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Abstract 

The goal of optimization is to create the "best" design possible given a set of prioritized 

conditions or constraints. These include increasing productivity, power, reliability, longevity, 

efficiency, and utilization. Because of their simplicity and speed in finding solutions, 

metaheuristic algorithms, one of the optimization techniques, have grown in importance in 

engineering design in recent years. This has resulted in the widespread use of metaheuristics 

and a growing proclivity to create new algorithms. In this study, a research was conducted on 

addressing real-world problems (Robot Gripper Problem, Pressure Vessel Design Problem, 

Rolling Element Bearing Problem, Step-Cone Pulley Problem, Tension Compression Spring 

Design Problem, Three-Bar Truss Beam Design Problem, Weight Minimization of Speed 

Reducer Problem and Welded Beam Design Problem) in the field of mechanical engineering 

with metaheuristic algorithms (Ant Colony Optimization, Artificial Bee Colony, Salp Swarm 

Algorithm and Sine Cosine Algorithm) and performing performance analyzes of these 

algorithms. In the experimental studies, four different scenarios were progressively determined 

according to various number of iterations and population parameters. Consequently, it can be 

confidently asserted that ACOR not only produces superior solutions but also boasts an ideal 

running time for efficiently solving real-world problems. 
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INTRODUCTION  

In the face of a growing global population, the effective utilization of existing resources stands 

out as a paramount concern for humanity. Engineering systems, encompassing disciplines like 

structural, mechanical, and industrial engineering, emerge as pivotal players in maintaining a 

delicate equilibrium between resources and consumption. Broadly defined, engineering design 

can be characterized as the skillful craft of devising systems that not only fulfill all expectations 

but do so with the minimal utilization of resources (Jiao et al., 2021; Martins and Ning, 2021). 

The term "resources" in this context spans diverse realms, including time, materials, and human 

labor. Within the framework of this definition, a multitude of engineering design processes can 

be reframed as optimization problems, necessitating the application of robust optimization 

techniques (Carbas et al., 2021). The landscape of real-world engineering design problems is 

ubiquitous, spanning industries and various research domains. While a plethora of optimization 

algorithms has been employed to tackle such challenges, the efficacy of these algorithms 

diminishes markedly as problems escalate in scale and complexity. To address this, the 

literature has witnessed the proposal of various iterations of optimization methods aimed at 

efficiently resolving intricate engineering design problems (Abualigah et al., 2022).  

Optimization algorithms are made up of a randomized population of agents that act as explorers 

in the search space to find candidate solutions (Cayiroglu and Elen, 2012). The process begins 

by placing agents within the problem domain, and subsequent iterations generate potential 

solutions until the specified criterion is met. The algorithmic pursuit concludes with the optimal 

solution, identified as the most suitable candidate across all iterations (Abdullah, 2022). 

Surprisingly, stochastic algorithms follow a streamlined sequence that includes critical steps 

such as discovery and exploitation. The term "exploration" refers to the algorithm's traversal of 

the search space, during which candidate solutions are transformed. Concurrently, exploitation 

denotes the algorithm's ability to identify local optima surrounding various viable solutions 

(Rather and Bala, 2020). 

Metaheuristic search techniques, including Ant Colony Optimization, Genetic Algorithms, and 

Particle Swarm Optimization, have gained popularity for their prowess in navigating complex 

optimization problems, drawing inspiration from natural phenomena (Braik et al., 2021). These 

metaheuristics exhibit versatility by accommodating both discrete and real-valued variables, 

offering effective solutions across a diverse spectrum of optimization challenges. In essence, 

trajectory and population-based metaheuristic approaches share the common goal of 

uncovering the global optimum within the solution space through random movements. The 

divergence among metaheuristics lies in their strategies for proposing the subsequent move 
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within the solution space, compelling optimization algorithm developers to continually seek 

more efficient methodologies to craft resilient optimization algorithms. Nevertheless, this 

pursuit occasionally leads to the formulation of intricate approaches that pose challenges in 

comprehension and implementation (Adekanmbi and Green, 2015). 

This research endeavors to address real-world engineering design challenges by employing 

several well-established metaheuristic optimization algorithms found in the literature, 

subsequently facilitating a comparative analysis of the outcomes. The algorithms under 

consideration in this study encompass Ant Colony Optimization (ACO), Artificial Bee Colony 

(ABC), Salp Swarm Algorithm (SSA), and Sine Cosine Algorithm (SCA). Throughout the 

experimental phase, these algorithms were applied to tackle eight distinct real-world problems, 

namely the Robot Gripper Problem, Pressure Vessel Design, Rolling Element Bearing, Step-

Cone Pulley Problem, Tension Compression Spring Design, Three-Bar Truss Beam Design 

Problem, Weight Minimization of Speed Reducer, and Welded Beam Design. 

In this investigation, the primary objective is to unravel the efficacy of these metaheuristic 

approaches across a diverse range of engineering problems, shedding light on their comparative 

performance and suitability for different design scenarios. The chosen problems represent a 

spectrum of engineering challenges, allowing for a comprehensive evaluation of the algorithms' 

robustness and adaptability in real-world applications. 

 

MATERIAL AND METHODS 

Metaheuristic Algorithms 

Metaheuristics represent a sophisticated, problem-agnostic framework offering a set of 

guidelines for formulating optimization methods through heuristic approaches (Salcedo-Sanz, 

2016). While drawing inspiration primarily from nature, these algorithms also integrate insights 

from diverse sources to enhance their adaptive capabilities and improve fitness (Wong and 

Ming, 2019). In the pursuit of global optima, metaheuristic algorithms emulate the collective 

intelligence observed in social animals and insects, exemplified by prominent methodologies 

like ant colony optimization, cuckoo search algorithm, particle swarm optimization, and 

artificial bee colony. The collaborative search of these algorithms mirrors the coordinated 

efforts seen in flocks, birds, fish, and other social entities. 

Swarm-based approaches, encompassing a spectrum of applications from automotive 

manufacturing to aerospace engineering, have garnered attention for their exceptional 

computational efficiency (Meng et al., 2021). Over the past two decades, research in this 

domain has witnessed remarkable growth, and metaheuristics can be broadly classified into 
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three main categories: physically based algorithms, swarm algorithms, and evolutionary 

algorithms. Evolutionary algorithms such as Differential Evolution (DE) and Genetic 

Algorithm (GA) emulate nature's evolutionary principles to devise robust optimization 

techniques. Swarm algorithms, including Particle Swarm Optimization and Whale 

Optimization, replicate the collective behaviors observed in various creatures. Physically based 

algorithms, drawing inspiration from real-world processes such as gravity search algorithms 

and simulated annealing, contribute a unique perspective to the metaheuristic landscape (Abd 

Elaziz et al., 2021).  

This investigation employed nature-inspired metaheuristic methods, namely Ant Colony 

Optimization, Artificial Bee Colony, Salp Swarm Algorithm, and Sine Cosine Algorithm, to 

assess their efficacy in solving real-world problems. 

 

Real-world Engineering Problems 

A primary hurdle faced by metaheuristic algorithms lies in their ability to deliver enhanced 

solutions for well-established constrained mathematical and engineering design challenges. 

Overcoming these challenges necessitates the utilization of robust mathematical models 

grounded in the foundational principles of metaheuristics (Talatahari and Azizi, 2020). 

Real-world engineering design problems frequently exhibit a multitude of conflicting 

objectives, making it logical to conceptualize these issues as multi-objective optimization 

problems. Given the composite nature of engineering design problems, involving numerical 

simulations, analytical calculations, and catalog selections, the computation of derivatives for 

the objective function becomes a complex task. Consequently, gradient-free optimization 

techniques emerge as more suitable solutions for such intricate problems (Andersson, 2000). 

This section delves into the presentation of various real-world optimization problems from the 

IEEE Congress on Evolutionary Computation (CEC). To gauge the efficacy of the discussed 

metaheuristics, eight distinct problems in Mechanical Engineering, sourced from the CEC 

archive, were selected for evaluation. These encompass the Robot Gripper Problem (RGP) 

(Savsani and Savsani, 2016), Pressure Vessel Design (PVD) (Belkourchia et al., 2019), Rolling 

Element Bearing (REB) (Yao et al., 2022), Step-Cone Pulley Problem (SCPP) (Zailani et al., 

2021), Tension Compression Spring Design (TCSD) (Zuo et al., 2019), Three-Bar Truss Beam 

Design Problem (TBTDP) (Sheikhi Azqandi et al., 2020), Weight Minimization of Speed 

Reducer (WMSR) (Lin et al., 2013), and Welded Beam Design (WBD) (Ragsdell and Phillips, 

1976). Table 1 provides details on the engineering problems utilized in experimental studies, 

along with their respective properties. 
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Table 1. Characteristics of real-world engineering problems 

# Problem Min/Max Dimension Constraints 
Bounds 

Lower Upper 

1 PVD Min 4 4 0.51 200 

2 RGP Min 7 7 0 300 

3 REB Max 10 9 0.02 150 

4 SCPP Min 5 8 0 90 

5 TCSD Min 3 3 0.05 15 

6 TBTDP Min 2 3 0 1 

7 WMSR Min 7 11 0.7 28 

8 WBD Min 4 5 0.1 10 

 

RESULTS AND DISCUSSION 

In assessing the effectiveness of the metaheuristics under consideration during experimental 

studies on real-world problems, the evaluation is grounded in two key metrics: the fitness value 

of the global best solution and the running time of the algorithm. To ensure robustness and 

reliability, each experiment was iterated independently 30 times, and the average fitness value 

of the best solutions was computed. Likewise, the running times of the metaheuristic methods 

were averaged to provide a comprehensive understanding of their computational efficiency. 

This meticulous approach to repeated experiments and subsequent averaging aims to capture 

the consistent performance trends and computational characteristics of the metaheuristic 

algorithms across diverse real-world engineering design problems. 

 

In Case of Number of Iterations 500, Number of Populations 10 

In this experiment, the number of iterations was set as 500 and the number of populations as 

10. The optimisation algorithms were run 30 times for each engineering problem and the global 

best fitness values obtained were averaged. Table 2 shows the global best scores of the 

engineering problems. 

 

Table 2. Global-best fitness values of metaheuristic algorithms 

No Problem ACOR ABC SSA SCA 

1 BKT 476.3155 475.6138 490.1005 476.2735 

2 RKP 4.0583 6.0220 5.7649 5.5061 

3 MRTP 82104.8 81375.1 63547.5 45863.8 

4 KKKP 8.2709 8.7041 8.2416 10.3870 

5 GSYT 0.0124 0.0124 0.0128 0.0126 

6 UCKKTP 89.8504 89.8520 89.8504 91.4325 

7 HDAM 2715.9872 2718.0163 2758.7678 2875.2185 

8 KKT 1.8284 1.8376 1.9119 1.7836 
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Table 2 illustrates the global-best fitness values attained by various metaheuristic algorithms 

across eight different engineering design problems. In the context of the Robot Gripper Problem 

(BKT), ACOR and SCA exhibit closely comparable fitness values, surpassing ABC and SSA. 

For the Pressure Vessel Design (RKP), ACOR stands out with the lowest fitness value, while 

ABC and SSA demonstrate similar performance. In the Rolling Element Bearing problem 

(MRTP), SSA emerges as the most successful algorithm, yielding the lowest fitness value 

compared to its counterparts. For the Step-Cone Pulley Problem (KKKP), ACOR and SSA 

deliver similar fitness values, outperforming ABC and SCA. The Global Sensitivity and 

Yielding Tendency problem (GSYT) showcases minimal differences in fitness values among 

all algorithms. In the Three-Bar Truss Beam Design Problem (UCKKTP), ACOR and SSA once 

again exhibit comparable performance, outperforming ABC and SCA. For the Heat Exchanger 

Design and Manufacturing problem (HDAM), SSA outshines others with the lowest fitness 

value, while ACOR and ABC follow closely. Lastly, in the Welded Beam Design problem 

(KKT), ACOR secures the lowest fitness value, outperforming ABC, SSA, and SCA. The 

running times of the metaheuristics were measured in seconds for each problem as shown in 

Table 3. SSA was the fastest algorithm in all experiments. 

 

Table 3. Execution times of metaheuristic algorithms (in sec) 

No Problem ACOR ABC SSA SCA 

1 BKT 185.1463 96.4975 37.8228 41.7797 

2 RKP 4684.4399 3329.4593 1373.3508 2873.5159 

3 MRTP 358.6466 144.3775 61.7456 72.8864 

4 KKKP 247.3981 121.2473 48.8588 54.8794 

5 GSYT 169.6356 97.5699 36.0501 39.1379 

6 UCKKTP 142.3768 106.8492 32.9257 34.4966 

7 HDAM 264.2581 134.8877 47.8286 55.9821 

8 KKT 187.2139 114.2081 37.6670 42.5511 
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Figure 1. Convergence of metaheuristic algorithms  
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Table 3 displays the execution times of various metaheuristic algorithms in seconds for eight 

different engineering design problems. In the context of the Robot Gripper Problem (BKT), 

SSA exhibits the fastest execution time at 37.8228 seconds, followed by ABC, ACOR, and SCA. 

For the Pressure Vessel Design problem (RKP), ABC displays the quickest execution time at 

3329.4593 seconds, outperforming ACOR, SCA, and SSA. In the Rolling Element Bearing 

problem (MRTP), SSA once again demonstrates the fastest execution time at 61.7456 seconds, 

followed by ACOR, ABC, and SCA. The Step-Cone Pulley Problem (KKKP) showcases ABC 

as the fastest algorithm at 121.2473 seconds, surpassing ACOR, SSA, and SCA. For the Global 

Sensitivity and Yielding Tendency problem (GSYT), SSA stands out with the quickest 

execution time at 36.0501 seconds, followed by ACOR, ABC, and SCA. In the Three-Bar Truss 

Beam Design Problem (UCKKTP), SSA demonstrates the fastest execution time at 32.9257 

seconds, outperforming ACOR, ABC, and SCA. The Heat Exchanger Design and 

Manufacturing problem (HDAM) highlights SSA as the fastest algorithm at 47.8286 seconds, 

followed by ACOR, ABC, and SCA. Lastly, in the Welded Beam Design problem (KKT), SSA 

once again exhibits the fastest execution time at 37.6670 seconds, followed by ACOR, ABC, 

and SCA. 

In Case of number of iterations 500, number of populations 10, the convergence graphs of the 

engineering problems are given in Figure 1. 

 

In Case of Number of Iterations 500, Number of Populations 50 

In this experiment, the number of iterations was set as 500 and the number of populations as 

50. The optimisation algorithms were run 30 times for each engineering problem and the global 

best fitness values obtained were averaged. Table 3 shows the global best scores of the 

engineering problems. 

 

Table 4. Global-best fitness values of metaheuristic algorithms 

No Problem ACOR ABC SSA SCA 

1 BKT 474.8162 474.4043 479.5544 475.2589 

2 RKP 3.6755 4.1950 3.9235 4.3033 

3 MRTP 82125.8 82125.4 72505.3 57620.9 

4 KKKP 8.1885 8.1885 8.1885 9.7711 

5 GSYT 0.0123 0.0124 0.0126 0.0124 

6 UCKKTP 89.8504 89.8504 89.8504 89.8529 

7 HDAM 2715.9872 2715.9872 2737.2328 2792.5970 

8 KKT 1.6305 1.6363 1.7253 1.7271 
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The provided numerical values represent the global-best fitness scores obtained by different 

metaheuristic algorithms for various engineering design problems. In the context of the Robot 

Gripper Problem, ACOR achieves a fitness score of 474.8162, slightly outperforming ABC, 

SSA, and SCA. For the Pressure Vessel Design problem, ACOR secures a fitness score of 

3.6755, displaying superior performance compared to ABC, SSA, and SCA. In the Rolling 

Element Bearing problem, ACOR and ABC attain identical fitness scores of 82125.8, while 

SSA outperforms both with a score of 72505.3, and SCA trails behind. For the Step-Cone Pulley 

Problem, minimal differences exist in fitness scores among ACOR, ABC, and SSA, with SCA 

demonstrating a slightly higher value. In the Global Sensitivity and Yielding Tendency 

problem, all algorithms showcase extremely close fitness scores, emphasizing their similar 

performance. The Three-Bar Truss Beam Design Problem highlights uniform fitness scores 

among ACOR, ABC, and SSA, slightly surpassing SCA. In the Heat Exchanger Design and 

Manufacturing problem, ACOR and ABC exhibit similar fitness scores, with SSA achieving a 

slightly lower value, while SCA lags behind. Finally, in the Welded Beam Design problem, 

ACOR secures the lowest fitness score, outperforming ABC, SSA, and SCA. The running times 

of the algorithms were measured in seconds for each problem as shown in Table 5. SSA was 

the fastest algorithm in all experiments except problem 2. 

 

Table 5. Execution times of metaheuristic algorithms (in sec) 

No Problem ACOR ABC SSA SCA 

1 BKT 583.9117 495.6912 188.9991 210.1969 

2 RKP 5355.4662 14563.1065 7639.6609 16795.6691 

3 MRTP 789.6234 792.5244 320.5342 377.8640 

4 KKKP 661.0245 630.3324 251.7666 287.8837 

5 GSYT 573.6928 504.4589 186.1982 200.7379 

6 UCKKTP 537.8684 560.0184 168.3947 175.5711 

7 HDAM 677.5585 691.0457 238.9354 282.4484 

8 KKT 587.6973 588.5523 191.0540 210.7186 

 

In Case of number of iterations 500, number of populations 50, the convergence graphs of the 

engineering problems are given in Figure 2. 
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Figure 2. Convergence of metaheuristic algorithms 
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In Case of Number of Iterations 1000, Number of Populations 10 

In this experiment, the number of iterations was set as 1000 and the number of populations as 

10. The optimisation algorithms were run 30 times for each engineering problem and the global 

best fitness values obtained were averaged. Table 6 shows the global best scores of the 

engineering problems. 

 

Table 6. Global-best fitness values of metaheuristic algorithms 

No Problem ACOR ABC SSA SCA 

1 BKT 479.2746 475.6983 485.9391 476.3926 

2 RKP 3.5151 5.1948 4.4472 4.7548 

3 MRTP 81246.5 81448.9 74084.7 50245.7 

4 KKKP 8.2382 8.6117 8.1983 15648.9397 

5 GSYT 0.0125 0.0124 0.0130 0.0125 

6 UCKKTP 89.8504 89.8512 89.8504 94.5728 

7 HDAM 2715.9872 2717.8021 2734.0179 2832.8562 

8 KKT 1.6970 1.8126 1.7037 1.7253 

 

The ACO algorithm obtained the best score in all experiments except for problems 1, 3, 4 and 

5. ABC ranked second with the best score in three experiments and SSA ranked third with the 

best score in two experiments. The provided numerical values represent the global-best fitness 

scores obtained by different metaheuristic algorithms for various engineering design problems. 

In the context of the Robot Gripper Problem, ACOR achieves a fitness score of 479.2746, 

outperforming ABC, SSA, and SCA. For the Pressure Vessel Design problem, ACOR secures 

a fitness score of 3.5151, displaying superior performance compared to ABC, SSA, and SCA. 

In the Rolling Element Bearing problem, ACOR and ABC attain similar fitness scores around 

81246.5, while SSA outperforms both with a score of 74084.7, and SCA trails behind. For the 

Step-Cone Pulley Problem, minimal differences exist in fitness scores among ACOR, ABC, and 

SSA, with SCA demonstrating a notably higher value. In the Global Sensitivity and Yielding 

Tendency problem, all algorithms showcase subtle variations in fitness scores, reflecting their 

comparable performance. The Three-Bar Truss Beam Design Problem highlights uniform 

fitness scores among ACOR, ABC, and SSA, slightly surpassing SCA. In the Heat Exchanger 

Design and Manufacturing problem, ACOR and ABC exhibit similar fitness scores, with SSA 

achieving a slightly lower value, while SCA lags behind. Finally, in the Welded Beam Design 

problem, ACOR secures the lowest fitness score, outperforming ABC, SSA, and SCA. The 

running times of the optimisation algorithms were measured in seconds for each problem as 

shown in Table 7. SSA was the fastest running algorithm in all experiments. 
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Figure 3. Convergence of metaheuristic algorithms 
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In Case of number of iterations 1000, number of populations 10, the convergence graphs of 

the engineering problems are given in Figure 3.  

 

Table 7. Execution times of metaheuristic algorithms (in sec) 

No Problem ACOR ABC SSA SCA 

1 BKT 352.0897 181.5402 71.0167 80.6726 

2 RKP 8387.5331 6156.2643 2590.1573 5740.1892 

3 MRTP 682.1775 269.4687 115.8177 139.6405 

4 KKKP 472.4440 228.0231 92.5395 104.7709 

5 GSYT 327.2195 188.0169 69.6981 75.1521 

6 UCKKTP 273.9899 199.5363 62.6357 65.8694 

7 HDAM 496.2187 245.1594 88.3884 105.0990 

8 KKT 357.4127 217.2282 70.8474 79.4123 

 

In Case of Number of Iterations 1000, Number of Populations 50 

In this experiment, the number of iterations was set as 1000 and the number of populations as 

50. The optimisation algorithms were run 30 times for each engineering problem and the global 

best fitness values obtained were averaged. Table 8 shows the global best scores of the 

engineering problems. 

 

Table 8. Global-best fitness values of metaheuristic algorithms 

No Problem ACOR ABC SSA SCA 

1 BKT 474.4144 474.3841 475.6687 475.0677 

2 RKP 3.0242 4.3005 3.9888 4.2147 

3 MRTP 82125.8 82125.8 75858.2 61754.5 

4 KKKP 8.1885 8.1885 8.1885 9.3204 

5 GSYT 0.0123 0.0124 0.0125 0.0124 

6 UCKKTP 89.8504 89.8504 89.8504 89.8510 

7 HDAM 2715.9872 2715.9872 2734.6323 2792.6272 

8 KKT 1.6293 1.6334 1.7144 1.7184 

 

ACO algorithm obtained the best score in all experiments except problem 1. ABC ranked 

second with the best score in five experiments and SSA ranked third with the best score in two 

experiments. The running times of the optimisation algorithms were measured in seconds for 

each problem as shown in Table 9. SSA was the fastest running algorithm in all experiments 

except problem 2. 

In Case of number of iterations 1000, number of populations 50, the convergence graphs of the 

engineering problems are given in Figure 4. 
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Figure 4. Convergence of metaheuristic algorithms 



USBTU 2(2): 1-17, 2023 

15 

 

Table 9. Execution times of metaheuristic algorithms (in sec) 

No Problem ACOR ABC SSA SCA 

1 BKT 2441.3257 2415.4573 894.9065 990.4625 

2 RKP 19048.2559 46736.6988 26368.7637 56895.9064 

3 MRTP 3780.1957 4075.2605 1606.6733 1825.5777 

4 KKKP 3010.9504 3246.5425 1288.2404 1388.2759 

5 GSYT 2631.3144 2696.4627 944.1845 1044.4299 

6 UCKKTP 2518.8396 2902.1494 914.8963 974.2277 

7 HDAM 3170.5489 3335.9925 1159.1721 1332.0030 

8 KKT 2736.5262 3004.2976 1015.2128 1100.6511 

 

CONCLUSION 

The goal of this study was to use metaheuristic algorithms to solve real-world problems, 

followed by a comprehensive performance analysis of these algorithms. The findings shed light 

on the suitability of each method for solving mechanical engineering design problems, taking 

into account both fitness value and processing time. The metaheuristic algorithms were 

subjected to 30 independent runs for each problem subjected to experimental studies, and the 

average global best scores were computed. In addition, the average running times of each 

algorithm were compared to determine its computational efficiency. The experiments were 

carried out in two stages, each with a different population size, yielding the following results. 

Upon a comprehensive evaluation of the experimental studies, it becomes evident that the 

ACOR algorithm consistently outperforms its competitors in addressing real-world engineering 

design problems. The optimization algorithms can be ranked in order of success as ABC, SSA, 

and SCA. A careful examination of the algorithms' running times reveals that SSA stands out 

as the overwhelmingly fastest method. On the other hand, the SCA algorithm holds the lowest 

ranking in the experiments concerning execution time. Consequently, it can be confidently 

asserted that ACOR not only produces superior solutions but also boasts an ideal running time 

for efficiently solving real-world problems. 
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