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ABSTRACT: This study is an attempt to review the theory and applications of autoregressive 
fractionally integrated moving average (ARFIMA) and fractionally integrated generalized 
autoregressive conditional heteroskedasticity (FIGARCH) models, mainly for the purpose of the 
description of the observed persistence in the mean and volatility of a time series. The long memory 
feature in FIGARCH models makes them a better candidate than other conditional heteroskedasticity 
models for modeling volatility in financial series. ARFIMA model also has a considerable capacity for 
modeling the return behavior of these time series. The daily data related to Tehran Stock Exchange 
(TSE) index was used for the purpose of this study. Considering the fact that the existence of 
conditional heteroskedasticity effects were confirmed in the stock return series, robust regression 
technique was used for estimation of different ARFIMA models. Furthermore, different GARCH-type 
models were also compared. The results of ARFIMA model are indicative of the absence of long 
memory in return series of the TSE index and the results from FIGARCH model show evidence of 
long memory in conditional variance of this series.  
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1.  Introduction 

Today, with the increasing growth in financial markets, the changes in these markets have had 
great influences on the countries’ economy (Chuang et al., 2012). Accordingly, achieving a sustainable 
economic growth requires equipment and optimal allocation of resources at the national level and the 
realization of this may not be possible without the help of financial markets because any recession or 
booms in the larger markets can impress not only the national economies but also the world economy 
(Eizaguirre et al., 2009). On the other hand, there is an interaction between economic growth and the 
markets development (Bumann et al., 2013).  

Basically, due to the clarity of information, fluidity and also the existence of speculators and 
investors with different decisions, there have been complicated behaviors and many volatilities; this 
situation makes managing and controlling them even more difficult. One of the reasons is that the price 
of a property is dependent on its risk or conditional variance (Conrad et al., 2011). So, by modeling 
price volatilities of a property such as the shares, firstly, brokers can determine the appropriate wage 
rates, secondly the assets managements in the firms can also prevent the losses and damages caused by 
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the high volatility in assets return and thirdly it makes it possible for the investors to avoid probable 
losses in the future by investigating how the current volatilities impact upon the future volatilities (Mun 
and Brook, 2012). 

On the other hand, EMH built based on Random Walk Models has been one of the basic 
challenges facing financial analysts since according to this hypothesis, the complex behavior of the 
financial markets cannot be modeled and predicted. By finding the roots of this issue, it can be found 
that the basic assumptions of the EMH cannot take into account all the elements involved in the 
financial markets. The most important assumption is that markets do not have memory in the sense that 
yesterday’s happenings will not influence today’s events and that investors are risk averse and always 
carefully consider all the information in the market (Burton, 1987). However, the results of many 
applied studies are indicative of the fact that majority of the investors are under the influence of the 
happenings in the market and form their expectations of the future stock prices in keeping with their 
experiences. This fact points to the conclusion that markets have memory (Granger and Joyeux, 1980). 
In addition, one cannot make a confident assertion that all the investors in the financial markets behave 
logically but that they may do trading and favor risking without paying attention to the market 
information because always some investors may make a profit and some may sustain losses. Therefore, 
although based on the assumptions of EMH, financial markets are apparently unpredictable, the fact is 
that this is not the case (Sowell, 1992). Thus, the assumptions of the EMH were faced with such 
criticisms and "Fractal Market Hypothesis" (FMH) was proposed which was able to provide a more 
comprehensive analysis of the markets. This hypothesis, in fact, implied the existence of a market 
composed of numerous investors pursuing their goals with different investment horizons. The types of 
information important to each one of these investors is different. On this basis, as long as the market 
sustains its fractal structure, it will stay stable without considering time scale of the investment 
horizons. On the other hand, when all the investors in the market have the same time horizon, the 
stability of the market will be undermined because people will do trading drawing on similar market 
information (Baillie, 1996).  

Although rejecting the EMH implies non-randomness and, as a consequence, predictability of 
different series, this result is achieved because EMH has been formed based on the Random Walk 
Model and consequently the existence of a linear structure in the behavior of the market (Brock et al., 
1992). On the other hand, with regard to the financial markets which mainly have a complex and 
chaotic structure, FMH analyzes and assesses the issue of predictability from the perspective of 
nonlinear models (Vacha and Vosvrda, 2005). Although accepting the dependence of the behavior of a 
financial market on the FMH is a confirmation of the use of different non-linear models in consonance 
with the feature of long memory (e.g., Auto Regressive fractionally Integrated Moving Average or 
ARFIMA model) and also different types of neural network models (e.g., Nonlinear Neural network 
Auto Regressive or NNAR model as a dynamic model), it should also be noted that the fact that the 
inherent features of the mentioned markets (e.g., long memory) can improve the results of modeling 
should not be overlooked.   

In this way, with the development of financial markets, an increase in the number of investors 
in these markets, and existence of a close relationship between these markets and macroeconomic 
variables during the last two decades, prediction of the financial assets prices behavior in the dynamic 
field of economy and capital markets has promoted into one of the most important issues in financial 
sciences so that, this issue guides the policy-makers, planners, researchers, and investors in exact and 
efficient assessment of assets pricing, optimal allocation of financial resources and performance 
evaluation of risk management. In line with this, many of the studies during the recent years have 
been focused on this issue which helps improve traditional linear and nonlinear models in forecasting 
and making more accurate predictions. Traditionally, Auto Regressive Conditional Heteroskedasticity 
models were used for modeling return volatilities because these models have theoretical, financial and 
economical foundations. At the same time, these models have not yielded favorable results in 
forecasting financial markets because they do not take into consideration the long memory feature 
which is one of the most important features in modeling and forecasting of the financial markets. 
Therefore, during the recent years, Auto Regressive Fractional Integrated Conditional 
Heteroskedasticity models which are based on long memory have been an appropriate response to 
eliminate the mentioned limitations and for this reason they are frequently used, see e.g. Kasman et al. 
(2009), Conrad et al. (2011), Aye et al. (2012) and Tan et al. (2012).  
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Hence, the present study attempts not only to use the different models based on long memory 
(ARFIMA) but also model Tehran Stock Exchange Price Index volatility by using the Conditional 
Heteroskedasticity models especially FIGARCH in forecasting the dependent variable. For these 
purposes, we will utilize the data related to daily time series from 25/3/2009 to 22/10/2011 (616 
observations) out of which 555 observations (about 90% of the observations) were used for modeling 
and 60 observations for out-of-sample forecasting. 

 
2.  Methodology 

After many important studies were conducted on the existence of Unite Root and 
Cointegration in time series starting in 1980, econometrics experts examined other types and subtypes 
of non-stationary and approximate persistence which explain the processes existing in many of the 
financial and economic time series. Today, different studies have been and are being conducted on 
these processes including "Fractional Brownian Motion" and "Fractional Integrated Process" and the 
"processes with long memory" (Lento, 2009). Hurst (1951) for the first time found out about the 
existence of processes with long memory in the field of hydrology. After that, in early 1980s 
econometricians such as Granger and Joyex (1980) and Hosking (1981) developed econometric 
models with long memory and specified the statistical properties of these models. During the last three 
decades, numerous theoretical and empirical studies have been done in this area. For example, 
(Mandelbrot, 1999; Lee et al. 2006; Onali and Goddard 2009)’s studies can be mentioned as among 
the most influential in this regard.  

The concept of long memory includes a strong dependency between outlier observations in 
time series which, in fact, means that if a shock hits the market, the effect of this shock remains in the 
memory of the market and influences market activists’ decisions; however, its effect will disappear 
after several periods of time (in the long term). Thus, considering the nature and the structure of 
financial markets such as the stock market, which are easily and quickly influenced by different 
shocks (economic, financial and political), it is possible to analyze the effects of these shocks and in a 
way determine the time of their disappearance by observing the behavior of these markets (Los and 
Yalamova, 2004). Meanwhile, the long memory will be used as a means of showing the memory of 
the market. By examining the long memory, the ground will also be prepared for improvement of 
financial data modeling. 
2.1. ARFIMA Model 

One of the most popular and most flexible models with the long memory is the ARFIMA 
model in which fractional cointegration degree (d) is representative of the long memory parameter 
because it is indicative of the features of the long memory in the time series of the related variable. 
After making sure about the existence of this feature in a time series using ACF1 tests, classic R/S2 
analysis and also semi-parametric methods such as GPH3, MRS4, etc. (Xiu and Jin, 2007), the most 
important stage in the process of estimation of these models is the "fractional differencing" stage; 
economists, however, used first-time differencing in their empirical analyses due to its ease of use (in 
order to avoid the problems of spurious regression in non-stationary data and the difficulty of 
fractional differencing). Undoubtedly, this replacement (of first-time differencing with fractional 
differencing) leads to over- or under-differencing and consequently loss of some of the information in 
the time series (Huang, 2010). On the other hand, considering the fact that majority of the financial 
and economic time series are non-stationary and of the Differencing Stationary Process (DSP5) kind, 
in order to eliminate the problems related to over differencing and to obtain stationary data and get rid 
of the problems related to spurious regression, we can use Fractional Integration. Another interesting 
point is that Fractional Integration can assume different values, but a specific value for this parameter 
(d) is indicative the long memory feature. Two conditions need to be met for assuming these values. 
Firstly, if -0.5 d 0.5, a series exhibits a stationary and invertible ARMA process with geometrically 
bounded autocorrelations. In other words, when 5.00  d , the autocorrelation function decreases 

                                                
1 Auto Correlation Function 
2 Rescaled Range Analysis 
3 Geweke and Porter-Hudak 
4 Modified Rescaled Range 
5 And some are also trend stationary processes 
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hyperbolically and the related process is a stationary long memory process meaning that the 
autocorrelations decay to zero and will not be summable. When 05.0  d , the long memory 
process will be invoked. The medium-term memory shows that the related variable has been over-
differenced and under such conditions, the reverse autocorrelation function decreases hyperbolically. 
The second condition is that a non-stationary is exhibited by the series if 0.5d1 (Hosking, 1981).  
Finally, it is worth mentioning that spurious long memory should not be overlooked; in fact, spurious 
long memory happens as the result of structural breaks and inattention to nonlinear transformations 
(Kuswanto and Sibbertsen, 2008). Therefore, based on the concepts introduced, we can correctly 
model the behavior of a variable using this model. The general form of the model ARFIMA(p,d,q) is as 
follows:  

(1)        TtLyLL ttt
d ,...,3,2,1)()()1)((   

In which )(L is polynomial autocorrelation, )(L represents moving average polynomial, L is Lag 

Operator, t is the mean of ty . Besides, in this equation, ttt yZ   and is cointegrated with rank d. 
Features of Z are dependent on the d value. If 5.0d , covariance of the model will be fixed and if 

0d , it will have long memory feature (Hosking, 1981). p and q are integers and d  is a long 
memory parameter. dL)1(  represents a fractional differencing operator which is calculated using 
the following formula:  
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In the above equation, it has been hypothesized that ),0(~ 2
t

Nt  and also ARMA section of the 
model are reversible (Aye et al., 2012). 
2.2. Tests Used for Identifying the Long Memory Features 

The most important step in estimating a model with long memory feature is examination of 
the existence of this feature in the return and volatility of the mentioned series. Identifying the 
existence of long memory feature via techniques such as ACF test, GPH test, etc. is possible; in the 
following section. 
2.2.1. ACF Test 

This method is one of the most popular tests identifying the long memory feature first 
introduced by Ding and Granger (1996). In this test, autocorrelation graph decreases from a certain 
value very slowly or hyperbolically (not exponentially). Therefore, such time series have long 
memory feature. It means that these processes cannot be produced by determined and specific AR and 
MA lags because in these series, AR and MA have infinite order (Xio and Jin, 2007). 
2.2.2. The GPH Test (Spectral Density Method) 

This method is based on Frequency Domain Analysis. In the framework of spectral and 
frequency domain analysis, the observed time series is weighted summation of the underlying time 
series which have different periodical patterns. Periodogram technique is used for differentiating 
between short and long memories. This technique was proposed by Gewek and Porter-Hudak (1983) 
and is often known as the GPH estimator. Overall, GPH statistics estimates the long memory 
parameter (d) which is based on the following periodogram regression: 

(3)                                                 jjj ewwI  )2/sin(4ln)](ln[ 10   

In which Tjw j /2 , nj ,...,2,1 and je represent residuals of the model and jw refers to Fourier 

Frequency Transformation ( Tn  ). Finally, )( jwI is a simple periodogram which is defined as 
follows:  
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Thus, the GPH statistic equals 1̂ .  
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2.3. Different Types of ARCH Models 
Auto Regressive Conditional Heteroskedasticity (ARCH) models first proposed by Engel 

(1982) later on expanded by Borlerslev (1986) include the kind of models that are used for explaining 
the volatilities of a time series. Following that different types of ARCH models were introduced. They 
are divided into two groups: Linear (IGARCH and GARCH) and nonlinear models (EGARCH, 
TGARCH, PGARCH, FIGARCH, etc.). 
2.3.1. Linear GARCH Models  

Borlerslev (1986) started introducing the generalized model of ARCH, i.e., GARCH model 
based on Engel’s ARCH model. The distinguishing factor between these two models is the existence 
of variance lags in the conditional variance equation. In fact, GARCH model has a similar structure to 
ARMA. Stipulated forms of this model include:  

(5)                                                                   
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Equation (5) above is a mean equation which includes two sections; one of them is t , which 

should be an appropriate structure for explaining mean equation, and the other is t , which is 
indicative of residuals in the model above which has heteroskedasticity variance and is consisted of 
two normal elements ( tz and conditional standard deviation ( th )). As a matter of fact, ht is a 
conditional variance equation that is estimated along with the mean equation to eliminate the problems 
related to the heteroskedasticity variance t . In the equation (6),   is the average of 2

t , the 2
1t

coefficient indicates the effects of ARCH and 1th  coefficient represents the effects of GARCH 
(Chang et al., 2009). One of the most important features of this model is the existence of temporary 
shocks imposed on the time series under investigation (Kittiakarasakun and Tse, 2011).  
Furthermore, the results of Engel and Borlerslev’s (1986) studies show that in some of the cases the 
GARCH equation mentioned above has a unit root. It means that, for example, in GARCH(1,1), the 

11   value is very close to one. In this case, the GARCH model is cointegrated and is called 
IGARCH. In these models, if there is a shock to the time series under investigation, it will have lasting 
effects and become noticeable in the long term (Poon and Granger, 2003).  
2.3.2. Nonlinear GARCH Models or the FIGARCH Model  

FIGARCH model was first proposed by Baillie (1996). In this model, a variable has been 
defined as fraction differencing, which ranges from zero and one. A General form of the 
FIGARCH(p,d,q) is as follows: 

(7)                                                              tt
d LBLL  )()()1( 2      

In equation (7), )(L is the function of appropriate lag (q), )(LB is the function of 
appropriate lag (p), L is the lag operator, and d represents fraction differencing parameter. If d=0, the 
FIGARCH model will turn into GARCH, and if d=1, it will turn into IGARCH. It should be noted 
that in these models, the effects of the shocks are neither lasting as in IGARCH models nor temporary 
as in GARCH models; the effects are between these two extremes meaning that the effects of the 
shocks will decrease at a hyperbolic rate. 
2.4. Criteria for Comparing Forecasting Performance  

On the whole, MSE and RMSE criteria are among the most frequently used criteria for 
comparing forecasting accuracy of the models among other criteria for fitting the accuracy of 
prediction. In this study, we used the MSE criterion for comparing forecasting accuracy of the models 
because this criterion has important features among which is taking account of the outlying data in 
comparing forecasting accuracy of the models. Besides, this criterion has a higher accuracy as against 
RMSE which shows the error differences as lower (Swanson et al., 2011).  
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3. Results Analysis 

For the purpose of this study, we used daily data of the Tehran Stock Exchange (TSE) Index 
from 2009/25/03 to 2011/22/10. It should also be mentioned that the acronyms of the variables used in 
this study include: TEDPIX (Tehran Exchange Dividend Price Index) and DLTED, showing the 
difference of the logarithm (return) of the Dividend Price Index.  
3.1. Descriptive Analysis of the Data 

Considering the importance of the utilized data in this study, before modeling the mentioned 
index, a descriptive statistics related to the data will be analyzed first (see Table 1 for details):  

 
Table 1. Descriptive Statistics 

Accounting Value Criterions Accounting Value Criterions 
9953.99 (0.000) Jarque- Bra 616 observations 
108.81 (0.000) Box- Ljung  Q(10) 0.00193 Mean 
241.25(0.000) McLeod-Li  Q2(10) 0.00797 S.D 

8.9832 (0.000) ARCH (10) 2.2684 Skewness 
22.1799 Kurtosis 

 
With a brief look at the above table, it can be found that the mean of time series return in 

Tehran Exchange Return in the period under investigation is 0.00193 and its standard deviation is 
0.00797. By comparing these two, it can be realized that this time series has experience a high level of 
volatility during this period. The Jarque-Bera test indicates non-normal distribution of this time series. 
Besides, the kurtosis statistics also indicate that the distribution of the mentioned time series is fat tail. 
Observing the Liang-Box statistics (with ten lags), can find, the null hypothesis about the lack of a 
serial correlation between the terms of the time series be rejected. The McLeod-Lee statistics also 
reject the null hypothesis about the lack of Serial correlation between square of the time series return) 
which is, in fact, expressive of the existence of nonlinear effects in this time series. It should be 
mentioned that the results of Engel’s test were consistent with McLeod-Lee’s test and confirmed the 
hypothesis about conditional variance of the time series return.  
3.2. Stationary Test 

As the next step, stationary of the DLTED series (done to prevent creation of a spurious 
regression) will be assessed using different tests (see Table 2 for the results).  

 
       Table 2. The Results Related to Stationary of the Stock Return Series 

Test Critical Stat. Accounting Value            Result 
ADF6 -1.9413 -16.586 Stationary 
ERS7 3.2600 0.9403 Non-Stationary 
PP8 -1.9413 -17.543 Stationary 

KPSS9 0.4630 0.590 Non-Stationary 
 

If the long memory feature does not exist, it is expected that the series becomes stationary by 
first differencing, but the results of first differencing show that stock return series is stationary in ADF 
and PP tests while in the KPSS and also ERS test the results are indicative of non-stationary of the 
series (see Table 2 for the results). Such conditions might have been caused by the long memory 
feature in this series. For this reason, the long memory feature in the stock return series (by fractional 
differencing series) was further analyzed by the researchers. Besides, interpreting the Autocorrelation 
plot can also help to find if there is long memory in the stock return series; as shown in Fig. 1 below, 

                                                
6 Augmented Dickey–Fuller  
7 Elliott, Rothenberg and Stock 
8 Philips-Prone 
9 Kwiatkowski–Phillips–Schmidt–Shin 
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the autocorrelation between different lags in the time series has not disappeared even after about 30 
periods and, in fact, these autocorrelations in the series are decreasing at a very slow rate. This is 
anomalous to the behavior of autocorrelation of the stationary series in which the autocorrelations 
between different lags in the series decrease exponentially. 
 

Figure 1. ACF Graph for Stock Return Series 

 
 
3.3. Examining the Fractal Market Hypothesis 

Generally, dependence of the behavior of a market on the Efficient Market Hypothesis 
depends on the significance of long memory parameter in its time series. In general, models that are 
based on long memory are highly dependent on the value of long memory parameter and also 
attenuation of the autocorrelation functions. On this basis, in the following subsections, the values of 
long memory parameter are estimated using the GPH. On the whole, this test is conforms to the 
frequency domain analysis and uses the Log-Period gram technique; this technique is a means for 
differentiating short and the long memory processes. It should also mentioned that slope of the 
regression line resulting from applying the Log-Period gram technique gives us the long memory 
parameter and if significant, the significance of the related feature in the stock return series can be 
inferred and the fractal market hypothesis is confirmed. The results of this test have been provided in 
Table 3 below.  

 
  Table 3. Estimation of d Parameter Using GPH Test Based on the NLS Method 

Series d-Parameter t-stat. Prob. 
Stock series 0.14088 3.13 0.002 

Stock return series 1.04695 12.3 0.000 
 
As shown in Table 3 above, the value for long memory parameter is non-zero (and also lower 

than 0.5) which is a confirmation of the existence of long memory in the stock return series. 
Therefore, two conclusions can be drawn from the above test: first, the fractal market hypothesis is 
supported. The second conclusion is that this series should be fraction differenced once again so that 
modeling can be done in conformity with it. Therefore, although the existence of the long memory 
feature was confirmed in the return index, in the following sections, we will also focus on the 
existence of this feature in the stock volatility series. On this basis, in the following sections, stock 
return series models will be focused on using the models that are based upon long memory. 
3.4. Estimation of the ARFIMA Model  

There are different methods for estimation of the ARFIMA model and d parameter including 
Approximate Maximum Likelihood (AML), Exact Maximum Likelihood (EML), Modified Profile 
Likelihood (MPL), and Non Linear Least Square (NLS) (Ooms and Doornik, 1998). In the present 
study, EML, MPL, NLS methods have been selected for estimating these types of models using Ox-
Metrics software. Furthermore, based on the Akaike information criterion, a comparison was made 
between different models of ARFIMA and the model that is found to have the lowest score of the 
information criterion, will be the best model for explaining mean equation of the stock return series.  
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Table 4. The Results of Estimation of Different Models of ARFIMA 
    Models                             Akaike Information Criterion         ARCH test 

           ML               NLS           EML 
    ARFIMA(1,0.14,1)       -7.2126         -7.3241       -7.3235         4.8(0.02) 
    ARFIMA(1,0.14,2)       -7.2153         -7.3289       -7.3242         3.9(0.04) 
    ARFIMA(2,0.14,1)       -7.2124         -7.3234       -7.3226         4.4(0.03) 
    ARFIMA(2,0.14,2)       -7.2125         -7.3250       -7.3237         5.7(0.01)  

 
According to Table 4, it can be concluded that ARFIMA(1,0.14,2) has the lowest Akaike 

information criteria score and has the best performance (see Table 5 for specifications).  
 

Table 5. The results of estimation for ARFIMA(1,0.14,2) 
Variables Coefficient T-Stat. Prob. 
Constant 0.0316 2.21 0.002 

d-ARFIMA 0.1408 3. 13 0.000 
AR(1) 0.8541 31.41 0.000 
MA(1) 0.6163 18.67 0.000 
MA(2) 0.2358 3.53 0.004 

Dummy(1) 0.079 7.28 0.000 
Dummy(2) 0.0519 8.73 0.000 

 
It is worth mentioning that, the dummy variables introduced in the above equation can be 

defined as the following: Dummy(1) are related to the financial crisis in 2007-2008 and Dummy(2) is 
related to transferring the shares of Telecommunication Company of Iran in the stock in line with the 
implementation of Article 44. Additionally, considering the fact that diagnostic tests conducted on 
residuals of the related model are indicative of the existence of conditional variance heteroskedasticity 
effects (in Table 5), Robust Regression was used for estimating this model.  
3.5. Estimating the Different types of GARCH Models 
  According to the results provided in Table 4, the ARFIMA (1,0.14,2) model, based on the 
Akaike statistics, has the best performance and based on the ARCH test, the effects of the ARCH 
(conditional heteroskedasticity variance) are confirmed to exist in residuals of these models and 
consequently, in order to eliminate the problems associated with heteroskedasticity variance, models 
of the ARCH family can be used. Therefore, in the next part, not only the long memory feature will be 
tested in the stock volatility index, there will also be a focus on modeling variance equation of the 
series using GARCH models including those with long memory (fractal) and the non-fractal ones. The 
results related to different forms have been presented in Table 6.  
 

Table 6. Different types of GARCH Models 

Models ARFIMA(1,1) ARFIMA(1,2) ARFIMA(2,1) ARFIMA(2,2) 
AIC SBC AIC SBC AIC SBC AIC SBC 

GARCH -7.3182 -7.2523 -7.3243 -7.2501 -7.3172 -7.2430 -7.3133 -7.2309
EGARCH -6.9688 -6.8864 -6.9667 -6.8761 -6.9651 -6.8744 -6.9618 -6.8629 

GJR-GARCH -7.3221 -7.2478 -7.3349 -7.2525 -7.3244 -7.2420 -7.3209 -7.2302 
APGARCH -7.3341 -7.2518 -7.3308 -7.2402 -7.3333 -7.2426 -7.3271 -7.2281 
IGARCH -7.3125 -7.2548 -73122 -7.2463 -7.3114 -7.2455 -7.3075 -7.2333 

FIGARCH(BBM) -7.3126 -7.2384 -7.3343 -7.2588 -7.3088 -7.2264 -7.3073 -7.2166 
FIGARCH(Chang) -7.2991 -7.2250 -7.2981 -7.2155 -7.2976 -7.2151 -7.2937 -7.2031 

 
All the proposed models shown in Table 6 have been based on different mean equations with 

long memory and as shown in this table, different combinations include three general parts: the first 
part of that (at the top of the table) includes different non-fractal models of conditional 
heteroskedasticity variance, the second part includes the combination of a conditional 
heteroskedasticity variance with unit root model (IGARCH), and finally, the third part (down the 
table) includes the different types of fractal conditional heteroskedasticity variance models 
(FIGARCH).  
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By comparing information criteria related to different types of GARCH models, it can be 
easily found that the ARFIMA (1,2)-FIGARCH(BBM) model has the lowest Akaike and Schwarz 
information criteria, so, it is the best model for explaining the behavioral pattern of volatility in the 
stock series (see Table 7 for the coefficients for variables of this model and the statistics related to 
significance of these coefficients). Another conclusion to be drawn from the results shown in the table 
is the existence of the long memory feature in the stock volatility series.  

Furthermore, statistics related to examining the existence of heteroskedasticity variance in 
residuals of this model (statistics related to Liang-Box, McLeod-Lee and ARCH) have also been 
presented the table 7 with the estimation of this model.  
 

Table 7. Estimating ARFIMA-FIGARCH Model Results 
Mean Equation 

Variables Coefficient Standard Error T-Statistic Probability 
C 0.002 0.0008 2.56 0.010 
d-ARFIMA 0.18 0.014 12.85 0.000 
AR(1) 0.28 0.073 3.93 0.000 
MA(1) -0.09 0.008 -12.09 0.000 
MA(2) -0.11 0.016 -6.47 0.000 
Dummy(1) 0.06 0.009 6.16 0.000 
Dummy(2) 0.04 0.005 7.84 0.000 

Variance Equation 
Variables Coefficient Standard Error T-Statistic Probability 
C 1.94 0.776 2.51 0.006 
d-FIGARCH 0.31 0.031 10.06 0.000 
ARCH 0.56 0.259 2.19 0.028 
GARCH 0.75 0.154 4.85 0.000 
Log likelihood 1891.932 Box- Ljung  Q(10) 12.06 (0.098) 
Akaike -7.334374 McLeod-Li  Q2(10) 4.87 (0.771) 
Schwarz -7.258863 ARCH(10) 0.0031 (0.955) 

Source: The Findings of the Study 
 

According to the Table 7, there are some points worth mentioning. First of all, the dummy 
variables introduced in the mean equation of the above model indicate the existence of unusual shocks 
to the time series under investigation. Furthermore, in the model under investigation all the coefficients 
(except the constant) are significant at .95 level of confidence. The results of Liang-Box test show no 
sign of serial correlation in the residuals of this model. The existence of heteroskedasticity variables in 
the residuals was also negated based on the results from McLeod-Lee and ARCH test.  

 
4. Conclusions and Implications  

The present study evaluated different models (both fractal and non-fractal) for modeling 
volatilities of the TSE index. Accordingly, first of all the existence of long memory feature in this 
series was considered and on this basis, the existence of the long memory feature was confirmed in 
the return and volatility of the stock, and, consequently, ARFIMA(1,0.14,2) model was selected as the 
best explainer of the behavior of mean equation. Then the conditional heteroskedasticity was tested 
and modeled (and confirmed) in different mean equations with long memory. The results of this study 
confirmed the existence of the long memory feature in the In the mean and variance equation of the 
mentioned series and finally ARFIMA(1,2)-FIGARCH(BBM) model was selected as the best. Based 
on the findings, the behavior of the stock index has modeling capability and, accordingly, the Efficient 
market Hypothesis about it will be rejected. On the other hand, due to the existence of long memory 
property in both return and volatility indices, Fractal Market Hypothesis is confirmed about it and it 
can be concluded that nonlinear models and those dealing with long memory have higher level of 
forecasting accuracy in comparison with their counterparts.  

Some suggestions can also be made based on the results. One is that as regards the existence 
of long memory feature in Tehran Stock Exchange Price Index return, paying attention to this fact can 
help improve the results of modeling and consequently economic predictions because this feature 
suggests that although the current shocks will have their effects at that very time or at the most with a 
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small delay, a remarkable part of these shocks can influence the behavior of the time series with such 
feature in the future; therefore, as it was confirmed in this study and in many other studies, taking this 
feature into account will lead to improved performance in the models; investors and decision-makers 
in the financial markets and macro-economy can be informed about this finding. Secondly, 
considering hybrid models have become very popular during the recent years, the claim that 
‘combining the complicated (nonlinear) methods and the issue of long memory feature can yield better 
results’ can be further investigated in future studies. Finally, the use of these models in other volatile 
markets can also be tested and investigated.  
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