
436

Turkish Journal of Engineering – 2024, 8(3), 436-446

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje

e-ISSN 2587-1366

A novel strategy to avoid local optimum: Army-inspired genetic algorithm (AIGA)

Müslüm Kilinc1 , Emrah Atılgan*2 , Cengiz Atiş 1

1 Erciyes University, Department of Civil Engineering, Türkiye, kilinc@erciyes.edu.tr; cdatis@erciyes.edu.tr
2 Eskişehir Osmangazi University, Department of Computer Engineering, Türkiye, emrah.atilgan@ogu.edu.tr

Cite this study: Kılınç, M., Atılgan, E., & Atış, C. (2024). A novel strategy to avoid local optimum: Army-inspired
genetic algorithm (AIGA). Turkish Journal of Engineering, 8 (3), 436-446

https://doi.org/10.31127/tuje.1412271

Keywords Abstract
Stochastic optimization
Evolutionary algorithm
Genetic algorithm
Army-inspired strategy
Local optima

 Objective functions of which an analytical solution is very difficult or time-consuming are
solved using stochastic optimization algorithms. Those optimization algorithms compute an
approximate solution for objective functions. For a specific search space, the objective function
might have one or more local optima along with the global optimum. When a comparison is
made among the algorithms, one optimization algorithm could be more effective than others
in finding a solution for certain objective functions. The most important factors affecting the
success of optimization algorithms are the greatness of search space and the complexity of the
objective function. Reaching the global optimum in huge search spaces is very difficult. In
complex objective functions that have many local optima or where the differences between
global optimum and local optima are very small, the probability of trapping into the local
optimum is high. Existing optimization algorithms could be improved using the search space
scanned more successfully to give a better performance. To achieve this aim, we present a
novel algorithm, called Army-Inspired Genetic Algorithm (AIGA), which is inspired from
military movement. The presented algorithm, apart from other optimization algorithms,
searches global optima effectively by dividing the entire search area into territories instead of
searching in one piece. Thus, the probability of getting trapped in a local optimum reduces and
the probability of finding the global optimum increases. The presented algorithm was tested
on well-known benchmark problems. The results shows that AIGA is more efficient algorithm
in finding the global optimum than traditional algorithms.

Research Article

Received: 31.12.2023
Revised: 27.02.2024
Accepted: 29.02.2024
Published: 05.07.2024

1. Introduction

It is known that there are many functions used in
different fields of science. Sometimes it is hard (or
impossible) to obtain the exact solution of a function's
optimum. Thus, optimization methods have been used
for approximation of optimal solutions. Many
optimization methods in the fields like engineering,
computer science, business, bioinformatics, and
statistics, etc., have been applied to obtain the optimal
solution [1]. When it is hard to achieve the exact solution
and computationally expensive, optimization methods
speed up the process. Particularly, while the optimal
solution is under investigation in a large search space,
optimization algorithms systematically search the best
solution. Based on the optimization problem, the main
aim is to minimize or maximize the objective function.

Stochastic optimization techniques are the member of
optimization methods which use random variables. The
process is started with random initial variables and

randomly searches the fitness landscape for the possible
optimal solution. Over the years, many different
algorithms and methods have been developed by
researchers for optimization [2-6]. In the following, a
brief literature review was given on the heuristic
algorithms that used in this study for comparison. Grey
Wolf Optimization (GWO) [7] is a metaheuristic inspired
by the social structure and hunting patterns of grey
wolves. GWO is particularly effective in solving
optimization problems with a continuous search space.
The algorithm emulates the organizational structure of a
wolf pack, where the most dominant members are
symbolized by alpha, beta, and delta wolves. By
iteratively updating the positions of these wolves, GWO
seeks to converge towards the optimal solution. Particle
Swarm Optimization (PSO) [8] is a swarm intelligence
technique inspired by the collective behavior of birds and
fish. In PSO, a group of particles explores a search space,
modifying their positions based on both individual and
collective experiences. The velocity of each particle is

https://dergipark.org.tr/en/pub/tuje
https://dergipark.org.tr/tr/pub/@mkilinc1
https://dergipark.org.tr/tr/pub/@e_atilgan
https://dergipark.org.tr/tr/pub/@cdatis
mailto:kilinc@erciyes.edu.tr
https://orcid.org/0000-0002-8837-3922
https://orcid.org/0000-0002-0395-9976
https://orcid.org/0000-0003-3459-329X
https://dergipark.org.tr/en/pub/tuje/issue/86022/1412271

Turkish Journal of Engineering – 2024, 8(3), 436-446

 437

adapted according to its own best-known position and
the overall best-known position of the entire swarm. This
enables effective global exploration and exploitation
during the optimization process. Firefly Algorithm (FA)
[9] draws inspiration from the natural flashing patterns
exhibited by fireflies. Fireflies are attracted to each other,
and this attraction is used as the basis for optimization.
The algorithm utilizes the brightness of fireflies to
represent the objective function values. Firefly
movements are then governed by attractive and
repulsive forces, guiding the search towards optimal
solutions in the optimization landscape. Bat Algorithm
(BA) [10] draws inspiration from the echolocation
behavior of bats. In this method, simulated bats navigate
through the exploration space by modifying both their
frequencies and loudness. The echolocation pulses
determine the proximity of bats to potential solutions.
Additionally, randomness is introduced to simulate the
foraging behavior of bats, improving the algorithm's
capacity to efficiently navigate and take advantage of the
search space. Crow Search Algorithm (CSA) [11] is based
on the social foraging behavior of crows. The algorithm
introduces multiple flocks of crows, each representing a
candidate solution. Crows share information about their
positions, allowing the algorithm to balance exploration
and exploitation. The algorithm incorporates a global
exploration strategy to discover diverse solutions and a
local exploitation mechanism for refining the search
around promising regions. Cuckoo Search (CS) [12]
draws inspiration from the reproductive habits of cuckoo
birds, which involve depositing their eggs in the nests of
different bird species, and the host birds may reject eggs
that deviate from their expected characteristics. This
rejection behavior is mimicked in the algorithm to
generate new solutions. Cuckoo Search aims to balance
exploration and exploitation by incorporating random
walks and Levy flights [13] to navigate the search space
efficiently. Flower Pollination Algorithm (FPA) [14]
draws inspiration from the pollination process in plants,
where flowers share genetic information to achieve
successful reproduction. In the algorithm, flowers
represent candidate solutions, and the pollination
process corresponds to the exchange of information
between flowers. This approach improves the
algorithm's capacity to navigate the search space and
move towards achieving optimal solutions.

One of the most powerful optimization algorithms is
Genetic Algorithms (GAs) inspired by natural selection.
GA works according to the Darwin principle: individuals
best adapted to development will survive. This
improvement is achieved through generations with
genetic operators called crossover and mutation.
Individuals newly generated using these operators are
sorted based on their fitness values, the good ones are
kept in the next generation, and those who cannot adapt
are removed from the population. Genetic algorithms are
among the most preferred search algorithms and
optimization algorithms. One of the main disadvantages
of GAs is getting trapped into local optima. Although
much work has been done to overcome this problem [15-
18], it has not yet been fully solved.

The main issue of such stochastic algorithms is
largeness search space boundaries. The narrower search

space results with more approximate solutions in less
computational time. In such algorithms, the solution can
be searched in narrower search spaces with the
clustering method, however, in this case the
computational time might be longer than as expected due
to decrease of the population size for each clustered
space. As an advantage, the clustering method prevents
being trapped with a local solution. If there is no global
optimum in a cluster, this will waste time and effort.
Moreover, assigning individuals in the population in a
non-result cluster will delay reaching the global
optimum. The proposed study utilizing modified
clustering method based on army movement strategy
prevents idle operation in search subspaces and avoids
being trapped in a local solution. Army-Inspired Genetic
Algorithm (AIGA) was adapted to the traditional genetic
algorithm. The efficiency of AIGA has been illustrated by
solving the benchmark optimization problems given in
the literature [19-20].

2. Method

The main idea of the army-inspired method is
inspired from capturing a specific area with a limited
number of soldiers. During a war, the army cannot attack
the enemy at a single point if enemy's main base is
unknown. Priority target is to locate and conquer the
headquarters of the enemy. This can be achieved by
scanning the whole enemy area. Therefore, the
commander should split the whole region into small
areas and send a certain number of pioneer soldiers
equally to gather information about the quantity and
location of the enemy soldiers and bases. Based on
feedback information from pioneer soldiers, more
soldiers are to be dispatched to the possible main base,
and less soldiers are kept at the other bases. Thus, while
fighting the main enemy in a region, the army is also on
guard against enemy threats from other regions. If a
larger enemy base is detected in another area, the army
needs to attack there by dispatching more troops
immediately.

In the proposed algorithm AIGA, each soldier
represents an individual while the army and troops
correspond to the whole population and sub-
populations, respectively. As well as greater or stronger
enemies are symbolized as the optimal points of
optimization problems and greatness of these enemies
are defined by the fitness function value. Whilst, main
enemy base is represented by global optimum point,
smaller bases correspond to local optima points. The
search space defines the whole region, and the sub-
search space represents the sub-regions where the
troops are located. The most important criterion in this
method is population number namely the number of
soldiers. Depending on the size of the number of soldiers
at present, either the entire area or only a limited area
can be conquered.

An ordinary stochastic optimization algorithm begins
with a defined search space and a certain population size.
Apart from other algorithms, the proposed algorithm,
AIGA, initiates by dividing the entire search space into
smaller sub-search spaces. Since there is no specific
information or trail available at the beginning of a search,

Turkish Journal of Engineering – 2024, 8(3), 436-446

 438

the population is partitioned equally into the sub-
populations in similar manner for the search space
partitioning. Starting from the first sub-search space to
the last sub-search space, TGA runs using the number of
generations, for each sub-search space and sub-
population. After each certain number of generations, the
sub-population sizes in each sub-search space are
determined using a roulette-wheel method based on
evaluation of the population. Since the total population
size is constant, the population in some sub-search
spaces could be increased, and some could be decreased.
Thus, the search continues with a higher population in
the sub-search space where the current optimum point
is, while in other subspaces the search continues with
less individuals. If a new current optimum point is found

in a sub-search space with a smaller number of
individuals, the majority of the population is directed
here to reach a better point in this sub-search space. An
illustration of individuals’ movement is shown in Figure
1.

In this method, depending on the present situation, it
is aimed to search in the sub-search spaces with the sub-
population instead of using all population in the entire
search space. The method aims to obtain the result in a
sub-search space which may contain the highly probable
solution. While the majority of the population searches in
one subspace, the exploration persists across other sub-
search spaces with fewer individuals to prevent
becoming confined to a local optimum. The pseudocode
code of AIGA is given with Algorithm 1 and 2.

Figure 1. Illustration of AIGA with 4-subspaces over generations.

Algorithm 1: Army-Inspired Genetic Algorithm (AIGA).

1: Set Parameters

2: Partitioning:

 All Search Space is divided into Sub-Search Spaces. (Number of Sub-Search Spaces is user-defined.)

3: Distribution:

 All Population is distributed into the sub-space searches. (Initially, equal distribution)

4: Stopping condition ← false.

5: while stopping condition==false

6: foreach search space

7: set options of population size, and initial population.

8: run Genetic Algorithm (GA) (details in Alg. 2)

9: end

10: Gathering:

 Sub-Populations come together.

11: Distribution:

12: Whole population is distributed into the sub-space searches with the Roulette Wheel Method.

 (Sub-population size of every sub-space search is determined based on current best fitness value.)

13: Check if the stopping condition is true.

14: end

Turkish Journal of Engineering – 2024, 8(3), 436-446

 439

Algorithm 2. Genetic Algorithm (GA).
1: Set Initial Population

2: Evaluation of Fitness Values

3: Sorting of Fitness Values

4: Termination criteria ← false.

5: while Termination criteria is not met

6: foreach generation (Generation Number is optional)

7: Selection: (Method is optional, Tournament, Roulette Wheel, etc.)

8: Crossover: (Method is optional, One point, two points, multi-points, arithmetic, uniform, etc.)

9: Mutation: (Mutation Rate, Population Size, Mutation Limits, etc. are optional)

10: Evaluation of Fitness Values

11: Sorting of Fitness Values

12: end

13: Check if Termination criteria is met?

14: end

3. Results

In this study, to demonstrate the success of the
proposed method, multi-modal benchmark optimization
problems that contain global and local optima have been
tested. Therefore, two-dimensional multimodal
functions having a few local optima were employed for
visuality and illustration.

When addressing an optimization challenge, various
factors come into play, influencing the algorithm's
overall performance. These parameters may vary
depending on the algorithm. For example, the success of
the conventional genetic algorithm is influenced by
various factors, including but not limited to the
population size, number of generations, selection
method, crossover method, elite population rate,
mutation rate, and mutation amount. In fact, an
optimization algorithm for two different problems may
show different performance with the same parameters
because of the nature of the stochastic search. Under this
acknowledgment, AIGA has been compared to a
traditional genetic algorithm using the same parameters
for a fair comparison. For this, Damavandi function [21],
which is well known as one of the difficult optimization
problems in the literature, and Gaussian-Like function
were chosen.

For each case study, same operators and parameters
were used in the traditional genetic algorithm and AIGA.
For instance, the tournament method was chosen for
selection operator, and the arithmetic crossover method
is chosen for crossover operator. Furthermore, the
traditional genetic algorithm and AIGA share identical
settings for parameters such as population size, number
of generations, elite population rate, mutation rate, and
total number of evaluations.

AIGA is not a new algorithm, but a novel strategy that
has not been proposed before. Processing AIGA for a
single group corresponds to running a traditional genetic
algorithm (TGA). Therefore, the sample optimization
problems were processed by increasing the number of
sub-spaces to show the effect of AIGA. Accordingly, the
results were presented on graphics and tables.

3.1 Case Study 1: Damavandi Function

As the first case study, the multi-model Damavandi

function was considered as a test function with 2-
dimensions. The equation for the Damavandi function is
given in Equation 1.

The boundaries of the defined function have been
set as 0 and 14 for each variable, 𝑥1 and 𝑥2. As seen in
Figure 2, the function has a local optimum along with the
global optimum.

Figure 2. Damavandi function.

𝑓(𝑥) = [1 − |
𝑠𝑖𝑛[𝜋(𝑥1 − 2)]𝑠𝑖𝑛[𝜋(𝑥2 − 2)]

𝜋2(𝑥1 − 2)(𝑥2 − 2)
|

5

] [2 + (𝑥1 − 7)2 + (𝑥2 − 7)2] (1)

Since the area, where the global optimum exists, has
small amplitude, the solution to be obtained from any
optimization algorithm is highly probable to be stuck in
the local optimum. For this reason, Damavandi function

is a very exceptional optimization problem to use in
comparing or testing the performance of optimization
algorithms.

Turkish Journal of Engineering – 2024, 8(3), 436-446

 440

For this optimization problem, the total number of
evaluations was set to 20,000. TGA and AIGA were
compared under different population sizes from 300 to
1800 by incrementing 100. In a similar manner, the
number of groups as a parameter of AIGA were assigned
values from 1 to 25. AIGA was run 1,000 times for each
population size and the number of groups. The results
obtained are presented by both in tabular form and the
graphs as the success rate (%) in achieving global
optimum for Damavandi function.

In Figure 3, each subplot demonstrates success rates
as percentage (y-axis) value versus the number of groups
(x-axis) at which AIGA runs at different population sizes
on Damavandi function. As seen in Figure 3, the success
rate increases (in most cases) as the number of groups
increases for each population size. When comparison
made between TGA (corresponds to 1-group AIGA) and
AIGA (2 or more groups), the increase in success of AIGA
is seen prominently as the number of groups increases.

Figure 3. Success Rates (%) vs Number of Groups for Different Population Size

Figure 4. Success rates (%) vs population size for different number of groups.

Turkish Journal of Engineering – 2024, 8(3), 436-446

 441

In Figure 4, each subplot demonstrates success rates
as percentage (y-axis) value versus the population size
(x-axis) at which AIGA runs at different numbers of
groups on Damavandi function. It can be seen in the
Figure 4; the success rate increases as population size
increases for each group number. However, the increase
in success rate here is not as much as the increase in
success rate achieved by increasing the number of
groups. In multimodal functions, it is normal to expect
that for any optimization algorithm the larger population
size the better result. Since population is distributed into
zones as in AIGA, augmenting the quantity of groups
results in a reduction of individuals within each group.
Thus, increase in population size becomes more effective
in success of finding global optimum as the number of
groups increases.

The success rates of AIGA in finding the global
optimum of the Damavandi function dependent on both

group number and population size are shown in Table 1.
As the average success rates are considered, the increase
in population size or number of groups or increase in
both result with an enhancement in the success rate of
finding global optimum. The largest group number
exhibits a success rate of 99.60 percent on average,
whereas the average success rate for the largest
population size is 60.40 percent. Namely, the number of
groups as a parameter of AIGA is much more effective
than the population size as a decisive parameter to obtain
a better success rate. While the population size for 1-
group corresponding to TGA was increased from 300 to
1800, the success rate reached 11.3 percent from 1.5
percent. Similarly, while the population size for 25-
groups of AIGA was increased from 300 to 1800, the
success rate reached 100 percent from 96.2 percent. As a
result, AIGA even in small population size performs much
better than TGA.

Table 1. Success rates (%) of AIGA for 2d Damavandi function.

Population
Size

Number of Groups
#1 #2 #4 #6 #8 #9 #10 #12 #15 #16 #20 #25 Average

300 1.5 2.0 2.3 11.2 16.3 32.2 28.3 43.2 54.6 71.9 82.0 96.2 36.8
400 2.0 2.7 4.2 12.2 24.9 37.4 31.6 51.3 59.5 82.0 86.5 98.0 41.0
500 3.1 3.5 3.6 15.1 28.3 43.6 36.7 61.1 66.1 87.5 90.5 99.7 44.9
600 3.7 4.8 3.5 17.5 29.8 51.3 37.8 66.9 75.7 90.7 94.2 99.8 48.0
700 4.3 4.1 4.3 20.2 34.1 51.1 45.5 67.2 76.4 93.6 95.8 99.8 49.7
800 5.0 5.0 5.6 20.1 35.9 56.9 49.4 71.4 81.1 94.5 97.9 99.8 51.9
900 4.0 7.2 6.5 20.8 36.9 59.6 53.7 75.1 84.6 97.4 98.1 100.0 53.7
1000 5.7 7.0 7.8 23.1 43.1 66.5 52.1 78.1 86.5 97.3 98.8 100.0 55.5
1100 5.7 5.2 8.1 22.5 43.1 64.1 56.0 81.0 89.7 97.9 99.7 100.0 56.1
1200 6.1 7.4 8.0 21.2 45.7 65.0 57.6 83.2 91.8 99.1 99.4 100.0 57.0
1300 7.1 9.4 8.1 21.0 43.5 70.9 58.3 86.5 92.1 99.6 99.7 100.0 58.0
1400 8.6 9.8 12.7 24.4 47.0 73.7 62.3 87.8 93.3 99.4 99.7 100.0 59.9
1500 9.8 11.5 9.8 24.3 42.5 75.3 61.2 87.6 92.5 99.2 99.7 100.0 59.5
1600 10.3 9.8 11.9 23.0 45.7 72.0 62.0 88.8 93.6 99.5 99.9 100.0 59.7
1700 12.4 9.8 11.5 23.0 44.4 73.0 61.4 88.7 93.7 99.6 99.8 100.0 59.8
1800 11.3 10.8 14.2 23.5 42.8 73.7 64.5 89.3 94.9 99.4 99.9 100.0 60.4
Average 6.3 6.9 7.6 20.2 37.8 60.4 51.2 75.5 82.9 94.3 96.4 99.6

Figure 5. Success rates vs population size for TGA and best number of groups of AIGA.

Turkish Journal of Engineering – 2024, 8(3), 436-446

 442

Figure 6. Success rates vs number of groups of AIGA for min. and max. population size.

In Figure 5, two lines on plot show success rates

versus population size for the TGA (AIGA; 1-group) and
AIGA; 25-groups. Success rates vs population size for
TGA and different number of groups of AIGA were shown
in subplots of Figure 2, before. Two lines on plot, one
corresponds to TGA and other one corresponds to the
best group AIGA, were selected to make comparison in
Figure 5. Although AIGA distributes the population to
different zones depending on the number of groups, it is
more successful than TGA even with a small population
size.

In Figure 6, two lines on plot show success rates
versus the number of groups for the selected minimum
and maximum population size as 300 and 1800,

respectively. TGA (AIGA; 1-group) has been shown the
lowest success rate when compared with all number of
groups in both lines.

3.2 Case Study 2: Gaussian-Like Function

As the second case study, a 2-dimensional multimodal
test function with different amplitudes and peaks
derived from the Gaussian-Like function was used. Kilinc
and Caicedo [22] derived the Gaussian function as an
example optimization problem to obtain multiple
optimal solutions. The equation for the test function is
given in Equation 2.

𝑓(𝑥) = 4𝑒
(

(−𝑥1
2−𝑥2

2)
50)

− 5𝑒
(

(−𝑥1
2−𝑥2

2)
8)

+ 2𝑒(−2(𝑥1−3)2−2(𝑥2+2)2) + 7𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

2)
− 3𝑒

(
−25(𝑥1+3)2−25(𝑥2−2)2

18)
− 4𝑒(−50(𝑥1−3)2−50(𝑥2−2)2) (2)

The function given in Equation 2 has two local minima

with higher amplitude than the global minimum at the
intervals of both variables [-5, 5]. It is known that the
smaller the amplitude of the global minimum the harder
it is to find. Therefore, the test function given in Equation
2 is very plausible for testing optimization algorithms.
The graph of the test function is shown in Figure 7.

In this case study, the maximum allowed number of
evaluations to achieve the global optimum was taken as
40,000. The population size of both TGA and AIGA were
selected as 300, 600, 900, and 1200. In a similar manner,
the number of groups as a parameter of AIGA were
selected as 1, 4, 9, and 16. AIGA was run 400 times for
each population size and the number of groups. The
results obtained are presented by both in tabular form
and the graphs as the success rate.

In Figure 8, each line on plot demonstrates success
rates as percentage (y-axis) value versus the number of
groups (x-axis) at which AIGA runs at different

population sizes on the Gaussian Like function. Plots in
Figure 8 shows that the success of AIGA is seen markedly
as the number of groups increases different population
sizes.

Figure 7. Gaussian-Like Function.

Turkish Journal of Engineering – 2024, 8(3), 436-446

 443

Figure 8. Success rates (%) vs number of groups for different population.

Figure 9. Success rtes (%) vs population size for different number of groups.

In Figure 9, each line on plot demonstrates success

rates as percentage (y-axis) value versus the population
size (x-axis) at which AIGA runs at different numbers of
groups for Gaussian like function. Lines in Fig. 10 show
that the success of both TGA (1-group AIGA) and AIGA is
enhanced as population size increases for each group
number. In the derived 2D gaussian function, the
increase in population size was seen that improved the
result. Nevertheless, an increase in the number of groups
was found to be more effective than that of population
size as concluded for Damavandi Function in case study
1. As a result, higher success rate can be achieved to

obtain global optimum by using AIGA with the same
population size instead of increasing the population size
for TGA.

The success rates of AIGA in finding global optimum
for the derived 2D Gaussian function dependent on both
number of groups and population size are shown in Table
2. In terms of success rate, the increase in population size
or number of groups or increase in both result with
higher success rate of finding global optimum. While the
average success rate for to the largest group number is
89.80 percent, the average success rate for to the largest
population size is 44.60 percent. While the population

Turkish Journal of Engineering – 2024, 8(3), 436-446

 444

size for TGA was increased from 300 to 1200, the success
rate reached 6.1 percent from 1.5 percent. Similarly,
while the population size for Group 16 of AIGA was
increased from 300 to 1200, the success rate reached
almost 100 percent from 71.9 percent. Therefore, it is
concluded that the increase in the number of groups is
much more effective than the population size to increase
the success rate. Based on the above discussion, it should
be noted that 1-group corresponds to TGA, while n-group
corresponds to AIGA which the search space is divided
into n groups, thus using AIGA means better than using
TGA to achieve finding global optima.

Table 2. Success rates (%) of AIGA for 2d Gaussian-like

function.

Population
Size

Number of Groups

#1 #4 #9 #16 Average

300 1.5 2.3 32.2 71.9 27.0

600 3.7 3.5 51.3 90.7 37.3

900 4.0 6.5 59.6 97.4 41.9

1200 6.1 8.0 65.0 99.1 44.6

Average 3.8 5.1 52.0 89.8

4. Discussion

The performance of the AIGA was tested with widely
recognized benchmark functions and compared with

existing well-known algorithms such as Grey Wolf
Optimizer (GWO) [7], Particle Swarm Optimization (PSO)
[8], Firefly Algorithm [9], Bat Algorithm [10], Crow
Search Algorithm [11], Cuckoo Search Algorithm [12],
Flower Pollination Algorithm (FPA)[14]. Comparisons
were carried out using functions with 2 and 30
dimensions having a significant search space size
difference. For optimization, complex functions with
different mathematical characteristics were selected. For
instance, Damavandi function is continuous,
differentiable, non-scalable and multimodal, Schwefel
function is continuous, differentiable, scalable and has
many local optima, Griewank function is continuous,
differentiable, non-separable and has many local optima,
Rosenbrock function is continuous, differentiable, non-
separable and unimodal.

Firstly, Damavandi, Griewank, Schwefel, Rosenbrock,
and Gaussian functions set to two dimensions shown in
Table 3 were run 30 times with below algorithms.

The average and standard deviation of the obtained
results for each function and algorithm were presented
in the Table 3. Damavandi and Gaussian functions have
been studied in detail above in the success of AIGA over
TGA. In comparison to other algorithms, it is understood
from the evaluation of average and standard deviation
results (Table 4) that AIGA performs mostly better in
capturing the global optimum.

Table 3. Benchmark functions used for 2-dimension experiments.
Function Equation dim Range 𝑓𝑚𝑖𝑛

Damavandi 𝑓(𝑥) = [1 − |
𝑠𝑖𝑛[𝜋(𝑥1 − 2)]𝑠𝑖𝑛[𝜋(𝑥2 − 2)]

𝜋2(𝑥1 − 2)(𝑥2 − 2)
|

5

] [2 + (𝑥1 − 7)2 + (𝑥2 − 7)2] 2 [0,14] 0

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

400
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 2 [-600,600] 0

Schwefel 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖

𝑑

𝑖=1

sin (√|𝑥𝑖|) 2 [-512, 512] 0

Rosenbrock 𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 2 [-5,5] 0

Gaussian 𝑓(𝑥) = 4𝑒
(

(−𝑥1
2−𝑥2

2)
50

)
− 5𝑒

(
(−𝑥1

2−𝑥2
2)

8
)

+ 2𝑒(−2(𝑥1−3)2−2(𝑥2+2)2) + 7𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

2
)

− 3𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

18
)

− 4𝑒(−50(𝑥1−3)2−50(𝑥2−2)2)

2 [-5,5] 0

Table 4. Comparison of algorithms for selected benchmark functions (dim = 2).

Lastly, Griewank, Schwefel, Rastrigin, Michalewicz

and Styblinski-Tang functions set to thirty dimensions
shown in the Table 5 were run 30 times with below
algorithms as made above.

The mean and the variability of the obtained results

for each function defined in a much larger search space,
and for each algorithm are shown in Table 6. Likewise,
AIGA outperformed over the other algorithms in case of

 Function

Algorithm

Damavandi Griewank Schwefel Rosenbrock Gaussian

Avg Std Avg Std Avg Std Avg Std Avg Std

AIGA 0.6667 0.9589 0.0000 0.0000 0.0000 0.0000 0.0093 0.0162 -2.6560 0.0000

GWO 1.8674 0.5047 0.0025 0.0035 3.9491 21.6237 0.0650 0.2179 -2.6008 0.3023

PSO 1.9333 0.3651 0.0003 0.0013 3.9480 21.6238 33.2036 140.0460 -2.6560 0.0000

Firefly 1.9552 0.2452 0.0019 0.0031 68.5925 46.6370 55.0196 74.5664 -1.5939 0.3217

BAT 1.9747 0.3066 0.3271 0.2342 24.9053 38.2936 642.8919 518.1514 -1.4556 0.3472

Crow S. 1.6735 0.6231 0.0003 0.0003 0.0000 0.0000 0.0096 0.0151 -2.6560 0.0000

Cuckoo S. 0.2000 0.6103 0.0009 0.0012 0.0002 0.0003 1.5223 1.3912 -2.6560 0.0001

FPA 0.4811 0.7417 0.0076 0.0036 0.2090 0.2028 8.3209 6.8515 -2.6278 0.0271

Turkish Journal of Engineering – 2024, 8(3), 436-446

 445

significantly larger (higher dimension) search space as
well. The large differences in average values and
standard deviation seen in Table 6 indicate that other
algorithms are trapped more on local optima.

This proposed method is more effective in many
engineering problems where the number of variables is

high and a definitive result cannot be achieved, and in
problems where there is a possibility of getting stuck in a
local result. Planar and space truss structures
optimization can be given as an example of concrete
engineering problems in these studies.

Table 5. Benchmark functions used for 30-dimension experiments.

Function Equation dim Range 𝑓𝑚𝑖𝑛

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

400
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 30 [-600,600] 0

Schwefel 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖

𝑑

𝑖=1

sin (√|𝑥𝑖|) 30 [-512, 512] 0

Rastrigin 𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 30 [-5.12, 5.12] 0

Michalewicz 𝑓(𝑥) = − ∑ sin(𝑥𝑖) sin2𝑚 (
𝑖𝑥𝑖

2

𝜋
)

𝑑

𝑖=1

 30 [0, 𝜋] -1.8013

Styblinski-Tang 𝑓(𝑥) =
1

2
∑(𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖)

𝑑

𝑖=1

 30 [-5,5] -39.16599d

Table 6. Comparison of algorithms for selected benchmark functions (dim = 30).

Function

Algorithm

Griewank Schwefel Rastrigin Michalewicz Styblinski-Tang

Avg Std Avg Std Avg Std Avg Std Avg Std

AIGA 0.0090 0.0027 94.7817 99.0926 0.0117 0.0068 -29.5855 0.0322 -1174.9822 0.0009

GWO 0.0025 0.0047 5933.4899 795.9782 2.1056 3.3369 -17.1622 3.5241 -1017.4006 50.0187

PSO 0.0094 0.0103 5605.3116 665.5943 41.5892 16.2007 -26.6819 0.9912 -1035.9739 31.9540

Firefly 0.0298 0.0161 9236.3183 393.6007 18.7905 9.5962 -17.7670 2.0266 -750.5202 0.1449

BAT 185.3600 51.3961 4862.3753 4673.7892 319.2250 24.9510 -8.3810 0.7271 -669.7952 46.0701

Crow S. 0.8102 0.1110 5374.9974 684.3050 8.2851 6.5580 -19.2515 1.9559 -1012.5750 27.0560

Cuckoo S. 19.0544 3.0362 4273.5146 159.2521 146.1697 9.0925 -16.1591 0.5792 -969.3548 12.0875

FPA 155.0082 22.9206 6322.0616 186.1977 256.9353 9.6748 -11.7977 0.3635 -765.4912 18.3458

5. Conclusion

In this study, a new strategy proposed to be used for
optimization algorithms. The new strategy has been
tested on a genetic algorithm and aim was achieved by
overcoming the problem of trapping the local optimum.
In other words, the proposed method AIGA is not a new
algorithm, rather is a new methodology that can be used
in any optimization algorithm. Similar problems exist in
other optimization algorithms such as trapping local
optimum and premature convergence problems in
genetic algorithms. By employing this suggested
approach, exploration will persist across all regions
within the search space, ensuring that the quest for the
global optimum point extends to the majority of the
population.

The performance of AIGA is verified using different
optimization problems revealing the weakness of TGA in
the case studies. For optimization problems, 2-
dimensional multimodal Damavandi and Gaussian-Like
functions having very small amplitude of global optimum
and particularly local optima with larger amplitude have
been selected. Finding the global optimum in stochastic
optimization algorithms poses a significant challenge due
to the low likelihood or difficulty in escaping local
optima. The success of AIGA regardless of the precision
of the result has been tested by observing if it reaches the

global optimum in case studies. When validating case
studies, consistency was maintained across all
parameters and operators for both TGA and AIGA, with a
fixed number of fitness function evaluations. In this
context, detailed conclusions have been acquired as
below:

In general, the probability of finding the global
optimum increases as an increase in population size. In
the proposed algorithm AIGA, even with fixed population
size, the probability of reaching the global optimum
significantly increases much more as the number of
groups increases. It has been concluded that the increase
in the number of groups is more effective than the
increase in population size, thus AIGA is superior to TGA.
Based on the results of this study, it can be stated that this
approach can also be applied to improve other similar
optimization algorithms.

Author contributions

Muslum Kilinc: Conceptualization, Software,
Methodology, Validation, Writing-Original draft
preparation. Emrah Atilgan: Methodology, Validation,
Writing-Original draft preparation. Cengiz
Atis: Validation, Writing-Reviewing and Editing.

Turkish Journal of Engineering – 2024, 8(3), 436-446

 446

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Atilgan, E., & Hu, J. (2018). First-principle-based
computational doping of SrTiO 3 using combinatorial
genetic algorithms. Bulletin of Materials Science,
41(1), 1. https://doi.org/10.1007/s12034-017-
1515-9

2. S., V. C. S., & S., A. H. (2022). Nature inspired meta
heuristic algorithms for optimization
problems. Computing, 104(2), 251-269.
https://doi.org/10.1007/s00607-021-00955-5

3. Fister Jr, I., Yang, X. S., Fister, I., Brest, J., & Fister, D.
(2013). A brief review of nature-inspired algorithms
for optimization. Neural and Evolutionary
Computing, 80(3), 116-122.
https://doi.org/10.48550/arXiv.1307.4186

4. Darwish, A. (2018). Bio-inspired computing:
Algorithms review, deep analysis, and the scope of
applications. Future Computing and Informatics
Journal, 3(2), 231-246.
https://doi.org/10.1016/j.fcij.2018.06.001

5. Yang, X. S. (2020). Nature-inspired optimization
algorithms: Challenges and open problems. Journal of
Computational Science, 46, 101104.
https://doi.org/10.1016/j.jocs.2020.101104

6. Stork, J., Eiben, A. E., & Bartz-Beielstein, T. (2022). A
new taxonomy of global optimization algorithms.
Natural Computing, 21(2), 219-242.
https://doi.org/10.1007/s11047-020-09820-4

7. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey
wolf optimizer. Advances in Engineering Software,
69, 46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007

8. Kennedy, J., & Eberhart, R. (1995). Particle swarm
optimization. In Proceedings of ICNN'95-
International Conference on Neural Networks, 4,
1942-1948.
https://doi.org/10.1109/ICNN.1995.488968

9. Yang, X. S. (2010). Nature-inspired metaheuristic
algorithms. Luniver press.

10. Yang, X. S., & Hossein Gandomi, A. (2012). Bat
algorithm: a novel approach for global engineering
optimization. Engineering Computations, 29(5), 464-
483. https://doi.org/10.1108/02644401211235834

11. Askarzadeh, A. (2016). A novel metaheuristic method
for solving constrained engineering optimization
problems: crow search algorithm. Computers &
Structures, 169, 1-12.
https://doi.org/10.1016/j.compstruc.2016.03.001

12. Yang, X. S., & Deb, S. (2009). Cuckoo search via Lévy
flights. In 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC), 210-214.
https://doi.org/10.1109/NABIC.2009.5393690

13. Chechkin, A. V., Gonchar, V. Y., Klafter, J., & Metzler, R.
(2006). Fundamentals of Lévy flight
processes. Fractals, Diffusion, and Relaxation in
Disordered Complex Systems: Advances in Chemical
Physics, Part B, 439-496.

14. Yang, X. S. (2012). Flower pollination algorithm for
global optimization. In International Conference on
Unconventional Computing and Natural
Computation, 7445, 240-249.
https://doi.org/10.1007/978-3-642-32894-7_27

15. Rocha, M., & Neves, J. (1999). Preventing premature
convergence to local optima in genetic algorithms via
random offspring generation. In Multiple Approaches
to Intelligent Systems: 12th International Conference
on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems IEA/AIE-
99, Cairo, Egypt, May 31-June 3, 1999. Proceedings 12,
127-136. https://doi.org/10.1007/978-3-540-
48765-4_16

16. Dang, D. C., Friedrich, T., Kötzing, T., Krejca, M. S.,
Lehre, P. K., Oliveto, P. S., ... & Sutton, A. M. (2017).
Escaping local optima using crossover with emergent
diversity. IEEE Transactions on Evolutionary
Computation, 22(3), 484-497.
https://doi.org/10.1109/TEVC.2017.2724201

17. Doerr, B. (2020). Does comma selection help to cope
with local optima?. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference,
1304-1313.
https://doi.org/10.1145/3377930.3389823

18. Oliveto, P. S., Paixão, T., Pérez Heredia, J., Sudholt, D.,
& Trubenová, B. (2018). How to escape local optima
in black box optimisation: when non-elitism
outperforms elitism. Algorithmica, 80, 1604-1633.
https://doi.org/10.1007/s00453-017-0369-2

19. Sharma, P., & Raju, S. (2024). Metaheuristic
optimization algorithms: A comprehensive overview
and classification of benchmark test functions. Soft
Computing, 28(4), 3123-3186.
https://doi.org/10.1007/s00500-023-09276-5

20. Cheng, R., Li, M., Tian, Y., Xiang, X., Zhang, X., Yang, S.,
... & Yao, X. (2018). Benchmark functions for the
cec'2018 competition on many-objective
optimization.

21. Deb, L. (1993). Multimodal deceptive
functions. Complex Systems, 7, 131-153.

22. Kilinc, M., & Caicedo, J. M. (2019). Finding plausible
optimal solutions in engineering problems using an
adaptive genetic algorithm. Advances in Civil
Engineering, 2019(1), 7475156.
https://doi.org/10.1155/2019/7475156

© Author(s) 2024. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.1007/s12034-017-1515-9
https://doi.org/10.1007/s12034-017-1515-9
https://doi.org/10.1007/s00607-021-00955-5
https://doi.org/10.1016/j.fcij.2018.06.001
https://doi.org/10.1016/j.jocs.2020.101104
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1108/02644401211235834
https://doi.org/10.1016/j.compstruc.2016.03.001
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1007/978-3-642-32894-7_27
https://doi.org/10.1007/978-3-540-48765-4_16
https://doi.org/10.1007/978-3-540-48765-4_16
https://doi.org/10.1109/TEVC.2017.2724201
https://doi.org/10.1145/3377930.3389823
https://doi.org/10.1007/s00453-017-0369-2
https://doi.org/10.1007/s00500-023-09276-5
https://creativecommons.org/licenses/by-sa/4.0/

