considered the multiplication module over a noncommu-
tative ring. In this paper, we continue to consider the automorphism-invariance
of multiplication modules over a noncommutative ring. We prove that if R is a
right duo ring and M is a multiplication, finitely generated right R-module with
a generating set {m1, ..., my} such that r(m;) = 0 and [m; R : M| C C(R) the
center of R, then M is projective. Moreover, if R is a right duo, left quasi-duo,

CMI ring and M is a multiplication, non-singular, automorphism-invariant,

finitely generated right R-module with a generating set {m1,...,myn} such
that r(m;) = 0 and [m;R : M] C C(R) the center of R, then Mp = R is
injective.
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1. Introduction

Throughout this paper, all rings are associative rings with unit and all modules
are right unital modules. We use N < M (N < M) to mean that N is a submodule
(respectively, a proper submodule) of M. E(M),C(R),J(R) denote the injective
envelope of M, the center of the ring R and the Jacobson radical of R, respectively.
A submodule N of a module M is said to be essential if N N X # 0 for every
nonzero submodule X of M, denoted by N <° M. In this case, M is called an
essential extension of N.

A ring R is called right duo if every right ideal is an ideal. A right R-module
M is called multiplication if for every submodule N of M, there exists an ideal B
of R such that N = MB. So it is easy to see that R is right duo if and only if
Rp is multiplication. Indeed, if R is right duo, then for every right ideal I of R,
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I is an ideal of R, so we can write I = RI, i.e., Ry is multiplication. Conversely,
if Rp is multiplication and I is a right ideal of R, then there exists an ideal J of
R such that I = RJ = J. So I is an ideal of R, i.e., R is right duo. A ring R is
called right multiplication if Rp is multiplication. Note that over a right duo (or
a right multiplication) ring, every cyclic right R-module is multiplication. In [19],
Tuganbaev gave the definition of concept “commutative multiplication of ideals”
(briefly CMI) and obtained many results on multiplication modules over a right duo
ring or a ring with CMI. A ring R is called commutative multiplication of ideals
if AB = BA for any ideals A, B of R. Two above conditions are followed from
commutativity of a ring but the converses are not true, in general. So it makes
sense if we consider a multiplication module over a right duo rings (or a ring with
CMI).

For a subset X of a right R-module M over a ring R, we denote that rg(X) or
r(X) the right annihilator of X in R. A right R-module M is said to be faithful
if r(M) = 0. Now let X and Y be two subsets of a right R-module M, the subset
{r € R|Xr C Y} of R is denoted by [Y : X]. Recall that if Y < Mg, then
[Y : X] < Rg and if X < Mpr and Y < Mg, then [Y : X] is an ideal of R.
A submodule N of the module M is said to be closed in M if N’ is an essential
extension of N in M, then N = N’. A module M is called square-free if M
does not have nonzero submodules of the form X &Y with X =2 Y. Recall that
Z(M) = {m € M| r(m) <° Rg} is called the singular submodule of M, and if
Z(M) = M (resp. Z(M) = 0), then M is called singular (resp. non-singular).
A ring R is said to be right non-singular if Rg is non-singular. A ring is said to
be reduced if each of its nilpotent elements is equal to zero. Left-sided for these

notations are defined similarly.

For a module N, a module M is said to be injective with respect to N or N-
injective if for any submodule X < N, every homomorphism X — M can be
extended to a homomorphism N — M. A module is said to be injective if it is
injective with respect to each module. A module is said to be quasi-injective if
it is injective with respect to itself. It is well known that a module M is quasi-
injective if and only if f(M) < M for any endomorphism f of the injective envelope
of the module M (see [7]). A module M is said to be automorphism-invariant if
f(M) < M for any automorphism f of the injective envelope of M. Automorphism-
invariant modules are studied in [4], [6], [17], [21], and [22].

Multiplication modules over a commutative ring were considered by many au-

thors, for examples, see [3], [10], [12], and [13]. However, when we consider this
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kind of modules over a noncommutative ring, we will meet many difficulties. Al-
though many difficulties arise, many results about the multiplication modules over
a noncommutative ring were obtained, for example see [18], [19], and [20]. In
[10], S. Singh and Y. Al-Shaniafi obtained many results on quasi-injective multi-
plication modules over a commutative ring. In this paper we continue to consider
the quasi-injectivity of multiplication modules over a noncommutative ring. From
this we obtain the result on automorphism-invariant multiplication modules over a
noncommutative ring.

All terms such as “duo” and ‘non-singular” when applied to a ring will apply all
both sided. For any terms not defined here the reader is referred to [1], [2], [8], [9],
[15] and [23].

2. Results

The following properties are interesting when considering a multiplication mod-

ule over a noncommutative ring.

Proposition 2.1. The following statements are equivalent for a right R-module
M:

(1) M is a multiplication module.

(2) N < M.[N : M] for every N < Mg.

(3) N=M.IN: M| =Mr(M/N) for every N < Mg.

Proof. See [19, Note 1.3]. O

Proposition 2.2. Let R be a right duo ring with commutative multiplication of
ideals. Then the following conditions are equivalent for a Tight R-module M :
(1) M is a multiplication module.
(2) For every nonempty collection of right ideals {B;};cr of R, we have
((MB;) = M[[\(B: + (M),
iel i€l
and for any submodule N of M and each right ideal C of R with N C MC),
there exists an ideal B of R such that B C C and N C M B.

Proof. See [19, Theorem 4.3]. O

Proposition 2.3. Let M be a non-singular automorphism-invariant right R-module.
Then there exists a direct decomposition M = X ®Y such that X is a quasi-injective
non-singular module, Y is a square-free non-singular automorphism-invariant mod-

ule, the modules X and Y are injective with respect to each other, any sum of closed
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submodules of the module Y is an automorphism-invariant module, Hom(X,Y) =
Hom(Y,X) = 0, and Hom(Y1,Y2) = 0 for any two submodules Y1 and Ys in Y
with Yl N Y2 =0.

Proof. See [11, Theorem 3.6]. O

Next, we study the non-singularity of rings and faithful multiplication modules

over a right duo ring.

Proposition 2.4. Let R be a right duo (or right multiplication) ring. Then the

following conditions hold.

(1) R is right non-singular if and only if R is reduced.

(2) Let Mg be a faithful multiplication module. Then M is non-singular if and
only if R is right non-singular.

(3) Let Mpr be a non-singular faithful multiplication module and N be a closed
submodule of M. Then [N : M) is a closed ideal of R.

Proof. (1) It’s clear that “reduced” = ‘right non-singular”.

To prove the converse, let a be an element of R such that a? = 0. Then for aR
there exists a right ideal B of R such that BN aR =0 and B @ aR is an essential
right ideal of R. Since B is an ideal of R, aB < BN A =0, and so aB = 0. From
this, a(B 4+ aR) = 0 and B@ aR <° Rp, it follows that a = 0. Hence R is reduced.

(2) Let R be a right non-singular ring. Take x € Z(M). Then there exists an
essential right ideal I of R such that zI = 0. Since M is multiplication, there exists
an ideal A of R such that tR = M A. Then 0 = 2l = xRl = M AI = 0. It follows
that AI = 0. We have that I is essential in R and obtain A = 0, and so x = 0 or
Z(M) =0.

To prove the converse, if Z(M) = 0, then by [19, Proposition 3.13], Z(M) =
MZ,.(R), it follows that M Z,.(R) = 0. But M is faithful, and so Z,(R) = 0.

(3) By (2), R is right non-singular. Since N < Mpg, [N : M] is an ideal of R.
We have R/[N : M] is a cyclic right R-module, so it is multiplication. Note that
since N is a closed submodule of a non-singular module M, by [15, Corollary 4.2],
M/N is non-singular. Now, let r + [N : M] € Z(R/[N : M]). Then there exists an
essential right ideal I of R such that (r+ [N : M])I = 0, so rI < [N : M] and hence
Mrl < N. It follows that Mr + N < Z(M/N) =0, s0 Mr < N or r € [N : M].
Thus Z(R/[N : M]) =0 or R/[N : M] is a non-singular right R-module.

Assume that [V : M] <¢ I for some ideal I of R. Then, I/[N : M] is singular.
It follows that

0# Z(I/IN: M]) < Z(R/[N : M]) = 0.
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It contradicts, and so [N : M] is closed in R. O

Corollary 2.5. If R a right duo (or right multiplication) right non-singular ring,
then rr(x) = Ir(z) for all x € R.

Proof. Let z be an element of R. If y € rg(x), then 2y = 0 and so (yz)? = 0. By
Proposition 2.4(2), it immediately infers that yz = 0. This means that y € lg(z).
It is shown that rr(z) C lg(x). It is similar to prove that [r(z) C rg(x). O

Proposition 2.6. Let R be a right duo, CMI ring and M be a faithful, multiplica-
tion right R-module. Then for any closed ideal A of R and N = M A, N is a closed
submodule of M and A= [N : M].

Proof. Let K be a closed closure of N in M. Then by Proposition 2.1, K = M B,
where B = [K : M]. It implies that A < B. We show that A is essential in B.
In fact, take b an arbitrary nonzero element in B. Then, we have Mb < K. Since
M is faithful, Mb # 0 and so MbR < K and MbR # 0. We have that K is an
essentially extension of N and obtain that MbRN N # 0 and MbRNMA # 0. By
Proposition 2.2, M(bRN A) = MbRN MA # 0. It follows bRN A # 0. Thus, A is
essential in B. Since A is closed in Rr, A= B and so N = K.

By the same above proof, we show that A = [N : M]. One can check that A <
[N : M]. Let y be an arbitrary nonzero element in [N : M]. Then, My < N = M A
and so MyR < M A. We have, from Proposition 2.2, that

M(yRNA)=MyRNMA = MyR # 0.

It follows yR N A # 0. It is shown that A is essential in [N : M]. Since A is closed
in Rp, A =[N : M]. O

Corollary 2.7. Let R be a ring with commutative multiplication of right ideals. If
M s a faithful, multiplication right R-module, then for any closed ideal A of R and
N =MA, N is a closed submodule of M and A =[N : M].

Proposition 2.8. Let R be a right duo ring and M be a faithful, non-singular,
multiplication right R-module. Then E(R) = E(M).

Proof. By Proposition 2.4(1), R is right non-singular. Then, there exists an em-
bedding of M into E(R). By Zorn’s Lemma, there exists a maximal embedding
of K < Mg into E(R), that is t : K — FE(R). It is easy to see that K is a
closed submodule of M. Let N be a complement of K in M, then N N K = 0.
Let A = [K : M] and B = [N : M]. Then by Proposition 2.4(3), A and B
are closed ideals of R. Now if r € AN B, then Mr C K,Mr C N, and so
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Mr C KN N =0 and since M is faithful, »r = 0. It means that AN B = 0. This
gives ABC ANB=0=AB=0,BA=0,K = MA,N = MB. Hence A < r(B).
Now if Br =0, then MBr =0 = Nr. It follows that r € r(N) and r(B) < r(N).
Now let r € r(N), then Nr = 0. From this Mr = (K + N)r C Kr C K. So
r(N) < A. Thus A = r(B) = r(N). Similarly, B = r(4) = r(K).

Assume that N # 0. Then A = r(N) # R. So it is easy to see that R/A is a
right non-singular ring and N is a non-singular, faithful right R/A-module. Now
we consider any y # 0,y € N. Then by Zorn’s Lemma, there exists a nonzero
ideal of C such that C N A = 0. Let 6 : C — yC defined by ¢ — yc. Then if
ylce=cd)=0and ¢ # ¢ in C, then ¢ — ¢ € r(y) > N = A. Tt follows that yA = 0,
and so y € Z(N) = 0, a contradiction. Thus, we have C = yC.

We can consider an embedding p : yC' — E(R). Now if z € ¢(K) N u(yC) <
E(R), then z(A+ B) < KN N = 0. Therefore, x(A+ B) =0or z € Z(E(R) = 0.
So x = 0. It follows that ¢(K) N u(yC) = 0. So we obtain a large embedding, a
contradiction. Thus, N =0 and then K = M.

Assume that E(M) = E(t(M)) # E(R). Then, there exists a nonzero right
ideal C of R (and hence ideal) such that t(M) N C = 0. Take L = t(M) N R.
Note that LR = L, then L is a right ideal and hence an ideal of R. So CL < C
and CL = LC < t(M)C < t(M), hence CL = 0. Since R is right non-singular
and L <®t(M) < R <°¢ E(R), C < Z.(R) = 0, a contradiction. Hence E(M) =
E(t(M)) = E(R). O

Proposition 2.9. Let R be a right duo ring with commutative multiplication of
ideals and M be a faithful, multiplication right R-module. Then the following con-
ditions hold.
(1) There exists a smallest ideal T(M) of R such that M = M7(M). Moreover,
T(M) = R if and only if M is finitely generated.
(2) Let (M) be in (1) and M = N @ K for some submodules N and K of M,
A=[N:M],B=[K:M].
Then

ANT(M) = Ar(M) = (Ar(M))?,7(M) = 7(M)A@® 7(M)B.
Moreover
r(r(M)A)N7T(M)=7(M)B,N = N7t(M)A

and

r(r(M)B)NT(M)=1(M)A, K = KT7(M)B.
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Proof. (1) We have M = M B for some ideal B of R. Let 7 be the set of all ideals
B of R such that M = M B. Now we take 7(M) the intersection of all ideals in 7.
By [19, Theorem 4.3],

M[( Bl =M(r(M)) = (| (MB) = M.
Ber Ber
We deduce that 7(M) is the smallest ideal such that M = M7(M).

Now if M is finitely generated, faithful, then by [19, Theorem 3.11], M # M B
for every proper ideal B of R. So 7(M) = R. Conversely, if 7(M) = R, then R is
the smallest ideal B of R such that M = M B. Then M # M B for every proper
ideal B of R. Also by [19, Theorem 3.11], M is finitely generated.

(2) From (1), it infers that M = M7(M) and 7(M) = 7(M)?. Assume that
M = N @ K for some submodules N and K of M, A =[N : M],B = [K : M].
Then, N = MA and K = MB. We have AN B = 0 and obtain M = N ® K =
MA®MB = MT7(M)A® M7(M)B. It follows that M = M(r(M)A ® 7(M)B)
and T (M)A @® 7(M)B < 7(M). Since 7(M) is the smallest ideal of R such that
M =Mr(M), (M) = 7(M)A & 7(M)B. From this, it immediately infers that
ANT(M)=7(M)A and BN7(M) = 7(M)B. We have AB=BA< ANB=0

and so

(1(M)A)* < 7(M)A = [r(M)A@® 7(M)B]A = 7(M)A? = 7(M)?*A% = (1(M)A)>.

It follows that ANT(M) = Ar(M) = (A7(M))?. Next, we show that r(7(M)A) N
T(M) = 7(M)B. In fact, let x € 7(M)B = BN 7(M). Then, (1(M)A)x C
(r(M)A)N (r(M)B) CANB=0and soz € r(t(M)A)N7(M). Thus, 7(M)B is
contained in r(7(M)A). To prove the converse, take x € r(7(M)A) N7(M), and so
Mz = Mr(M)x = M(r(M)A® 7(M)B)x = M7(M)Bz C K, since 7(M)

It follows that x € BN7(M) = 7(M)B.

Moreover, we have

Similarly, we have r(7(M)B)N7(M) =71(M)A, K = K7(M)B. |

Theorem 2.10. Let R be a right duo rming and M be a multiplication, finitely
generated right R-module with a generating set {my, ..., my,} such that r(m;) =0
and [m; R : M| C C(R) for every i =1,2,...,n. Then, M is projective.
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Proof. By [19, Theorem 3.11],
R=Y» [mR: M].

1
Thus, there exist elements r; € C(R) (1 < i < n) such that Mr; C m; R and
l=ri+ro+---+rp.

‘We show that

R= irfR.
i=1

In fact, assume that B = erR and B # R. Then, there exists a maximal ideal
i=1

1=

P of A containing B. So for every element r? € P, r; € P, since R/P is a division
ring. Thus
P>y ri=1¢P
i=1
It contradicts. We deduce that R = B.
From this, there exist s; € R (1 <14 < n) such that

n
2
1= E 5 S;.
i=1

Now for each 1 < i < n, we define 8; : M — R as follows: for each m € R,
0;(m) = rpy.r;.s; where r,,, € R is any element such that satisfying the condition
Mr; = miTm.

Assume that m;r,, = m;r), with r,,,, 7, € R. From this r;(r,, — r/,) = 0. Then
T = .. Hence 6; is well defined.

Now we show that 6; is a homomorphism. Indeed, for all m,m’ € M, 0;(m+m’) =
Tmam/Ti8; such that (m 4+ m/)r; = mirppm and 0;(m) = rpris;, 0;(m') = ror;sq,
such that mr; = mry,, m'r; = myry,y. Then, m;(rmtm: — rm — rm/) = 0. It follows
that rp4m = Tm + Tm. Moreover, for all a € R,6;(ma) = rpya7:8; such that
mar; = MiTmq. Since mar; = mr;a, m;(rmqe — rma) = 0. Hence 7y, = rma. Now,
Mris; € miRs; € miR, and so rs; € C(R). Similarly r,s; € C(R). From this,
s; € C(R). One can check that 6;(ma) = 6;(m)a for all a € R.

It is shown that 6; is an R-homomorphism for each 1 < i < n. Now, for each
m € M, we can write

m=m.1l =m(ris))+---+ms2s,

=mriri81+ -+ mr,rnsn
= M1T1mT151 + -+ MpTrmTnSn

=mq01(m) + -+ mu0,(m).
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By the Dual Basis Lemma, it infers that M is projective. O
From this result, we can obtain the following general case.

Corollary 2.11. Let R be a right duo ring and M be a multiplication, finitely
generated right R-module with a generating set {mq,...,m,} such that r(m;) = eR
for every i =1,2,...,n and for some central idempotent e € R with [m;(1 —e)R :
Mu_eyr] € C((1 —e)R). Then, M is projective.

Proof. Note that (M) < r(m;) = eR, and so M is a finitely generated multipli-
cation right (R/eR =) (1 —e)R-module such that 7(m;) = Op/.g and [m;(1 —e)R :
Mu_eyr] € C((1 —e)R)] for every i = 1,2,...,n. By Theorem 2.10, M is a pro-
jective (1 — e)R-module. Since a right R-module and homomorphism are also a
right (1 — e)R-module and homomorphism respectively, M is a projective right
R-module. (]

P. Smith ([12, Theorem 11]) proved the following result for a multiplication mod-

ule over a commutative ring and A. A. Tuganbaev reproved it in [19, Theorem 7.6].

Corollary 2.12. Let R be a commutative ring with identity and M be a multipli-
cation, finitely generated R-module such that v(M) = eR for some idempotent e in

R. Then, M is projective.
Proof. See [12, Theorem 11] and [19, Theorem 7.6]. O

Let R be a right duo ring and P be a maximal ideal of R. Then it is easy to

prove that R\ P is multiplicatively closed and satisfies the following condition
(S1):¥s € R\ P and r € R, there exist t € R\ P and u € R such that su = rt.

Moreover, if R satisfies ACC on right annihilators, then by [15, Proposition 1.5],
R\ P is a right denominator set. In this case, the ring R(R\ P)~! is called the
right localization with respect to P and we write Rp and Mp instead of R(R\ P)~!
and M(R\ P)~! = M ®r Rp, respectively. A ring R is called right localizable if
for each maximal right ideal P of R, the right localization Rp exists. A ring R is
said to be left quasi-duo if each of its maximal left ideals is an ideal of R. Now we

give another condition for R\ P to be a right denominator set.

Lemma 2.13. Let R be a right duo right non-singular ring and P be a mazximal
ideal of R. Then, R\ P is a right denominator set, i.e., the right localization Rp

exists.



10 LE VAN THUYET AND TRUONG CONG QUYNH

Proof. We show that R\ P satisfies the condition (S2): If x € R\ P and a € R with
xza = 0, then there exists y € R\ P such that ay = 0. Indeed, we take y = 2. O

Corollary 2.14. [19, Theorem 4.18] Let R be a right duo ring with commutative
multiplication of ideals. Then, for every mazimal right ideal P of R, the right

localization Rp exists and Rp is a right duo ring with commutative multiplication
of ideals.

Proof. We show that R satisfies the condition: I(z) = r(z) for all z € R. Indeed,
we take a € R,a € l(xz). Then ax = 0 and RaxzR = 0. Since R is a right duo
ring, RaRxR = 0 and RaRRxR = 0. We have that R has the commutative
multiplication of ideals and obtain RxRRaR = 0, and so za =0 or a € r(z).
Conversely, let b € r(z). Then bR = 0 and so 0 = xROR = RxRRbR, since R
is a right duo ring. And hence RbRRzR = 0. It follows that bx =0 or b € i(x). O

Recall that a ring R is called right QF-3% (see [16]) if the injective envelope
E = E(R) of R is a projective right R-module.

Proposition 2.15. Let R be a right duo right non-singular ring. If R is a right
QF-3%, then Ep is a free right Rp-module.

Proof. Let P be a maximal ideal of R and 6 : E — Ep be the canonical map.
By Lemma 2.13, the right localization Rp exists. We have that E is projective
and obtain E @ A = RX) with some Agr and index set X. It is well-known
Ep=F ®gr Rp, and so

(E®A)®@rRp = (E®rRp)®(A®RrRp)
R®) @ Rp = R

Hence Ep is a projective right Rp-module.

Let F = {z € E| [EP : 2] € P}. With assumption §(1) € EpP and by [19,
Lemma 3.17], it infers that [EP : 1] € P. It means that 1 € F. Similarly, by [19,
Lemma 3.17], 6(x) € EpP if and only if [EP : 2] € P. It follows that F' = {z €
E|0(z) € EpP}. Because 0 is an R-homomorphism, we can prove easily that F' is
a submodule of E.

Now we will prove that F' is quasi-injective. This is equivalent to F' being
invariant under all endomorphisms of injective envelope E(F). Since E(F) is a
direct summand of E, we show that F' is invariant under all endomorphisms of E.

Let v : E — E be an endomorphism of F. There exists an Rp-homomorphism
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o : Ep — FE such that 06 = v, i.e., the following diagram is commutative:

E%E}D

=
E

Now, let ¢ be an element in F. Then ¢t € E and there exists r ¢ P such that
tr € EP. Moreover, 6(t) € EpP. Hence there exist p € P,e; € E, such that
0(t) = ep. So P(t) = (d8)(tr) = a(6(t))r = (00)(erp)r = (00)(er)pr € EP. It
follows that ¢ (t) € L.

Since F' is invariant under any homomorphism of E, F' is quasi-injective. Now
since 1 € F, there exists r € EP such that r ¢ P. Let e € E. We haver € (EP)NR
and obtain er € E[(EP)N R] < EP, and so e € F. It follows that E = F.

Note that Ep # EpP. So there exists e € E such that 6(e) ¢ EpP. We have
E =L, e € L and obtain that [EP : ¢] € P. Then there is v ¢ P with ev € EP.
Hence 6(e) € EP, a contradiction. It follows that 6(1) ¢ EpP. Since Rp is a local

ring and Ep is a nonzero projective Rp-module, so it is free and then

Ep=PA;. Ai=Rp. 0

icl

S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.10]) proved that if R is a com-
mutative, QF-31 ring with identity, then R is self-injective. We will extend this

result to the noncommutative case as follows.

Lemma 2.16. Let R be a right duo right non-singular, right QF-3%, left quasi-duo
ring. Then, R is right self-injective.

Proof. Now we show that E/R is a flat right R-module. By [15, Exercise 39, p.
48] we need to show that for every maximal left ideal P of R, EP # E. Note that
P is an ideal and since §(1) ¢ EpP, RN EP < P. Assume that EP = E. Then
r € R=x€ E=x¢€ EP = x € P. So R = P, a contradiction. Since FE is
projective and by [9, Lemma 7.30], E is also finitely generated, so for some n € N,
we obtain that R™ — F/R — 0 is exact. From [15, Corollary 11.4, p.38], it infers
that E/R is projective. We deduce that F = R, and so R is right self-injective. O

From Lemma 2.16 and [24, Theorem 2.7], we have the following result.
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Theorem 2.17. Let R be a right non-singular, right QF-37 ring. Then R is right

self-injective if and only if R is right automorphism-invariant.

Proof. Assume that R is a right non-singular, right QF-37, right automorphism-
invariant ring. Then, R has a ring decomposition R = S @ T, where S is a right
self-injective and Tr is square-free by [14, Theorem 4.12]. It follows, from the [5,
Theorem 15], that T is a right and left quasi-duo ring. Note that T is also a right
non-singular, right QF-3%, right automorphism-invariant ring. Thus, T is a von
Neumann regular ring by Proposition 1 in [4]. Applying Theorem 2.7 in [24] we
have that T is a right and left duo ring. From Lemma 2.16, we deduce that T is a
right self-injective ring. Thus, R is a right self-injective ring. (]

Corollary 2.18. The following conditions are equivalent for a ring R:
(1) R is a right automorphism-invariant right non-singular, right QF-3% ring.
(2) R is a right automorphism-invariant reqular, right QF-3% ring.

(3) R is a right self-injective regular ring.
Lemma 2.19. FEvery idempotent element of a right duo ring is central.

Proof. Let e be an idempotent element of a right duo ring R. We have that 1 —e
is in r(e) and obtain that R(1 —e) C r(e), since R is a right duo ring. It follows
that eR(1 — e) = 0. It is similar to see that (1 — e)Re = 0. Thus, e is central. [

S. Singh and Y. Al-Shaniafi (see [10, Theorem 1.11]) proved that if R is a com-
mutative ring with identity and M is a finitely generated, faithful, quasi-injective
multiplication right R-module, then M = R (and M is injective). We will extend

this result to the noncommutative case as follows.

Theorem 2.20. Let R be a right duo, left quasi-duo, CMI ring and M be a mul-
tiplication, quasi-injective, finitely generated right R-module with a generating set
{ma,...,mn} such that r(m;) = 0 and [m;R : M] C C(R). Then Mp = R is

injective.

Proof. For some n > 1, R is embedded in M™. We have that M is quasi-injective
and obtain that M™ is injective and so M™ = E(Rg) @ L for some injective right
R-module L. By Theorem 2.10, M is projective and then so is M™. Then FE(Rg)
is projective. From Lemma 2.16, we infer that R = E(R). Since L is injective, by
[8, Theorem 1.21] we can apply the exchange property to the injective module L,
so we obtain that

L@R:L@éBz‘,

i=1
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where each B; is a direct summand of M. And then R = é B;.
i=1
So there exists a direct summand of R is embedded in M. By Zorn’s Lemma,
there exists a maximal embedding a : A — M, where A = eR is a direct summand

of R for some idempotent e of R. We obtain
M =a(A)® N,

for some submodule N of M. Suppose that e # 1. Now if m(1 — e) € a(eR), then

m(1 —e) = a(er) for some r € R. Then, we have
m(l—e)(l—e)=aler)(1—-e)=aler(l—e)=ca(0)=0.

So M(1—e)Na(A)=0.

Now take any m € M. Then, m = a(er)+n for some r € R,n € N. From this we
have m(1—e) = a(er)(1—e)+n(l1—e) and by Lemma 2.19, m(1—¢) = n(1—¢). We
write m = a(er)+n(l—e)+ne = m—m(l—e) = afer’) for some ' € R. And then
aler’) — aler) = ne. It follows that ne = 0. Hence m = a(er) + m(1 — e) and then
M = a(A)®M(1—e) and M(1—e) is finitely generated by {m;(1—e)|i =1,...,n}

since
M(1—e) = M(1—e)’R = ZmiR(l—e)R = Zmi(l—e)R = Zmi(l—e)(l—e)R.

Moreover, M (1—e) is a quasi-injective, multiplication module over the ring (1—e)R.

We also have
ra—eyr(Mmi(1 —e€)) = {(1 —e)r|m;(1 —e)(1 —e)r =0} =0,

since (m;) = 0. Let (1—e)r € [m;(1—e)(1—e)R : M(1—e)] for some r € R. Then,
m(1—e)r € m;y(1 —e)R < m;R for every m € M. It means that (1 —e)r € [m; :
M] C C(R), and so (1 —e)r € C(R). Of course, (1 —e)r € C((1 —e)R). It follows
that [m;(1 —e)(1 —e)R: M(1 —e€)] C C((1 — e)R). So a nonzero direct summand
of (1 —e)R embeds in M(1 — e). This contradicts the maximality of «.

Hence e = 1. We deduce that M = K & N, where R < K. From Proposition
2.9(2), it infers that R = A® B,N = NA,K = KB, where A = [N : M],B =
[K : M]. Therefore, K = KB = ¢(R)B = ¢(RB) = ¢(BR) = ¢(B). Inasmuch as
©(R) = ¢(A) ® ¢(B) we have K = ¢(R) = ¢(A) ® K. It follows p(A) = 0 so that
A = 0. From this, we have N = 0. It is shown that M = K and so M = R. O

Now we will give a condition for an automorphism-invariant module to be injec-

tive. In this case it is isomorphic to the ring R.
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Theorem 2.21. Let R be a right duo, left quasi-duo, CMI ring and M be a multi-
plication, non-singular automorphism-invariant, finitely generated right R-module
with a generating set {m1,...,my,} such that r(m;) = 0 and [m;R : M] C C(R).

Then Mp = R is injective.

Proof. By Proposition 2.3, there exists a direct decomposition M = X &Y such
that X is a quasi-injective non-singular module, Y is a square-free non-singular
automorphism-invariant module, the modules X and Y are injective with respect
to each other, any sum of closed submodules of the module Y is an automorphism-
invariant module, Hom(X,Y) = Hom(Y,X) = 0. By [19, Note 1.7], X is a mul-
tiplication module satisfying Theorem 2.20. It follows that Xp = R. We have
0=Hom(X,Y)= Hom(R,Y)2Y,and so Y = 0. Thus Mg = R is injective. [
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