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 Objective functions of which an analytical solution is very difficult or time-consuming are 
solved using stochastic optimization algorithms. Those optimization algorithms compute an 
approximate solution for objective functions. For a specific search space, the objective function 
might have one or more local optima along with the global optimum. When a comparison is 
made among the algorithms, one optimization algorithm could be more effective than others 
in finding a solution for certain objective functions. The most important factors affecting the 
success of optimization algorithms are the greatness of search space and the complexity of the 
objective function. Reaching the global optimum in huge search spaces is very difficult. In 
complex objective functions that have many local optima or where the differences between 
global optimum and local optima are very small, the probability of trapping into the local 
optimum is high. Existing optimization algorithms could be improved using the search space 
scanned more successfully to give a better performance. To achieve this aim, we present a 
novel algorithm, called Army-Inspired Genetic Algorithm (AIGA), which is inspired from 
military movement. The presented algorithm, apart from other optimization algorithms, 
searches global optima effectively by dividing the entire search area into territories instead of 
searching in one piece. Thus, the probability of getting trapped in a local optimum reduces and 
the probability of finding the global optimum increases. The presented algorithm was tested 
on well-known benchmark problems. The results shows that AIGA is more efficient algorithm 
in finding the global optimum than traditional algorithms. 
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1. Introduction  
 

It is known that there are many functions used in 
different fields of science. Sometimes it is hard (or 
impossible) to obtain the exact solution of a function's 
optimum. Thus, optimization methods have been used 
for approximation of optimal solutions. Many 
optimization methods in the fields like engineering, 
computer science, business, bioinformatics, and 
statistics, etc., have been applied to obtain the optimal 
solution [1]. When it is hard to achieve the exact solution 
and computationally expensive, optimization methods 
speed up the process. Particularly, while the optimal 
solution is under investigation in a large search space, 
optimization algorithms systematically search the best 
solution. Based on the optimization problem, the main 
aim is to minimize or maximize the objective function. 

Stochastic optimization techniques are the member of 
optimization methods which use random variables. The 
process is started with random initial variables and 

randomly searches the fitness landscape for the possible 
optimal solution. Over the years, many different 
algorithms and methods have been developed by 
researchers for optimization [2-6]. In the following, a 
brief literature review was given on the heuristic 
algorithms that used in this study for comparison. Grey 
Wolf Optimization (GWO) [7] is a metaheuristic inspired 
by the social structure and hunting patterns of grey 
wolves. GWO is particularly effective in solving 
optimization problems with a continuous search space. 
The algorithm emulates the organizational structure of a 
wolf pack, where the most dominant members are 
symbolized by alpha, beta, and delta wolves. By 
iteratively updating the positions of these wolves, GWO 
seeks to converge towards the optimal solution. Particle 
Swarm Optimization (PSO) [8] is a swarm intelligence 
technique inspired by the collective behavior of birds and 
fish. In PSO, a group of particles explores a search space, 
modifying their positions based on both individual and 
collective experiences. The velocity of each particle is 

https://dergipark.org.tr/en/pub/tuje
https://dergipark.org.tr/tr/pub/@mkilinc1
https://dergipark.org.tr/tr/pub/@e_atilgan
https://dergipark.org.tr/tr/pub/@cdatis
mailto:kilinc@erciyes.edu.tr
https://orcid.org/0000-0002-8837-3922
https://orcid.org/0000-0002-0395-9976
https://orcid.org/0000-0003-3459-329X
https://dergipark.org.tr/en/pub/tuje/issue/86022/1412271


Turkish Journal of Engineering – 2024, 8(3), 436-446 

 

  437  

 

adapted according to its own best-known position and 
the overall best-known position of the entire swarm. This 
enables effective global exploration and exploitation 
during the optimization process. Firefly Algorithm (FA) 
[9] draws inspiration from the natural flashing patterns 
exhibited by fireflies. Fireflies are attracted to each other, 
and this attraction is used as the basis for optimization. 
The algorithm utilizes the brightness of fireflies to 
represent the objective function values. Firefly 
movements are then governed by attractive and 
repulsive forces, guiding the search towards optimal 
solutions in the optimization landscape. Bat Algorithm 
(BA) [10] draws inspiration from the echolocation 
behavior of bats. In this method, simulated bats navigate 
through the exploration space by modifying both their 
frequencies and loudness. The echolocation pulses 
determine the proximity of bats to potential solutions. 
Additionally, randomness is introduced to simulate the 
foraging behavior of bats, improving the algorithm's 
capacity to efficiently navigate and take advantage of the 
search space. Crow Search Algorithm (CSA) [11] is based 
on the social foraging behavior of crows. The algorithm 
introduces multiple flocks of crows, each representing a 
candidate solution. Crows share information about their 
positions, allowing the algorithm to balance exploration 
and exploitation. The algorithm incorporates a global 
exploration strategy to discover diverse solutions and a 
local exploitation mechanism for refining the search 
around promising regions. Cuckoo Search (CS) [12] 
draws inspiration from the reproductive habits of cuckoo 
birds, which involve depositing their eggs in the nests of 
different bird species, and the host birds may reject eggs 
that deviate from their expected characteristics. This 
rejection behavior is mimicked in the algorithm to 
generate new solutions. Cuckoo Search aims to balance 
exploration and exploitation by incorporating random 
walks and Levy flights [13] to navigate the search space 
efficiently. Flower Pollination Algorithm (FPA) [14] 
draws inspiration from the pollination process in plants, 
where flowers share genetic information to achieve 
successful reproduction. In the algorithm, flowers 
represent candidate solutions, and the pollination 
process corresponds to the exchange of information 
between flowers. This approach improves the 
algorithm's capacity to navigate the search space and 
move towards achieving optimal solutions. 

One of the most powerful optimization algorithms is 
Genetic Algorithms (GAs) inspired by natural selection. 
GA works according to the Darwin principle: individuals 
best adapted to development will survive. This 
improvement is achieved through generations with 
genetic operators called crossover and mutation.  
Individuals newly generated using these operators are 
sorted based on their fitness values, the good ones are 
kept in the next generation, and those who cannot adapt 
are removed from the population. Genetic algorithms are 
among the most preferred search algorithms and 
optimization algorithms. One of the main disadvantages 
of GAs is getting trapped into local optima. Although 
much work has been done to overcome this problem [15-
18], it has not yet been fully solved. 

The main issue of such stochastic algorithms is 
largeness search space boundaries. The narrower search 

space results with more approximate solutions in less 
computational time. In such algorithms, the solution can 
be searched in narrower search spaces with the 
clustering method, however, in this case the 
computational time might be longer than as expected due 
to decrease of the population size for each clustered 
space. As an advantage, the clustering method prevents 
being trapped with a local solution. If there is no global 
optimum in a cluster, this will waste time and effort. 
Moreover, assigning individuals in the population in a 
non-result cluster will delay reaching the global 
optimum. The proposed study utilizing modified 
clustering method based on army movement strategy 
prevents idle operation in search subspaces and avoids 
being trapped in a local solution. Army-Inspired Genetic 
Algorithm (AIGA) was adapted to the traditional genetic 
algorithm. The efficiency of AIGA has been illustrated by 
solving the benchmark optimization problems given in 
the literature [19-20]. 

 

2. Method 
 

The main idea of the army-inspired method is 
inspired from capturing a specific area with a limited 
number of soldiers. During a war, the army cannot attack 
the enemy at a single point if enemy's main base is 
unknown. Priority target is to locate and conquer the 
headquarters of the enemy. This can be achieved by 
scanning the whole enemy area. Therefore, the 
commander should split the whole region into small 
areas and send a certain number of pioneer soldiers 
equally to gather information about the quantity and 
location of the enemy soldiers and bases. Based on 
feedback information from pioneer soldiers, more 
soldiers are to be dispatched to the possible main base, 
and less soldiers are kept at the other bases. Thus, while 
fighting the main enemy in a region, the army is also on 
guard against enemy threats from other regions. If a 
larger enemy base is detected in another area, the army 
needs to attack there by dispatching more troops 
immediately.  

In the proposed algorithm AIGA, each soldier 
represents an individual while the army and troops 
correspond to the whole population and sub-
populations, respectively. As well as greater or stronger 
enemies are symbolized as the optimal points of 
optimization problems and greatness of these enemies 
are defined by the fitness function value. Whilst, main 
enemy base is represented by global optimum point, 
smaller bases correspond to local optima points. The 
search space defines the whole region, and the sub-
search space represents the sub-regions where the 
troops are located. The most important criterion in this 
method is population number namely the number of 
soldiers. Depending on the size of the number of soldiers 
at present, either the entire area or only a limited area 
can be conquered. 

An ordinary stochastic optimization algorithm begins 
with a defined search space and a certain population size. 
Apart from other algorithms, the proposed algorithm, 
AIGA, initiates by dividing the entire search space into 
smaller sub-search spaces. Since there is no specific 
information or trail available at the beginning of a search, 
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the population is partitioned equally into the sub-
populations in similar manner for the search space 
partitioning. Starting from the first sub-search space to 
the last sub-search space, TGA runs using the number of 
generations, for each sub-search space and sub-
population. After each certain number of generations, the 
sub-population sizes in each sub-search space are 
determined using a roulette-wheel method based on 
evaluation of the population. Since the total population 
size is constant, the population in some sub-search 
spaces could be increased, and some could be decreased. 
Thus, the search continues with a higher population in 
the sub-search space where the current optimum point 
is, while in other subspaces the search continues with 
less individuals. If a new current optimum point is found 

in a sub-search space with a smaller number of 
individuals, the majority of the population is directed 
here to reach a better point in this sub-search space. An 
illustration of individuals’ movement is shown in Figure 
1. 

In this method, depending on the present situation, it 
is aimed to search in the sub-search spaces with the sub-
population instead of using all population in the entire 
search space. The method aims to obtain the result in a 
sub-search space which may contain the highly probable 
solution. While the majority of the population searches in 
one subspace, the exploration persists across other sub-
search spaces with fewer individuals to prevent 
becoming confined to a local optimum. The pseudocode 
code of AIGA is given with Algorithm 1 and 2. 

 

 
Figure 1. Illustration of AIGA with 4-subspaces over generations. 

 
Algorithm 1: Army-Inspired Genetic Algorithm (AIGA). 

1: Set Parameters 

2: Partitioning: 

        All Search Space is divided into Sub-Search Spaces. (Number of Sub-Search Spaces is user-defined.) 

3: Distribution: 

      All Population is distributed into the sub-space searches. (Initially, equal distribution) 

4: Stopping condition ← false. 

5: while stopping condition==false 

6:      foreach search space 

7:            set options of population size, and initial population. 

8:            run Genetic Algorithm (GA) (details in Alg. 2) 

9:      end 

10:      Gathering:  

            Sub-Populations come together. 

11:      Distribution: 

12:            Whole population is distributed into the sub-space searches with the Roulette Wheel Method. 

            (Sub-population size of every sub-space search is determined based on current best fitness value.) 

13:      Check if the stopping condition is true. 

14: end 
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Algorithm 2. Genetic Algorithm (GA). 
1: Set Initial Population 

2: Evaluation of Fitness Values 

3: Sorting of Fitness Values 

4: Termination criteria ← false. 

5: while Termination criteria is not met 

6:     foreach generation (Generation Number is optional) 

7:            Selection: (Method is optional, Tournament, Roulette Wheel, etc.) 

8:            Crossover: (Method is optional, One point, two   points, multi-points, arithmetic, uniform, etc.) 

9:            Mutation: (Mutation Rate, Population Size, Mutation Limits, etc. are optional) 

10:           Evaluation of Fitness Values 

11:           Sorting of Fitness Values 

12:     end 

13:     Check if Termination criteria is met? 

14: end 

 
3. Results  
 

In this study, to demonstrate the success of the 
proposed method, multi-modal benchmark optimization 
problems that contain global and local optima have been 
tested. Therefore, two-dimensional multimodal 
functions having a few local optima were employed for 
visuality and illustration.  

When addressing an optimization challenge, various 
factors come into play, influencing the algorithm's 
overall performance. These parameters may vary 
depending on the algorithm. For example, the success of 
the conventional genetic algorithm is influenced by 
various factors, including but not limited to the 
population size, number of generations, selection 
method, crossover method, elite population rate, 
mutation rate, and mutation amount. In fact, an 
optimization algorithm for two different problems may 
show different performance with the same parameters 
because of the nature of the stochastic search. Under this 
acknowledgment, AIGA has been compared to a 
traditional genetic algorithm using the same parameters 
for a fair comparison. For this, Damavandi function [21], 
which is well known as one of the difficult optimization 
problems in the literature, and Gaussian-Like function 
were chosen. 

For each case study, same operators and parameters 
were used in the traditional genetic algorithm and AIGA. 
For instance, the tournament method was chosen for 
selection operator, and the arithmetic crossover method 
is chosen for crossover operator. Furthermore, the 
traditional genetic algorithm and AIGA share identical 
settings for parameters such as population size, number 
of generations, elite population rate, mutation rate, and 
total number of evaluations. 

AIGA is not a new algorithm, but a novel strategy that 
has not been proposed before. Processing AIGA for a 
single group corresponds to running a traditional genetic 
algorithm (TGA). Therefore, the sample optimization 
problems were processed by increasing the number of 
sub-spaces to show the effect of AIGA. Accordingly, the 
results were presented on graphics and tables. 

 
3.1 Case Study 1: Damavandi Function 

 
As the first case study, the multi-model Damavandi 

function was considered as a test function with 2-
dimensions. The equation for the Damavandi function is 
given in Equation 1. 

The boundaries of the defined function have been 
set as 0 and 14 for each variable, 𝑥1 and 𝑥2. As seen in 
Figure 2, the function has a local optimum along with the 
global optimum. 

 

 
Figure 2. Damavandi function. 

 

𝑓(𝑥) = [1 − |
𝑠𝑖𝑛[𝜋(𝑥1 − 2)]𝑠𝑖𝑛[𝜋(𝑥2 − 2)]

𝜋2(𝑥1 − 2)(𝑥2 − 2)
|

5

] [2 + (𝑥1 − 7)2 + (𝑥2 − 7)2] (1) 

 
 

Since the area, where the global optimum exists, has 
small amplitude, the solution to be obtained from any 
optimization algorithm is highly probable to be stuck in 
the local optimum. For this reason, Damavandi function 

is a very exceptional optimization problem to use in 
comparing or testing the performance of optimization 
algorithms.  
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For this optimization problem, the total number of 
evaluations was set to 20,000. TGA and AIGA were 
compared under different population sizes from 300 to 
1800 by incrementing 100. In a similar manner, the 
number of groups as a parameter of AIGA were assigned 
values from 1 to 25. AIGA was run 1,000 times for each 
population size and the number of groups. The results 
obtained are presented by both in tabular form and the 
graphs as the success rate (%) in achieving global 
optimum for Damavandi function. 

In Figure 3, each subplot demonstrates success rates 
as percentage (y-axis) value versus the number of groups 
(x-axis) at which AIGA runs at different population sizes 
on Damavandi function.  As seen in Figure 3, the success 
rate increases (in most cases) as the number of groups 
increases for each population size. When comparison 
made between TGA (corresponds to 1-group AIGA) and 
AIGA (2 or more groups), the increase in success of AIGA 
is seen prominently as the number of groups increases.  

 
 

 
Figure 3. Success Rates (%) vs Number of Groups for Different Population Size 

 

 
Figure 4. Success rates (%) vs population size for different number of groups. 
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In Figure 4, each subplot demonstrates success rates 
as percentage (y-axis) value versus the population size 
(x-axis) at which AIGA runs at different numbers of 
groups on Damavandi function. It can be seen in the 
Figure 4; the success rate increases as population size 
increases for each group number. However, the increase 
in success rate here is not as much as the increase in 
success rate achieved by increasing the number of 
groups. In multimodal functions, it is normal to expect 
that for any optimization algorithm the larger population 
size the better result. Since population is distributed into 
zones as in AIGA, augmenting the quantity of groups 
results in a reduction of individuals within each group. 
Thus, increase in population size becomes more effective 
in success of finding global optimum as the number of 
groups increases. 

The success rates of AIGA in finding the global 
optimum of the Damavandi function dependent on both 

group number and population size are shown in Table 1. 
As the average success rates are considered, the increase 
in population size or number of groups or increase in 
both result with an enhancement in the success rate of 
finding global optimum. The largest group number 
exhibits a success rate of 99.60 percent on average, 
whereas the average success rate for the largest 
population size is 60.40 percent. Namely, the number of 
groups as a parameter of AIGA is much more effective 
than the population size as a decisive parameter to obtain 
a better success rate.  While the population size for 1-
group corresponding to TGA was increased from 300 to 
1800, the success rate reached 11.3 percent from 1.5 
percent. Similarly, while the population size for 25-
groups of AIGA was increased from 300 to 1800, the 
success rate reached 100 percent from 96.2 percent. As a 
result, AIGA even in small population size performs much 
better than TGA. 

 
Table 1. Success rates (%) of AIGA for 2d Damavandi function. 

Population 
Size  

Number of Groups   
#1 #2 #4 #6 #8 #9 #10 #12 #15 #16 #20 #25  Average 

300 1.5 2.0 2.3 11.2 16.3 32.2 28.3 43.2 54.6 71.9 82.0 96.2  36.8 
400 2.0 2.7 4.2 12.2 24.9 37.4 31.6 51.3 59.5 82.0 86.5 98.0  41.0 
500 3.1 3.5 3.6 15.1 28.3 43.6 36.7 61.1 66.1 87.5 90.5 99.7  44.9 
600 3.7 4.8 3.5 17.5 29.8 51.3 37.8 66.9 75.7 90.7 94.2 99.8  48.0 
700 4.3 4.1 4.3 20.2 34.1 51.1 45.5 67.2 76.4 93.6 95.8 99.8  49.7 
800 5.0 5.0 5.6 20.1 35.9 56.9 49.4 71.4 81.1 94.5 97.9 99.8  51.9 
900 4.0 7.2 6.5 20.8 36.9 59.6 53.7 75.1 84.6 97.4 98.1 100.0  53.7 
1000 5.7 7.0 7.8 23.1 43.1 66.5 52.1 78.1 86.5 97.3 98.8 100.0  55.5 
1100 5.7 5.2 8.1 22.5 43.1 64.1 56.0 81.0 89.7 97.9 99.7 100.0  56.1 
1200 6.1 7.4 8.0 21.2 45.7 65.0 57.6 83.2 91.8 99.1 99.4 100.0  57.0 
1300 7.1 9.4 8.1 21.0 43.5 70.9 58.3 86.5 92.1 99.6 99.7 100.0  58.0 
1400 8.6 9.8 12.7 24.4 47.0 73.7 62.3 87.8 93.3 99.4 99.7 100.0  59.9 
1500 9.8 11.5 9.8 24.3 42.5 75.3 61.2 87.6 92.5 99.2 99.7 100.0  59.5 
1600 10.3 9.8 11.9 23.0 45.7 72.0 62.0 88.8 93.6 99.5 99.9 100.0  59.7 
1700 12.4 9.8 11.5 23.0 44.4 73.0 61.4 88.7 93.7 99.6 99.8 100.0  59.8 
1800 11.3 10.8 14.2 23.5 42.8 73.7 64.5 89.3 94.9 99.4 99.9 100.0  60.4 
Average 6.3 6.9 7.6 20.2 37.8 60.4 51.2 75.5 82.9 94.3 96.4 99.6   

 

 
Figure 5. Success rates vs population size for TGA and best number of groups of AIGA. 

 



Turkish Journal of Engineering – 2024, 8(3), 436-446 

 

  442  

 

 
Figure 6. Success rates vs number of groups of AIGA for min. and max. population size. 

 
In Figure 5, two lines on plot show success rates 

versus population size for the TGA (AIGA; 1-group) and 
AIGA; 25-groups.  Success rates vs population size for 
TGA and different number of groups of AIGA were shown 
in subplots of Figure 2, before. Two lines on plot, one 
corresponds to TGA and other one corresponds to the 
best group AIGA, were selected to make comparison in 
Figure 5. Although AIGA distributes the population to 
different zones depending on the number of groups, it is 
more successful than TGA even with a small population 
size. 

In Figure 6, two lines on plot show success rates 
versus the number of groups for the selected minimum 
and maximum population size as 300 and 1800, 

respectively. TGA (AIGA; 1-group) has been shown the 
lowest success rate when compared with all number of 
groups in both lines. 

 
3.2 Case Study 2: Gaussian-Like Function 
 

As the second case study, a 2-dimensional multimodal 
test function with different amplitudes and peaks 
derived from the Gaussian-Like function was used. Kilinc 
and Caicedo [22] derived the Gaussian function as an 
example optimization problem to obtain multiple 
optimal solutions. The equation for the test function is 
given in Equation 2. 

 
 

𝑓(𝑥) = 4𝑒
(

(−𝑥1
2−𝑥2

2)
50 )

− 5𝑒
(

(−𝑥1
2−𝑥2

2)
8 )

+ 2𝑒(−2(𝑥1−3)2−2(𝑥2+2)2) + 7𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

2 )
− 3𝑒

(
−25(𝑥1+3)2−25(𝑥2−2)2

18 )
− 4𝑒(−50(𝑥1−3)2−50(𝑥2−2)2)  (2) 

 
The function given in Equation 2 has two local minima 

with higher amplitude than the global minimum at the 
intervals of both variables [-5, 5]. It is known that the 
smaller the amplitude of the global minimum the harder 
it is to find. Therefore, the test function given in Equation 
2 is very plausible for testing optimization algorithms. 
The graph of the test function is shown in Figure 7. 

In this case study, the maximum allowed number of 
evaluations to achieve the global optimum was taken as 
40,000. The population size of both TGA and AIGA were 
selected as 300, 600, 900, and 1200. In a similar manner, 
the number of groups as a parameter of AIGA were 
selected as 1, 4, 9, and 16. AIGA was run 400 times for 
each population size and the number of groups. The 
results obtained are presented by both in tabular form 
and the graphs as the success rate. 

In Figure 8, each line on plot demonstrates success 
rates as percentage (y-axis) value versus the number of 
groups (x-axis) at which AIGA runs at different 

population sizes on the Gaussian Like function. Plots in 
Figure 8 shows that the success of AIGA is seen markedly 
as the number of groups increases different population 
sizes. 

 

 
Figure 7. Gaussian-Like Function. 
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Figure 8. Success rates (%) vs number of groups for different population. 

 

 
Figure 9. Success rtes (%) vs population size for different number of groups. 

 
In Figure 9, each line on plot demonstrates success 

rates as percentage (y-axis) value versus the population 
size (x-axis) at which AIGA runs at different numbers of 
groups for Gaussian like function. Lines in Fig.  10 show 
that the success of both TGA (1-group AIGA) and AIGA is 
enhanced as population size increases for each group 
number. In the derived 2D gaussian function, the 
increase in population size was seen that improved the 
result. Nevertheless, an increase in the number of groups 
was found to be more effective than that of population 
size as concluded for Damavandi Function in case study 
1. As a result, higher success rate can be achieved to 

obtain global optimum by using AIGA with the same 
population size instead of increasing the population size 
for TGA.  

The success rates of AIGA in finding global optimum 
for the derived 2D Gaussian function dependent on both 
number of groups and population size are shown in Table 
2. In terms of success rate, the increase in population size 
or number of groups or increase in both result with 
higher success rate of finding global optimum. While the 
average success rate for to the largest group number is 
89.80 percent, the average success rate for to the largest 
population size is 44.60 percent. While the population 
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size for TGA was increased from 300 to 1200, the success 
rate reached 6.1 percent from 1.5 percent. Similarly, 
while the population size for Group 16 of AIGA was 
increased from 300 to 1200, the success rate reached 
almost 100 percent from 71.9 percent. Therefore, it is 
concluded that the increase in the number of groups is 
much more effective than the population size to increase 
the success rate. Based on the above discussion, it should 
be noted that 1-group corresponds to TGA, while n-group 
corresponds to AIGA which the search space is divided 
into n groups, thus using AIGA means better than using 
TGA to achieve finding global optima. 

 
Table 2. Success rates (%) of AIGA for 2d Gaussian-like 

function. 

Population  
Size 

Number of Groups   

#1 #4 #9 #16 Average 

300 1.5 2.3 32.2 71.9 27.0 

600 3.7 3.5 51.3 90.7 37.3 

900 4.0 6.5 59.6 97.4 41.9 

1200 6.1 8.0 65.0 99.1 44.6 

Average 3.8 5.1 52.0 89.8  
 

4. Discussion 
 

The performance of the AIGA was tested with widely 
recognized benchmark functions and compared with 

existing well-known algorithms such as Grey Wolf 
Optimizer (GWO) [7], Particle Swarm Optimization (PSO) 
[8], Firefly Algorithm [9], Bat Algorithm [10], Crow 
Search Algorithm [11], Cuckoo Search Algorithm [12], 
Flower Pollination Algorithm (FPA)[14]. Comparisons 
were carried out using functions with 2 and 30 
dimensions having a significant search space size 
difference. For optimization, complex functions with 
different mathematical characteristics were selected. For 
instance, Damavandi function is continuous, 
differentiable, non-scalable and multimodal, Schwefel 
function is continuous, differentiable, scalable and has 
many local optima, Griewank function is continuous, 
differentiable, non-separable and has many local optima, 
Rosenbrock function is continuous, differentiable, non-
separable and unimodal. 

Firstly, Damavandi, Griewank, Schwefel, Rosenbrock, 
and Gaussian functions set to two dimensions shown in 
Table 3 were run 30 times with below algorithms. 

The average and standard deviation of the obtained 
results for each function and algorithm were presented 
in the Table 3. Damavandi and Gaussian functions have 
been studied in detail above in the success of AIGA over 
TGA. In comparison to other algorithms, it is understood 
from the evaluation of average and standard deviation 
results (Table 4) that AIGA performs mostly better in 
capturing the global optimum. 

 

Table 3. Benchmark functions used for 2-dimension experiments. 
Function Equation dim Range 𝑓𝑚𝑖𝑛 

Damavandi 𝑓(𝑥) = [1 − |
𝑠𝑖𝑛[𝜋(𝑥1 − 2)]𝑠𝑖𝑛[𝜋(𝑥2 − 2)]

𝜋2(𝑥1 − 2)(𝑥2 − 2)
|

5

] [2 + (𝑥1 − 7)2 + (𝑥2 − 7)2] 2 [0,14] 0 

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

400
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 2 [-600,600] 0 

Schwefel 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖

𝑑

𝑖=1

sin (√|𝑥𝑖|) 2 [-512, 512] 0 

Rosenbrock 𝑓(𝑥) = ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑑−1

𝑖=1

 2 [-5,5] 0 

Gaussian 𝑓(𝑥) = 4𝑒
(

(−𝑥1
2−𝑥2

2)
50

)
− 5𝑒

(
(−𝑥1

2−𝑥2
2)

8
)

+ 2𝑒(−2(𝑥1−3)2−2(𝑥2+2)2) + 7𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

2
)

− 3𝑒
(

−25(𝑥1+3)2−25(𝑥2−2)2

18
)

− 4𝑒(−50(𝑥1−3)2−50(𝑥2−2)2) 

2 [-5,5] 0 

 
Table 4. Comparison of algorithms for selected benchmark functions (dim = 2). 

 
Lastly, Griewank, Schwefel, Rastrigin, Michalewicz 

and Styblinski-Tang functions set to thirty dimensions 
shown in the Table 5 were run 30 times with below 
algorithms as made above. 

 
The mean and the variability of the obtained results 

for each function defined in a much larger search space, 
and for each algorithm are shown in Table 6. Likewise, 
AIGA outperformed over the other algorithms in case of 

      Function 
 
Algorithm 

Damavandi Griewank Schwefel Rosenbrock Gaussian 

Avg Std Avg Std Avg Std Avg Std Avg Std 

AIGA 0.6667 0.9589 0.0000 0.0000 0.0000 0.0000 0.0093 0.0162 -2.6560 0.0000 

GWO 1.8674 0.5047 0.0025 0.0035 3.9491 21.6237 0.0650 0.2179 -2.6008 0.3023 

PSO 1.9333 0.3651 0.0003 0.0013 3.9480 21.6238 33.2036 140.0460 -2.6560 0.0000 

Firefly 1.9552 0.2452 0.0019 0.0031 68.5925 46.6370 55.0196 74.5664 -1.5939 0.3217 

BAT 1.9747 0.3066 0.3271 0.2342 24.9053 38.2936 642.8919 518.1514 -1.4556 0.3472 

Crow S. 1.6735 0.6231 0.0003 0.0003 0.0000 0.0000 0.0096 0.0151 -2.6560 0.0000 

Cuckoo S. 0.2000 0.6103 0.0009 0.0012 0.0002 0.0003 1.5223 1.3912 -2.6560 0.0001 

FPA 0.4811 0.7417 0.0076 0.0036 0.2090 0.2028 8.3209 6.8515 -2.6278 0.0271 
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significantly larger (higher dimension) search space as 
well. The large differences in average values and 
standard deviation seen in Table 6 indicate that other 
algorithms are trapped more on local optima. 

This proposed method is more effective in many 
engineering problems where the number of variables is 

high and a definitive result cannot be achieved, and in 
problems where there is a possibility of getting stuck in a 
local result. Planar and space truss structures 
optimization can be given as an example of concrete 
engineering problems in these studies. 

 
Table 5. Benchmark functions used for 30-dimension experiments. 

Function Equation dim Range 𝑓𝑚𝑖𝑛 

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

400
− ∏ cos (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

 30 [-600,600] 0 

Schwefel 𝑓(𝑥) = 418.9829𝑑 − ∑ 𝑥𝑖

𝑑

𝑖=1

sin (√|𝑥𝑖|) 30 [-512, 512] 0 

Rastrigin 𝑓(𝑥) = 10𝑑 + ∑[𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖)]

𝑑

𝑖=1

 30 [-5.12, 5.12] 0 

Michalewicz 𝑓(𝑥) = − ∑ sin(𝑥𝑖) sin2𝑚 (
𝑖𝑥𝑖

2

𝜋
)

𝑑

𝑖=1

 30 [0, 𝜋] -1.8013 

Styblinski-Tang 𝑓(𝑥) =
1

2
∑(𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖)

𝑑

𝑖=1

 30 [-5,5] -39.16599d 

 
Table 6. Comparison of algorithms for selected benchmark functions (dim = 30). 

Function 
       

Algorithm 

Griewank Schwefel Rastrigin Michalewicz  Styblinski-Tang  

Avg  Std Avg  Std Avg  Std Avg  Std Avg Std 

AIGA 0.0090 0.0027 94.7817 99.0926 0.0117 0.0068 -29.5855 0.0322 -1174.9822 0.0009 

GWO 0.0025 0.0047 5933.4899 795.9782 2.1056 3.3369 -17.1622 3.5241 -1017.4006 50.0187 

PSO 0.0094 0.0103 5605.3116 665.5943 41.5892 16.2007 -26.6819 0.9912 -1035.9739 31.9540 

Firefly 0.0298 0.0161 9236.3183 393.6007 18.7905 9.5962 -17.7670 2.0266 -750.5202 0.1449 

BAT 185.3600 51.3961 4862.3753 4673.7892 319.2250 24.9510 -8.3810 0.7271 -669.7952 46.0701 

Crow S. 0.8102 0.1110 5374.9974 684.3050 8.2851 6.5580 -19.2515 1.9559 -1012.5750 27.0560 

Cuckoo S. 19.0544 3.0362 4273.5146 159.2521 146.1697 9.0925 -16.1591 0.5792 -969.3548 12.0875 

FPA 155.0082 22.9206 6322.0616 186.1977 256.9353 9.6748 -11.7977 0.3635 -765.4912 18.3458 

 
5. Conclusion  
 

In this study, a new strategy proposed to be used for 
optimization algorithms. The new strategy has been 
tested on a genetic algorithm and aim was achieved by 
overcoming the problem of trapping the local optimum. 
In other words, the proposed method AIGA is not a new 
algorithm, rather is a new methodology that can be used 
in any optimization algorithm. Similar problems exist in 
other optimization algorithms such as trapping local 
optimum and premature convergence problems in 
genetic algorithms. By employing this suggested 
approach, exploration will persist across all regions 
within the search space, ensuring that the quest for the 
global optimum point extends to the majority of the 
population. 

The performance of AIGA is verified using different 
optimization problems revealing the weakness of TGA in 
the case studies. For optimization problems, 2-
dimensional multimodal Damavandi and Gaussian-Like 
functions having very small amplitude of global optimum 
and particularly local optima with larger amplitude have 
been selected. Finding the global optimum in stochastic 
optimization algorithms poses a significant challenge due 
to the low likelihood or difficulty in escaping local 
optima. The success of AIGA regardless of the precision 
of the result has been tested by observing if it reaches the 

global optimum in case studies. When validating case 
studies, consistency was maintained across all 
parameters and operators for both TGA and AIGA, with a 
fixed number of fitness function evaluations. In this 
context, detailed conclusions have been acquired as 
below: 

In general, the probability of finding the global 
optimum increases as an increase in population size. In 
the proposed algorithm AIGA, even with fixed population 
size, the probability of reaching the global optimum 
significantly increases much more as the number of 
groups increases. It has been concluded that the increase 
in the number of groups is more effective than the 
increase in population size, thus AIGA is superior to TGA. 
Based on the results of this study, it can be stated that this 
approach can also be applied to improve other similar 
optimization algorithms. 
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