
DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

Controlling the Mobile Robot with the Pure Pursuit Algorithm to Tracking the

Reference Path Sent from the Android Device

Ahmet TOP1*

1 Fırat University, Faculty of Technology, Electrical-Electronics Engineering Department, atop@firat.edu.tr, Orcid No: 0000-0001-6672-2119

Introduction

Mobile robots have been used effectively in the last

decade to perform important tasks in many fields,

including military, industrial, and security environments

[1,2]. In recent years, as more and more application areas

have been opened for robots, production efficiency has

increased, manpower has decreased and working

environments have improved [3]. There are many types

of robots and their tasks. Automating operations like

material handling in warehouses, luggage collecting at

airports, and mobile security inspection robots are

common uses for ground robots. Underwater robots are

commonly used to perform sampling, testing,

installation, maintenance, and overhaul of groundwater

environments, marine environments, and lake and river

water environments. Aerial robots are often used to

perform aerial search and rescue, search terrain data

collection, airborne remote sensing, and other tasks [4,5].

Among these, wheeled mobile robots are used in most

applications due to their many advantages such as being

fast, having high accuracy, and performing repetitive and

difficult tasks easily. These robots are divided into

holonomic and non-holonomic wheeled mobile robots.

While non-holonomic robots have 2 degrees of freedom

(DOF) linear movement in the x-axis and rotational

movement in the z-axis, holonomic robots have 3 degrees

of freedom because they can also move in the y-axis [6].

Holonomic robots are also called mechanum and omni-

wheel. Although these seem more advantageous, their

disadvantages are that they are expensive, slow, and

slippage [7]. Non-holonomic robots are generally used

with differential drive and are called differential drive

wheeled mobile robots (DDWMR). DDWMRs can be

designed as 2-wheel [8], 3-wheel [9], 4-wheel [10] or 6-

wheel [11]. 3-wheeled DDWMRs, which can be

controlled more easily thanks to their high

maneuverability, are widely used. It consists of two

motorized wheels and one caster wheel [12].

One of the most fundamental issues that need to be solved

for mobile robots to move and explore on their own in

complex environments is path planning [13]. The mobile

robot searches for an optimal or suboptimal path from the

initial state to the goal state based on certain performance

criteria. This is known as the path planning problem [14].
When used properly, path planning techniques for mobile

robots can save wear and tear as well as capital costs and

save a lot of time. Therefore, the correct choice of

navigation technique is the most important step in robot

Research Article

ARTICLE INFO

Article history:

Received 4 January2024

Received in revised form 26 February 2024

Accepted 27 February 2024

Available online 29 March 2024

Keywords:

Communication, Mobile robot,

Android application, Pure pursuit

algorithm

ABSTRACT

Many of the equipment and machines we use in our everyday lives have changed due to major

advancements in today's technology. Smartphones, which have made great progress especially in the last
decade, perform many tasks in addition to interpersonal communication. Controlling robots, which are

increasingly used in daily life and widely included in the literature, is one of these tasks. In this study, the

pure pursuit algorithm was used to control the position of a non-holonomic differential drive mobile robot,
and the path information to be tracked was received from an Android mobile device as a reference. An

application design has been carried out for Android devices. The information for the path drawn here was

transferred via the internet to a Google Spreadsheet. Coordinate information obtained from Google tables
in MATLAB was separated as x and y axis information and entered into MATLAB/Simulink as waypoints

of the pure pursuit algorithm and the position control of the robot was carried out. Error analysis was made

by taking the differences between the reference path and the actual movement and the control performance
was examined. Additionally, the effect of the approach distance value of the pure pursuit algorithm on the
error is presented.

Doi: 10.24012/dumf.1414768

* Corresponding author

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

120

path planning [15]. There are many position control

algorithms such as improved Monte Carlo, pure pursuit,

Markov, and Kalman filtering [16]. Of these, the pure

pursuit algorithm (PPA) is one of the first. In essence, it

is an algorithm that moves to a predetermined point in the

distance, concentrates on it, and then approximates its

trajectory [17].

In addition to robot design and control, information

exchange and control parameters must be sent between

the robot and the user. In simulation studies, this process

is done directly through the program. However, in

practical studies, it can be sent remotely via a computer

or a console. However, in this case, since additional

hardware is needed, it would be more appropriate to use

Android applications in terms of both reducing cost and

ease of use. Billions of people around the world use

smartphones and this number is increasing rapidly every

day. For this reason, mobile applications are preferred for

remote access in terms of ease of development. With a

single application on a device, other devices can be

efficiently managed and monitored [18]. The majority of

these devices used are devices with the Android

operating system. MIT App Inventor, which enables the

creation of application software for Android systems, is

an application originally provided by Google and now

maintained by the Massachusetts Institute of Technology

(MIT). It uses a graphical interface very similar to a

block-based visual programming language and allows

users to drag and drop visual objects to create an

application that can run on the Android system [19].
Robot control with Android applications has received a

lot of attention in the literature since Android phones and

robot studies have become more and more important in

today's world. Aktas et al. [20], in their study, controlled

the mobile robot they created with a 3D printer using Wi-

Fi and Bluetooth communication with an Android

application. Fahmidur et al. [21] controlled the robot via

Bluetooth by mirroring the Android phone screen to the

computer with the Mobizen application. Sıngporn and

Kamon [22] used the MIT App Inventor platform to

create a mobile application interface that controls a line-

following delivery robot via Bluetooth. Bingöl et al. [23]

conducted a study on Bluetooth-controlled wheelchair

control with an Android device to facilitate the lives of

disabled people. Saravanan et al. [24] studied robot

control with voice using Arduino and Android platforms.

In this study, the pure pursuit algorithm was used to

control the 3-wheeled DDWMR's position. In contrast to

the research in the literature, the algorithm input is

provided with a path rather than a few coordinate notices

where the robot is given directions to move. An Android

application that was developed was used to carry out this

path. The application interface has a coordinate system

on which the user can design the path they want the robot

to take. They can choose three different colors and the

appropriate thickness for their path. He/she can also snap

a photo of the area wishes to to go by turning on the

camera, and then use that image to design a reference

path. The x and y coordinate values of the created

reference are stored for a certain period with the Android

application and when the send button is pressed, they are

automatically transferred to the Excel table in Google

Spreadsheets, thanks to the easy sharing and real-time

editing feature [25]. Arrays were created for x and y

coordinates with these values taken from Spreadsheets in

the MATLAB program, and these values were applied to

the PPA as a waypoint in the control simulation created

in MATLAB/Simulink and the robot was controlled.

Position controls were provided by sending different

paths, and error analyses were also performed by

repeating the examinations between the reference path

sent from the device and the actual movement for

different lookahead values.

Differential drive wheeled mobile robot

In this study, a 3-wheeled mobile robot was used. While

there is a standard wheel connected to the right and left

motors, there is a caster wheel on the front of the robot

that can rotate freely and ensure the balance of the robot.

Since it is a non-holonomic robot, it has 2 DOF. For this

reason, it can move linearly in the x-axis and rotationally

in the z-axis according to the {R} coordinate, as seen in

Figure 1. The linear speeds of the right and left motors

are VR and VL, respectively, and they depend on the

radius (r) and angular speed of the wheels, as shown in

Equation 1.

𝑉𝑅 = 𝑟. 𝑤𝑅 , 𝑉𝐿 = 𝑟. 𝑤𝐿 (1)

The linear speed of the robot is the average speed of the

speeds in the x and y axes. However, since the speed of

the robot on the y-axis is zero, that is, there is no lateral

slip, the average of the right and left linear speeds gives

the linear speed of the robot as in Equation 2.

𝑉 = 𝑉𝑥 =
𝑉𝑅 + 𝑉𝐿

2
=

𝑟

2
(𝑤𝑅 + 𝑤𝐿)

(2)

The rotation of the robot occurs in a semicircle according

to the effect of the linear speed on the wheels on the

center of gravity of the mobile robot. When moving on

the circle, clockwise is negative, and counterclockwise is

positive. In this case, the angular speed of the robot is

calculated according to Equation 3.

𝑤 =
𝑉𝑅 − 𝑉𝐿

𝐿
=

𝑟

𝐿
(𝑤𝑅 − 𝑤𝐿)

(3)

If the angular velocities of the wheels are distinguished

from the equations created here, the inverse kinematic

equations in Equations 4 and 5 are obtained.

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

121

𝑤𝐿 =
1

𝑟
(𝑉 −

𝑤𝐿

2
)

(4)

𝑤𝑅 =
1

𝑟
(𝑉 +

𝑤𝐿

2
)

(5)

where w is the angular speed of the robot (rad/sec), V is

the linear speed of the robot (m/s), L is the distance

between the two wheels (m), and wL and wR are the

angular speeds of the left and right wheels (rad/sec),

respectively.

Figure 1. DDWMR motion axis

Looking at the forward kinematic equations in Equations

2 and 3, it is necessary to adjust the angular velocities of

the wheels to control the linear and angular velocities of

the robot. If the motors to which the wheels are connected

are adjusted in the opposite direction and at the same

speed, the robot goes forward or backward. If it is turned

in the same direction, the robot moves by turning right or

left.

Pure pursuit algorithm

The main purpose of position control algorithms is to

ensure that the mobile robot moves without deviating

from the path. There are many predictive, probabilistic,

and geometric-based algorithms developed for this

purpose. PPA is a geometric-based algorithm developed

in the 1980s for this purpose [26]. The basic logic of the

PPA is to determine a lookahead at which it will move,

as in humans, and to move by adjusting its speed and

orientation to the target point according to its location. It

consists of two inputs, the robot's position and target

position, and two outputs, the robot's linear and angular

speed. As seen in Figure 2, the shortest distance is

calculated according to the current position of the robot

xr, yr, and the target points given to the robot, xa and ya,

as in Equation 6. After the angle between the robot's

position and the target is calculated with Equation 7, the

algorithm determines at what linear and angular speeds

the robot will move at its output. These speed values are

converted into angular velocities for the motors with

inverse kinematic equations and this information is sent

to the motors. It reaches the final point by updating this

information during movement [27].

Figure 2. Pure Pursuit approach

𝑑 = √(𝑥𝑟 − 𝑥𝑎)2 + (𝑦𝑟 − 𝑦𝑎)2 (6)

𝜃 = 𝑎𝑡𝑎𝑛2((𝑦𝑎 − 𝑦𝑟), (𝑥𝑎 − 𝑥𝑟)) (7)

where d is the closest distance between two points, and

theta angle represents the angle between two points. The

lookahead parameter has an important place for

calculations close to the trajectory. When the lookahead

parameter is selected large, a wider-angle, smoother, and

less oscillating path is followed, as shown in Figure 3 (a).

However, in this case, since there will be a lot of

deviation from the trajectory in sharp turns, the

movement route will be longer, and undesirable long-

distance advances will occur. When the lookahead

parameter is selected small, oscillations will occur as

maneuvers will be made to each viewpoint, as shown in

Figure 3 (b). Increasing the oscillation will cause the

motors to make sudden speed changes. For these reasons,

choosing the lookahead parameter correctly for the

trajectories used will increase performance [28].

(a)

(b)

Figure 3. Use of the Lookahead parameter a) large

lookahead, b) small lookahead

R

X

A

YA

Ɵ

Castor
Wheel

{A}

wR

wL
VL

VR
YR

XR

V

{R}

w

L
Right
Wheel

Left
Wheel

d

xa

Y

A ya
Waypoint

Ɵ
Robot

yr

xr
X

A

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

122

Android application

An Android-based application has been developed to

send the reference path that the robot will follow. The

application's main screen is shown in Figure 4 (a). An

area of 10 m was created for four regions of the

coordinate plane. Here, the user has the option of by hand

or by using a stylus to draw the course he/she wishes the

robot to go. Red, blue, and green colors can be selected

with the three color buttons located under the drawing

area. When the camera button is pressed, the camera is

turned on and the photo taken is displayed in the drawing

area. In this case, the user can draw a path on the

photograph taken as in Figure 4 (b). Additionally, line

thickness can be increased or decreased with the

expansion and reduction buttons. The drawing screen can

also be cleared with the clear button. The information on

the drawn path is kept as a list in the background, as seen

in the instant x-y coordinate information window above.

When the send button at the bottom is pressed, this list is

transferred to the file created in Google Spreadsheets

with information notes in Figure 4 (c).

 (a) (b)

(c)

Figure 4. Android application main screen a) drawing on the

coordinate axis, b) drawing on the camera image c)

information share notes

As shown in the appendices, the application software can be

separated into three main parts. Those that follow:

1. Initial variables and settings are made in this

section. This is where lists, main screen settings,

and axis information beginning values are

configured.

2. The part where the button and its operations take

place. This is the section where the operations that

will take place when the buttons on the main screen

are pressed.

3. This is the part used for situations that occur at the

time of drawing. It contains the actions that will

occur when the ball moves in the drawing area.

Acquisition of data and modeling of control

There are two steps to this section of the study. As illustrated

in the workflow diagram in Figure 5, the first section involves

obtaining the data from Google Spreadsheets, assigning

reference values to arrays, and graphing the Simulink data.

Using the provided coordinate data and the simulation shown

in Figure 6, the second phase involves using the PPA.

Start

Take datas from

Google Spreadsheet

Split x and y axes from

values in table

Go to simulink

End

Adjust simulink

settings

Take robot datas from

simulink

Draw graphs

Figure 5. The process of visualizing the outcomes after

importing data from Google Spreadsheets

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

123

Figure 6. Robot control blocks in Simulink

Instant pose information taken from the robot and reference

points taken from the m-file were given as input to the PPA,

and the reference linear and angular velocities of the robot

were taken from the output. These values were converted

into right and left motor reference speeds with inverse

kinematic equations, and the motors whose blocks are given

in Figure 7 were controlled with the PID controller. The

instantaneous speed information of the motors was applied

as input to the DD block and was converted back into robot

linear and angular speed with the forward kinematic

equations in Equations 2 and 3. By multiplying these

velocities with the rotation matrix in Equation 8, the

velocities in the x and y directions and the angular velocity

were found. At the DD block output, position and angle

information was obtained by taking their integrals. Since the

robot is 2-DOF, the speed in the y direction is zero.

𝑃𝑜𝑠𝑒 = ∫ [
𝐶𝑜𝑠(𝑡𝑡) −𝑆𝑖𝑛(𝑡𝑡) 0

𝑆𝑖𝑛(𝑡𝑡) 𝐶𝑜𝑠(𝑡𝑡) 0
0 0 1

] . [
𝑉𝑥

0
𝑤

] (8)

By comparing the last reference information and location

information, the simulation was stopped with the stop block

when the desired range was reached. Robot information was

collected via the “to workspace” block and transferred to m-

file and graphs of the data were drawn.

Figure 7: Motor blocks

Implementation of Android application and PPA

Figure 8 illustrates the system's general functioning concept.

Through Wi-Fi, the data from the path painted on the

Android device was sent to Google Spreadsheets. These data

were parsed into x and y arrays after being imported into

MATLAB via Wi-Fi using a program written in an m-file.

The created coordinate data was transferred to the Simulink

program and applied as input data to the pure pursuit

algorithm. When the location control was completed, the

data was transferred back to the m-file, and graphs were

drawn. Android device and MATLAB outputs for different

reference paths are presented in Figure 9.

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

124

Google

spreadsheets

m-file

Figure 8. Block diagram of the connection between MATLAB and Android device

(a)

(b)

Figure 9. Results for different reference paths a) In the

coordinate system and b) in the camera view

Figure 10. Reference path sent for robot position control

Using the reference path shown in Figure 10, position control

was carried out for a maximum of 3 rad/s angular speed, 0.2

m/s linear speed, and 0.1 m lookahead distance. The results,

which indicate the robot position, position error, and wheel

speeds in Figure 11, were obtained.

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

125

(a)

(b)

(c)

(d)

Figure 11. DDWMR position control results: a) path

tracking, b) Path tracking error, c) left wheel velocity, d)

right wheel velocity

Analyzing the data shows that the robot followed the

reference path with a mean error of 0.0034 m and a

maximum error of 0.0113 m. The robot's left wheel followed

the reference with an angular velocity error of 1.14 rad/s and

its right wheel followed the reference with an angular

velocity error of 1.7 rad/s for the remaining states after the

inertia from the initial movement was eliminated. Figures 12

and 13 show the results for various lookahead distances and

the same reference road.

Figure 12. Position control of DDWMR for Lookahead=0.3

m

Table 1. Robot position errors according to different

lookahead distances

Lookahead

(m)

Maximum error

(m)
Mean error (m)

0.1 0.011 0.0034

0.3 0.0113 0.010

0.5 0.0644 0.0243

0.75 0.1118 0.0513

1 0.1759 0.0886

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

126

Figure 13. Position control of DDWMR for Lookahead=1 m

The largest difference between the reference path and the

actual path was 0.034 m, and the mean error was 0.010 m

when the lookahead distance was set to 0.3 m. The maximum

and mean errors for the identical scenario, where the

lookahead distance is established for 0.5 m, 0.75 m, and 1 m

values, are shown in Table 1.

As can be seen from the table, as the lookahead value

increases, the error values between the reference and actual

position values also increase since the robot follows the

reference values from a farther distance.

Conclusion

In the present study, the pure pursuit algorithm was used to

control the position of a non-holonomic robot, and an

Android application was created to ascertain the reference

path. The reference path that the robot wishes to follow in

the application created with MIT App Inventor is drawn on

the coordinate axis in the drawing area or on an image that

can be captured by the camera. Every 500 ms, the path's x

and y coordinate values were obtained and added to an array.

These coordinate data were transferred via Wi-Fi to the

previously established and configured Google Spreadsheet

when the application's send button was activated. With the

aid of code, these values which became available in Google

Spreadsheets over Wi-Fi were moved to a MATLAB m-file,

and the axes were split. These reference values were used as

waypoints in a MATLAB/Simulink using an m-file to enable

pure pursuit to control the robot's location and PID to control

its speed. The simulation's output data were imported back

into the m-file, where graphs showing the robot's position,

velocity, and error values were created. It was observed in

the study that the controllers successfully controlled the

robot's position and that the data was accurately sent from

the Android application. Furthermore, it has been observed

that as the lookahead distance increases, the robot's reference

tracking error increases. One of the study's advantages is that

reference values may be sent to the robot without the

requirement for extra equipment. Both the need for extra

modules and the Bluetooth short-range reception issue are

avoided by using the internet for communication instead of

Bluetooth. In addition, when the period time is reduced to get

more data from the drawing screen in the Android

application, errors occur because values are added to the lists

at the same time while drawing. In addition, when drawing

slowly to get more data, deviations occur in the data because

it detects different points on the finger. For this reason, 500

ms was determined as the optimum time to get more accurate

results with a fast drawing. Since the reference coordinates

are very close to each other, it moves in constant oscillation

as it changes direction at a value very close to the reference

at lookahead values below 0.1 m. Therefore, the value of 0.1

m was determined as the lower limit for this study.

Ethics Committee Approval

There is no need to obtain permission from the ethics

committee for the article prepared.

Conflict of Interest Statement

There is no conflict of interest with any person/institution in

the article prepared.

References

[1] B. Tang, Z. Zhu, and J. Luo, “Hybridizing Particle

Swarm Optimization and Differential Evolution for the

Mobile Robot Global Path Planning,” International

Journal of Advanced Robotic Systems, vol. 13, no. 3, p.

86, Jan. 2016, doi: https://doi.org/10.5772/63812.

[2] M. N. A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A

comparative review on mobile robot path planning:

Classical or meta-heuristic methods” Annual Reviews

in Control, Oct. 2020, doi: https://doi.org/ 10.1016/

j.arcontrol .2020 .10.001.

[3] S. Lin, A. Liu, J. Wang, and X. Kong, “A Review of

Path-Planning Approaches for Multiple Mobile

Robots,” Machines, vol. 10, no. 9, p. 773, Sep. 2022,

doi: https://doi.org/10.3390/machines10090773.

[4] F. Gul, I. Mir, L. Abualigah, P. Sumari, and A.

Forestiero, “A Consolidated Review of Path Planning

and Optimization Techniques: Technical Perspectives

and Future Directions,” Electronics, vol. 10, no. 18, p.

2250, Sep. 2021, doi: https://doi.org/10.3390/electro

nics10182250.

[5] C. Liu, J. Zhao, and N. Sun, “A Review of

Collaborative Air-Ground Robots Research,” Journal

of Intelligent and Robotic Systems, vol. 106, no. 3, Oct.

2022, doi: https://doi.org/10.1007/s10846-022-01756-

4.

https://doi.org/
https://doi.org/10.3390/

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

127

[6] S. Mellah, G. Graton, E. M. El Adel, M. Ouladsine and

A. Planchais, "Actuator Health State Monitoring &

Degradation Impact Study on a 4-Mecanum Wheeled

Mobile Robot Behaviour," 2021 29th Mediterranean

Conference on Control and Automation (MED),

PUGLIA, Italy, 2021, pp. 1076-1081, doi:

10.1109/MED51440.2021.9480231..

[7] Z. Sun, H. Xie, J. Zheng, Z. Man, and D. He, “Path-

following control of Mecanum-wheels omnidirectional

mobile robots using nonsingular terminal sliding

mode,” Mechanical Systems and Signal Processing,

vol. 147, p. 107128, Jan. 2021, doi:

https://doi.org/10.1016/j.ymssp.2020.107128.

[8] R. P. M. Chan, K. A. Stol, and C. R. Halkyard,

“Review of modeling and control of two-wheeled

robots,” Annual Reviews in Control, vol. 37, no. 1, pp.

89–103, Apr. 2013, doi:

https://doi.org/10.1016/j.arcontrol.2013.03.004.

[9] S. Peng and W. Shi, "Adaptive Fuzzy Output Feedback

Control of a Nonholonomic Wheeled Mobile Robot,"

in IEEE Access, vol. 6, pp. 43414-43424, 2018, doi:

10.1109/ACCESS.2018.2862163.

[10] M. Begnini, D. W. Bertol, and N. A. Martins, “A robust

adaptive fuzzy variable structure tracking control for

the wheeled mobile robot: Simulation and experimental

results,” Control Engineering Practice, vol. 64, pp. 27–

43, Jul. 2017, doi: https://doi.org/10.1016/j.

conengprac. 2017.04.006..

[11] H. Zhao, C. Luo, Y. Xu, and J. Li, "Differential

Steering Control for 6 × 6 Wheel-drive Mobile

Robot," 2021 26th International Conference on

Automation and Computing (ICAC), Portsmouth,

United Kingdom, 2021, pp. 1-6, doi:

10.23919/ICAC50006.2021.9594210.

[12] P. Petrov and V. Georgieva, "Adaptive Velocity

Control for a Differential Drive Mobile Robot," 2018

20th International Symposium on Electrical Apparatus

and Technologies (SIELA), Bourgas, Bulgaria, 2018,

pp. 1-4, doi: 10.1109/SIELA.2018.8447091.

[13] G. Klančar, A. Zdešar, and M. Krishnan, “Robot

Navigation Based on Potential Field and Gradient

Obtained by Bilinear Interpolation and a Grid-Based

Search,” Sensors, vol. 22, no. 9, p. 3295, Apr. 2022,

doi: https://doi.org/10.3390/s22093295.

[14] M. A. Contreras-Cruz, V. Ayala-Ramirez, and U. H.

Hernandez-Belmonte, “Mobile robot path planning

using artificial bee colony and evolutionary

programming,” Applied Soft Computing, vol. 30, pp.

319–328, May 2015, doi: https://doi.org/10.1016/j

.asoc. 2015.01.067.

[15] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and Z. Cao,

“Review of Autonomous Path Planning Algorithms for

Mobile Robots,”, Drones, vol. 7, no. 3, pp. 211–211,

2023, doi:https://doi.org/10.3390/drones7030 21 1.

[16] S. K., Malu, & J. Majumdar,. “Kinematics, localization

and control of differential drive mobile robot”. Global

Journal of Research In Engineering, 14(1), 1-9. 2014

[17] M. Samuel, M. Maziah, M. Hussien, and N. Y. Godi,

“Control of Autonomous Vehicle Using Path Tracking:

A Review,” Advanced Science Letters, vol. 24, no. 6,

pp. 3877–3879, Jun. 2018, doi: https://doi.org/10.1166/

asl. 2018.11502.

[18] S. Hong, “An Effıcıent Iot Applıcatıon Development

Based On Iot Knowledge Modules,” Issues In

Information Systems, 2020, doi:

https://doi.org/10.48009/3_iis_2020_72-82.

[19] E. Pasternak, R. Fenichel, and A. N. Marshall, "Tips for

creating a block language with blockly," 2017 IEEE

Blocks and Beyond Workshop (B&B), Raleigh, NC,

USA, 2017, pp. 21-24, doi:

10.1109/BLOCKS.2017.8120404.

[20] M. Aktaş, F. Polat, and M. Oflezer, “Bluetooth Ve Wifi

Kontrollü Mobil Robot Tasarımı Ve Uygulaması”, İleri

Teknoloji Bilimleri Dergisi, vol. 7, no. 3, pp. 29–35,

2018.

[21] R. K. Fahmidur, H. M. A. Munaim, S. M. Tanvir and

A. S. Sayem, "Internet controlled robot: A simple

approach," 2016 International Conference on

Electrical, Electronics, and Optimization Techniques

(ICEEOT), Chennai, India, 2016, pp. 1190-1194, doi:

10.1109/ICEEOT.2016.7754873.

[22] P., Sıngporn, & S. Kamon, “Controlling the Line

Follower Delivery Robot with MIT APP

Inventor”. Journal of Technology and Innovation in

Tertiary Education, 1(1), 9-16, 2018

[23] O. Bingöl, Ö. Aydoğan, B. Özkaya, N. Şen, “Android

Cihaz ile Tekerlekli Sandalye Kontrolü”, Afyon

Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri

Dergisi, Özel Sayı (164‐169). 2016

[24] M. Saravanan, B. Selvababu, A. Jayan, A. Anand, and

A. Raj, “Arduino Based Voice Controlled Robot

Vehicle,” IOP Conference Series: Materials Science

and Engineering, vol. 993, p. 012125, Dec. 2020, doi:

https://doi.org/10.1088/1757-899x/993/1/012125.

[25] Google Sheets features, Access Date: 01 January 2024

https://www.google.com/sheets/about/

[26] M. Samuel, M. Maziah, M. Hussien, and N. Y. Godi,

“Control of Autonomous Vehicle Using Path Tracking:

A Review,” Advanced Science Letters, vol. 24, no. 6,

pp. 3877–3879, Jun. 2018, doi:

https://doi.org/10.1166/asl. 2018.11502.

[27] G. GÜRGÜZE, & İ. TÜRKOĞLU, “Dinamik Modeli

Bilinen Diferansiyel Mobil Robotun Pure Pursuit

Algoritması İle Pozisyon Kontrolünün Yapılması”,

International Congress on HumanComputer

Interaction, Optimization and Robotic Applications,

2019

[28] -J. Wang, T. -M. Hsu and T. -S. Wu, " The improved

pure pursuit algorithm for autonomous driving

advanced system" 2017 IEEE 10th International

Workshop on Computational Intelligence and

Applications (IWCIA), Hiroshima, Japan, 2017, pp. 33-

38, doi: 10.1109/IWCIA.2017.8203557.

https://doi.org/10.1016/j
https://doi.org/10.3390/s22093295
https://doi.org/10.1016/j%20.asoc
https://doi.org/10.1016/j%20.asoc
https://doi.org/10.3390/drones7030%2021%201
https://doi.org/10.1166/
https://doi.org/10.48009/3_iis_2020_72-82
https://doi.org/10.1166/asl

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

128

Appendix

(a)

(b)

DUJE (Dicle Üniversitesi Mühendislik Dergisi) 15:1 (2024) Sayfa 119-129

129

(c)

a) Initial screen settings, b) button functions, and c) drawing area blocks

