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Abstract
In this study, it is introduced the regular Mersenne matrix operator which is obtained by using Mersenne numbers
and examined sequence spaces described as the domain of this matrix in the space of p-summable sequences
for 1≤ p≤ ∞. After that, it investigated some properties and inclusion relations, established the Schauder basis,
and stated α−, β−, and γ−duals of the aforementioned spaces. Additionally, it is characterized by the matrix
classes from newly described spaces to classical sequence spaces. Finally, we studied the compactness of
matrix operators on related sequence spaces.
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1. Introduction
Mersenne numbers, named after the French theologian, philosopher, mathematician, music theorist and priest Marin

Mersenne, who is known as the father of acoustics, in the first half of the 17th century, have an important place in number
theory and computer science. rth Mersenne number mr is stated by mr = 2r−1 with r ∈ N and N = {1,2,3, ...} and this is
called as the Binet formula of the Mersenne sequence.

The Mersenne numbers mr can be described by the recurrence relations

mr+2 = 3mr+1−2mr and
r

∑
s=1

ms = 2mr− r.

The first 10 terms of the Mersenne sequence are as follows:

1,3,7,15,31,63,127,255,511,1023 . . . .

There are prime and non-prime Mersenne numbers, and studies on Mersenne primes have held an important place in the
fields of number theory and computer science until today. It is known that if mr is prime, then r must be a prime, but the its
reverse is not true.

Now, we may give basic information about sequence spaces and summability theory. ω represents all real or complex
sequence’s space and each Γ ⊂ ω named as sequence space. The spaces `∞, c, c0 and `p (1 ≤ p < ∞) express the set
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of all bounded, convergent, null and convergent p-absolutely summable sequences’ well known spaces, respectively. The
spaces mentioned above are Banach spaces with ‖u‖`∞

= ‖u‖c = ‖u‖c0 = supr∈N |ur| and ‖u‖`p = (∑r |ur|p)
1
p , where ∑r |ur|=

∑
∞
r=1 |ur|. Moreover, every finite sequences’ space is represented by Ω and by cs, cs0 and bs, we mean the spaces of all

convergent, null and bounded series, respectively.
Banach spaces in which all coordinate functionals ts described with ts(u) = us are continuous are called BK-spaces.

Additionally, metric vector spaces in which all coordinate functionals are continuous are called FK-spaces.
Let e(1) = (1,0,0, . . .), e(2) = (0,1,0, . . .), e(3) = (0,0,1,0, . . .),. . .. If each u = (ur) ∈ Γ ⊂ ω can be expressed uniquely

as u = ∑r urer, in that case, it is said that the BK-space Γ holds the AK-property. The spaces `p (1 ≤ p < ∞) and c0 hold
AK-property however the spaces c and `∞ do not hold.

For an infinite matrix B = (brs) with real entries, Br represent the rth row for each r ∈ N. The B-transform of u = (us) ∈ ω

is described by (Bu)r = ∑s brsus provided that the series is convergent for each r ∈ N. If Bu ∈Ψ, in that case it is said that B
is a matrix transformation from Γ to Ψ for all u ∈ Γ. The class of every matrices transform Γ to Ψ is represented by (Γ : Ψ).
Matrix domain of B in Γ is described as

ΓB = {u ∈ ω : Bu ∈ Γ} . (1.1)

If Γ and Ψ are two sequence spaces, then the multiplier set D(Γ : Ψ) is described as

D(Γ : Ψ) =

{
x = (xr) ∈ ω : xu = (xrur) ∈Ψ for all (ur) ∈ Γ

}
.

In that case, α-, β - and γ-duals of Γ are described as Γα = D(Γ : `1), Γβ = D(Γ : cs) and Γγ = D(Γ : bs).
Sequences, their spaces and matrix domains have been seen as interesting topics in mathematics by the authors, and in recent

years, many studies have been done in this area. Researchers who want to get more detailed information about summability
theory, infinite matrices, sequences and their spaces, matrix domains and other related subjects can benefit from the studies
[1]-[10] and textbooks [11]-[13].

Special integer sequences have been used extensively in sequence space studies in recent years. In this context, the first
study done is the study with a tag [14] made by Başarır and Kara. After this study, some special integer sequences such as
Lucas, Padovan, Pell, Leanardo, Catalan, Bell, Schröder and Motzkin were used to define new sequence spaces in summability
theory. Researchers who want to get more detailed information about literature can benefit from the studies [15]-[25].

In parallel with the studies mentioned above, this article aims to construct a novel regular matrix operator µ obtained by the
aid of Mersenne sequence and examine sequence spaces described as the domain of µ in `p (1≤ p≤ ∞). It is investigated
algebraic and topological properties, established Schauder basis and stated α−, β− and γ−duals of the aforementioned spaces
and additionally, it is featured the matrix classes from new sequence spaces to the classical sequence spaces. At the end, it is
studied the compactness of matrix operators on related sequence spaces.

2. Mersenne Matrix Operator and Mersenne Sequence Spaces
It is described the Mersenne matrix operator generated with the help of the Mersenne numbers and it is observed that this

aforementioned matrix is regular. After that, we introduced the normed spaces `p(µ) and `∞(µ) and shown that these are
complete and linearly isomorphic to `p and `∞, respectively, for 1≤ p < ∞. Then, it is shown that except for the case p = 2,
`p(µ) is not a Hilbert space, it is established Schauder basis and to determine the location of the newly defined spaces among
the other spaces, it is given the inclusion relations at the end.

Now, we construct the Mersenne matrix operator µ = (µrs) with the help of Mersenne numbers as follows:

µrs :=


ms

2mr− r
, if 1≤ s≤ r,

0 , if s > r,

for all r,s ∈ N. The Mersenne matrix µ can be expressed more clearly in the following form:

µ :=



1 0 0 0 0 · · ·
1
4

3
4 0 0 0 · · ·

1
11

3
11

7
11 0 0 · · ·

1
26

3
26

7
26

15
26 0 · · ·

1
57

3
57

7
57

15
57

31
57 · · ·

...
...

...
...

...
. . .


.
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From its definition, we can understand that µ is a triangle. Moreover, µ-transform of a sequence u = (us) is stated as

νr := (µu)r =
1

2mr− r

r

∑
s=1

msus (r ∈ N). (2.1)

It is known that, an infinite matrix is named as regular if it maps any convergent sequence into a convergent sequence with
the same limit.

Lemma 2.1. An infinite matrix B is regular if and only if the following conditions hold:

(i) supr∈N ∑s |brs|< ∞,

(ii) limr→∞ ∑s brs = 1,

(iii) limr→∞ brs = 0.

Theorem 2.2. The Mersenne matrix µ is regular.

Proof. From the equality

∑
s
|µrs|= ∑

s
µrs =

r

∑
s=1

ms

2mr− r
= 1,

it is easily seen that the conditions (i) and (ii) hold. It is reached the validity of the condition (iii) from the equality

lim
r→∞

µrs = lim
r→∞

ms

2mr− r
= ms. lim

r→∞

1
2mr− r

= ms. lim
r→∞

1
2r+1− r−2

= 0.

Now, let us introduce the sets `p(µ) and `∞(µ) of all Mersenne p-absolutely convergent and Mersenne bounded sequences
by

`p(µ) =

{
u = (us) ∈ ω :

∞

∑
r=1

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
p

< ∞

}
(1≤ p < ∞)

and

`∞(µ) =

{
u = (us) ∈ ω : sup

r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣< ∞

}
.

In that case, the sets `p(µ) can be rewritten as `p(µ) = (`p)µ for 1≤ p≤ ∞ with the notation (1.1). If Γ⊂ ω is normed, in that
case Γ(µ) is called as a Mersenne sequence space.

Unless otherwise stated in the following parts of the study, 1≤ p < ∞ will be assumed.
Wilansky [26] proved that, if B is triangle and Γ is BK-space, in that case the domain ΓB is BK-space too, with ‖u‖ΓB =

‖Bu‖Γ. Therefore, we are ready to give the theorem without proof regarding the BK-spaceness of the sets we just defined.

Theorem 2.3. `p(µ) and `∞(µ) are BK-spaces with

‖u‖`p(µ) =

(
∞

∑
r=1

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
p) 1

p

and

‖u‖`∞(µ) = sup
r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣ ,
respectively.

Theorem 2.4. `p(µ) and `∞(µ) are linearly isomorphic to the spaces `p and `∞, respectively.
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Proof. Since, it can be shown similarly for the other spaces, the theorem will be proven only for the spaces `∞(µ) and `∞.
For the proof, it must be shown that there is a norm-preserving bijection between the aforementioned spaces. The linearity

of the function described for this purpose as A : `∞(µ)→ `∞, A (u) = µu can be seen immediately. Besides this, from the
proposition A (u) = 0⇒ u = 0, A is decided to be an injection.

By taking into account the sequences ν = (νs) ∈ `∞ and u = (us) ∈ ω whose terms are

us =
s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

with u1 = ν1 for all s≥ 2, we reach the surjectivity of A from the expression

(µu)r =
1

2mr− r

r

∑
s=1

msus

=
1

2mr− r

r

∑
s=1

ms

s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

= νr.

Additionally, since the relation ‖u‖`∞(µ) = ‖µu‖`∞
holds, then A keeps the norm.

Theorem 2.5. Except for the case p = 2, `p(µ) is not a Hilbert space.

Proof. If we consider that x = (1,1,− 4
7 ,0,0, . . .) and y = (1,− 5

3 ,
4
7 ,0,0, . . .), in that case it is obtain that µx = (1,1,0,0, . . .)

and µy = (1,−1,0,0, . . .) and

‖x+ y‖2
`p(µ)

+‖x− y‖2
`p(µ)

= 8 6= 22+ 2
p = 2

(
‖x‖2

`p(µ)
+‖y‖2

`p(µ)

)
.

Hence, the norm associated with the space `p(µ) for p 6= 2 doesn’t hold the parallelogram equality, which is desired result.

Consider the normed sequence space (Γ,‖.‖) and (ηr) ∈ Γ. In that case, (ηr) is Schauder basis for Γ if for any u ∈ Γ, there
is a unique scalars’ sequence (σr) as∥∥∥∥∥u−

r

∑
s=1

σsηs

∥∥∥∥∥−→ 0

as r→ ∞ and it is written as u = ∑s σsηs.
Now, it will be given the result that determines the Schauder basis of `p(µ). It is concluded that the inverse image of the

basis (e(r))r∈N of `p composes the basis of `p(µ) because the function A : `p(µ)→ `p described above is an isomorphism. In
this way, we can present the following theorem about the Schauder basis without proof.

Theorem 2.6. Let us consider the sequences σs = (µu)s and η(s) =
(

η
(s)
r

)
∈ `p(µ) described as

η
(s)
r :=


(−1)r−s 2ms− s

mr
, if r−1≤ s≤ r,

0 , otherwise.

In that case; the set η(s) is a basis for the space `p(µ) and the unique representation of any u ∈ `p(µ) is stated as u = ∑s σsη
(s)

for 1≤ p < ∞.

Theorem 2.7. The inclusion `p(µ)⊂ `p̃(µ) strictly holds for 1≤ p < p̃ < ∞.

Proof. Consider the sequence u = (us) ∈ `p(µ) such that µu ∈ `p. Furthermore, it is known that `p ⊂ `p̃ for 1≤ p < p̃ < ∞

and thus µu ∈ `p̃. Consequently, we can write u = (us) ∈ `p̃(µ).
The strictness of inclusion can be easily seen when ν̃ = µ ũ ∈ `p̃ \ `p is taken.

Theorem 2.8. The inclusion `∞ ⊂ `∞(µ) holds.
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Proof. By taking a sequence u = (us) ∈ `∞, from the inequality

‖u‖`∞(µ)
= sup

r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

msus

∣∣∣∣∣
≤ ‖u‖

∞
sup
r∈N

∣∣∣∣∣ 1
2mr− r

r

∑
s=1

ms

∣∣∣∣∣
= ‖u‖

∞
< ∞,

it is reached that u ∈ `∞(µ), which is desired result.

Theorem 2.9. The inclusion `p ⊂ `p(µ) holds.

Proof. By taking a sequence u = (us) ∈ `p for 1 < p < ∞, from the inequality

∞

∑
r=1
|(µu)r|p ≤

∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|

)p

≤
∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|p

)(
r

∑
s=1

ms

2mr− r

)p−1

=
∞

∑
r=1

(
r

∑
s=1

ms

2mr− r
|us|p

)

=
∞

∑
s=1
|us|p

(
∞

∑
r=s

ms

2mr− r

)
,

we reach that ‖u‖p
`p(µ)

≤ N.‖u‖p
`p

for N = sups∈N

{
∑

∞
r=s

ms
2mr−r

}
. This implies that u ∈ `p(µ) and `p ⊂ `p(µ). It can be shown

that `1 ⊂ `1(µ) similarly.

3. Dual Spaces

It will be calculated duals of the spaces `p(µ) in the current part. Since, the following results related the duals can be seen
similar to the case 1 < p≤ ∞, the proofs of results involving the case p = 1 will be omitted. In the rest of the paper, unless
otherwise stated, q = p

p−1 will be assumed and F will represented the family of all finite subsets of N.
For the determination of duals, it may be given the following lemmas collected from the study [27] to characterize some

classical matrix classes:

Lemma 3.1. For 1 < p≤ ∞, B = (brs) ∈ (`p : `1) if and only if

sup
E∈F

∞

∑
s=1

∣∣∣∣∣∑r∈E
brs

∣∣∣∣∣
q

< ∞.

Lemma 3.2. For 1 < p < ∞, B = (brs) ∈ (`p : c) if and only if

lim
r→∞

brs exists for all s ∈ N, (3.1)

sup
r∈N

∞

∑
s=1
|brs|q < ∞. (3.2)
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Lemma 3.3. B = (brs) ∈ (`∞ : c) if and only if the conditions (3.1),

sup
r∈N

∞

∑
s=1
|brs|< ∞,

lim
r→∞

∞

∑
s=1

∣∣∣brs− lim
r→∞

brs

∣∣∣= 0

hold.

Lemma 3.4. B = (brs) ∈ (`p : `∞) if and only if (3.2) holds for 1 < p≤ ∞.

Theorem 3.5. Let us consider the set ϖ1 and the infinite matrix G = (grs) described by

ϖ1 =

{
τ = (τs) ∈ ω : sup

E∈F

∞

∑
s=1

∣∣∣∣∣∑r∈E
grs

∣∣∣∣∣
q

< ∞

}
and

grs :=


(−1)r−s 2ms− s

mr
τr , if r−1≤ s≤ r,

0 , otherwise.

In that case; [`p(µ)]
α = ϖ1 for 1 < p≤ ∞.

Proof. By using the equality (2.1), we obtain that

τrur = τr

(
r

∑
s=r−1

(−1)r−s 2ms− s
mr

νs

)

=
r

∑
s=r−1

(
(−1)r−s 2ms− s

mr
τr

)
νs = (Gν)r (3.3)

for all r ∈N. Hence, it is obtained by the relation (3.3) that τu = (τrur)∈ `1 when u∈ `p(µ) if and only if Gν ∈ `1 when ν ∈ `p.
In that case, it is reached the biconditional statement τ ∈ [`p(µ)]

α if and only if G ∈ (`p : `1). By taking into consideration the
condition of Lemma 3.1 with together G = (grs) in place of B = (brs), it is seen that [`p(µ)]

α = ϖ1 for 1 < p≤ ∞, which is
desired result.

Theorem 3.6. Let us consider the sets ϖ
(q)
2 , ϖ3 and ϖ4 by

ϖ
(q)
2 =

{
τ = (τs) ∈ ω :

∞

∑
s=1

∣∣∣∣(2ms− s)
(

τs

ms
− τs+1

ms+1

)∣∣∣∣q < ∞

}
,

ϖ3 =

{
τ = (τs) ∈ ω : sup

r∈N

∣∣∣∣2mr− r
mr

τr

∣∣∣∣< ∞

}
,

ϖ4 =

{
τ = (τs) ∈ ω : lim

r→∞

2mr− r
mr

τr = 0
}
.

In that case; [`p(µ)]
β = ϖ

(q)
2 ∩ϖ3 for 1 < p < ∞ and [`∞(µ)]

β = ϖ
(1)
2 ∩ϖ4.

Proof. Let us choose two sequences τ = (τs) ∈ ω and u ∈ `p(µ) such that ν ∈ `p with the relation (2.1). Then, we reach that

ψr =
r

∑
s=1

τsus =
r

∑
s=1

τs

(
s

∑
i=s−1

(−1)s−i 2mi− i
ms

νi

)

=
r−1

∑
s=1

(2ms− s)
(

τs

ms
− τs+1

ms+1

)
νs +

2mr− r
mr

τrνr

= (Oν)r (3.4)



Mersenne Matrix Operator and Its Application in p−Summable Sequence Space — 48/55

where the matrix O = (ors) is described as

ors :=


(2ms− s)

(
τs

ms
− τs+1

ms+1

)
, 1≤ s < r,

2mr− r
mr

τr , s = r,

0 , otherwise.

(3.5)

It can be checked that

lim
r→∞

ors = (2ms− s)
(

τs

ms
− τs+1

ms+1

)
. (3.6)

In that case, from the relation (3.4), it is infered that τu ∈ cs whenever u = (us) ∈ `p(µ) if and only if ψ = (ψr) ∈ c when
ν ∈ `p. Thus, τ ∈ [`p(µ)]

β if and only if O ∈ (`p : c) for 1 < p < ∞. Hence, in view of (3.4), (3.6) and the conditions of Lemma
3.2, it is reached that

∞

∑
s=1

∣∣∣∣(2ms− s)
(

τs

ms
− τs+1

ms+1

)∣∣∣∣q < ∞ and sup
r∈N

∣∣∣∣2mr− r
mr

τr

∣∣∣∣< ∞

which is desired result.
It can be shown similarly for the case p = ∞ by the aid of Lemma 3.3 and the relations (3.4) and (3.6).

Theorem 3.7. For 1 < p≤ ∞, [`p(µ)]
γ = ϖ

(q)
2 ∩ϖ4.

Proof. It can be obtained with similar approach in the proof of the Theorem 3.6 by considering with together the Lemma 3.4
with the matrix O = (ors) described by (3.5).

4. Matrix Transformations
Current part aims to present the matrix classes (`p(µ) : Ψ), where Ψ ∈ (`∞,c,c0) and 1≤ p≤ ∞. For brevity, we take

φrs = (2ms− s)
(

brs

ms
−

br,s+1

ms+1

)
(4.1)

in the rest for infinite matrices Φ = (φrs) and B = (brs) and r,s ∈ N.
Consider that u and ν with the relation (2.1). In that case, it is reached that

n

∑
s=1

brsus =
n−1

∑
s=1

φrsνs +
2mn−n

mn
brnνn. (4.2)

Now, it may be given the following conditions to characterize new matrix classes:

(
2ms− s

ms
brs

)∞

s=1
∈ `∞ for all r ∈ N, (4.3)

sup
r,s∈N
|φrs|< ∞, (4.4)

sup
r∈N

∞

∑
s=1
|φrs|q < ∞, (4.5)(

2ms− s
ms

brs

)∞

s=1
∈ c0 for all r ∈ N, (4.6)

lim
r→∞

φrs exists for all s ∈ N, (4.7)

lim
r→∞

∞

∑
s=1
|φrs−ρs|= 0 for all s ∈ N and (ρs) ∈ ω, (4.8)

lim
r→∞
|φrs|= 0 for all s ∈ N. (4.9)

In that case; from the conditions of the matrix classes in [27] with together Theorem 3.6 and the relation (4.2), it may be given
the following results:
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Theorem 4.1. The following statements hold:

(i) B = (brs) ∈ (`1(µ) : `∞) if and only if (4.3) and (4.4) hold.

(ii) B = (brs) ∈ (`1(µ) : c) if and only if (4.3), (4.4) and (4.7) hold.

(iii) B = (brs) ∈ (`1(µ) : c0) if and only if (4.3), (4.4) and (4.9) hold.

Theorem 4.2. For 1 < p < ∞, the following statements hold:

(i) B = (brs) ∈ (`p(µ) : `∞) if and only if (4.3) and (4.5) hold.

(ii) B = (brs) ∈ (`p(µ) : c) if and only if (4.3), (4.5) and (4.7) hold.

(iii) B = (brs) ∈ (`p(µ) : c0) if and only if (4.3), (4.5) and (4.9) hold.

Theorem 4.3. The following statements hold:

(i) B = (brs) ∈ (`∞(µ) : `∞) if and only if (4.5) and (4.6) hold with q = 1.

(ii) B = (brs) ∈ (`∞(µ) : c) if and only if (4.5), (4.6), (4.7) and (4.8) hold with q = 1.

(iii) B = (brs) ∈ (`∞(µ) : c0) if and only if (4.6) and (4.8) hold for ρs = 0 and s ∈ N.

5. Compactness by Hausdorff Measure of Non-compactness

This part aims to acquire the necessary and sufficient conditions for an operator to be compact from `p(µ) to the space Ψ,
where 1≤ p≤ ∞ and Ψ ∈ {c0,c, `∞, `1,cs0,cs,bs}.

For a normed space Γ, DΓ represents the unit sphere in Γ. It is used the notation

‖u‖�Γ = sup
x∈DΓ

∣∣∣∣∑
s

usxs

∣∣∣∣
for a BK-space Γ⊃Ω and u = (us) ∈ ω , where Ω represents all finite sequences’s space and it is assumed that the series above
is exists and then it is reached that u ∈ Γβ .

Lemma 5.1. [28] The following statements hold:

(i) `
β
∞ = cβ = cβ

0 = `1 and ‖u‖�
Γ
= ‖u‖`1 for all u ∈ `1 and Γ ∈ {`∞,c,c0}.

(ii) `
β

1 = `∞ and ‖u‖�`1
= ‖u‖`∞

for all u ∈ `∞.

(iii) `
β
p = `q and ‖u‖�`p

= ‖u‖`q for all u ∈ `q.

The set B(Γ : Ψ) represents all bounded (continuous) linear operators’ set from Γ to Ψ.

Lemma 5.2. [28] Let Γ and Ψ are the BK-spaces. In that case, for all B∈ (Γ : Ψ), there exists a linear operator LB ∈B(Γ : Ψ)
as LB(u) = Bu for every u ∈ Γ.

Lemma 5.3. [28] Consider that Γ⊃Ω is a BK-space. If B ∈ (Γ : Ψ), in that case ‖LB‖= ‖B‖(Γ:Ψ) = supr∈N ‖Br‖�Γ < ∞.

Let us consider a metric space Γ and A⊂ Γ is bounded. The Hausdorff measure of non-compactness of A is represented
with χ(A) and it is described by

χ(A) = inf
{

ε > 0 : A⊂ ∪r
j=1A(u j,n j),u j ∈ Γ,n j < ε,r ∈ N

}
,

where A(u j,n j) is the open ball centred at u j and radius n j for each j = 1,2, ...,r. Researchers who want to get more detailed
information about Hausdorff measure of non-compactness can benefit from [28] and its references.

Theorem 5.4. [29] Let A⊂ `p is bounded and the operator λn : `p −→ `p described as λn(u) = (u1,u2,u3, ...,un,0,0, ...) for
every u = (us) ∈ `p, 1≤ p < ∞ and each n ∈ N. In that case, for the identity operator I on `p, it is reached that

χ(A) = lim
n→∞

(
sup
u∈A
‖(I−λn)(u)‖`p

)
.
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For the Banach spaces Γ and Ψ, a linear operator L : Γ→Ψ is named as compact operator if domain of L is whole of
Γ and L (A) is totally bounded set in Ψ for all u = (us) ∈ `∞ ∩Γ. Equivalently, L is compact if (L (u)) has a convergent
subsequence in Ψ for all u = (us) ∈ `∞∩Γ.

Let ‖L ‖χ represents Hausdorff measure of non-compactness of L and it is described by ‖L ‖χ = χ(L (DΓ)). The
notions Hausdorff measure of non-compactness and compact operators have a distinct relationship of ”L is compact if and
only if ‖L ‖χ = 0”.

Readers can use the studies [30, 31, 32, 33, 34, 35] for sequence space studies where Hausdorff measure of non-compactness
is used to determine compact operators between BK-spaces.

Lemma 5.5. [30] Let Γ⊃Ω is BK-space. In that case:

(i) If B ∈ (Γ : c0), then ‖LB‖χ = limsupr ‖Br‖�Γ and LB is compact if and only if limr ‖Br‖�Γ = 0.

(ii) If Γ has AK property or Γ = `∞ and B ∈ (Γ : c), then

1
2

limsup
r
‖Br−κ‖�Γ ≤ ‖LB‖χ ≤ limsup

r
‖Br−κ‖�Γ

and LB is compact if

lim
r
‖Br−κ‖�Γ = 0

where κ = (κs) and κs = limr brs.

(iii) If B ∈ (Γ : `∞), then 0≤ ‖LB‖χ ≤ limsupr ‖Br‖�Γ and LB is compact if limr ‖Br‖�Γ = 0.

(iv) If B ∈ (Γ : `1), then

lim
j

(
sup

E∈F j

∥∥∥∥∥∑
r∈E

Br

∥∥∥∥∥
�

Γ

)
≤ ‖LB‖χ ≤ 4. lim

j

(
sup

E∈F j

∥∥∥∥∥∑
r∈E

Br

∥∥∥∥∥
�

Γ

)

and LB is compact if and only if lim j

(
supE∈F j

‖∑r∈E Br‖�Γ
)
= 0, where F represents the family of all finite subsets of

N and F j is the subcollection of F consisting of subsets of N with elements that are greater than j.

In the sequel of the study, it is used the matrices Φ = (φrs) and B = (brs) connected with the relation (4.1).

Lemma 5.6. Let Ψ⊂ ω . If B ∈ (`p(µ) : Ψ), then Φ ∈ (`p : Ψ) and Bu = Φν hold for all u ∈ `p(µ) and 1≤ p≤ ∞.

Theorem 5.7. Let 1 < p < ∞. In that case:

(i) If B ∈ (`p(µ) : c0), then ‖LB‖χ = limsupr (∑s |φrs|q)
1
q and LB is compact if and only if limr (∑s |φrs|q)

1
q = 0.

(ii) If B ∈ (`p(µ) : c), then

1
2

limsup
r

(
∑
s
|φrs−as|q

) 1
q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s
|φrs−as|q

) 1
q

and LB is compact if and only if limr (∑s |φrs−as|q)
1
q = 0, where as = limr φrs.

(iii) If B ∈ (`p(µ) : `∞), then 0≤ ‖LB‖χ ≤ limsupr (∑s |φrs|q)
1
q and LB is compact if limr (∑s |φrs|q)

1
q = 0.

(iv) If B∈ (`p(µ) : `1), then lim j ‖B‖( j)
(`p(µ):`1)

≤‖LB‖χ ≤ 4. lim j ‖B‖( j)
(`p(µ):`1)

and LB is compact if and only if lim j ‖B‖( j)
(`p(µ):`1)

=

0, where ‖B‖( j)
(`p(µ):`1)

= supE∈F j
(∑s |∑r∈E φrs|q)

1
q .
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Proof. (i) Let B ∈ (`p(µ) : c0). It is seen that

‖Br‖�`p(µ)
= ‖Φr‖�`p

= ‖Φr‖`q
=

(
∑
s
|φrs|q

) 1
q

.

Thus, in view of Lemma 5.5-(i), it is reached that

‖LB‖χ = limsup
r
‖Br‖�`p(µ)

= limsup
r

(
∑
s
|φrs|q

) 1
q

and LB is compact if limr (∑s |φrs|q)
1
q .

(ii) Let B ∈ (`p(µ) : c). In that case, Φ ∈ (`p : c) by Lemma 5.6. From Lemma 5.1-(iii) it is concluded that

‖Φr−a‖�`p
= ‖Φr−a‖`q =

(
∑
s
|φrs−as|q

) 1
q

. (5.1)

By the aid of the Lemma 5.5-(ii), it is reached that

1
2

limsup
r
‖Φr−a‖�`p

≤ ‖LB‖χ ≤ limsup
r
‖Φr−a‖�`p

. (5.2)

Then, considering (5.1) and (5.2) together, it is obtained that

1
2

limsup
r

(
∑
s
|φrs−as|q

) 1
q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s
|φrs−as|q

) 1
q

.

Moreover, it is seen by Lemma 5.5-(ii) that LB is compact if and only if

lim
r

(
∑
s
|φrs−as|q

) 1
q

= 0.

(iii) This proof can be made analogous to that of (i) and (ii) considering Lemma 5.5-(iii).
(iv) It is reached that

‖∑
r∈E

Br‖�`p(µ)
= ‖∑

r∈E
Φr‖�`p

= ‖∑
r∈E

Φr‖�`q
=

(
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

.

Let B ∈ (`p(µ) : `1), then by Lemma 5.6, Φ ∈ (`p : `1) holds. In that case, by taking account the Lemma 5.5-(iv), it is
concluded that

lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ 4. lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

and LB is compact if and only if

lim
j

(
sup

E∈F j
∑
s

∣∣∣∣∣∑r∈E
φrs

∣∣∣∣∣
q) 1

q

= 0.

Lemma 5.8. [30] Let Γ⊃Ω is BK-space and

‖B‖[r]
(Γ:bs) =

∥∥∥∥∥ r

∑
n=1

Bn

∥∥∥∥∥
�

Γ

.

In that case:

(i) If B ∈ (Γ : cs0), then ‖LB‖χ = limsupr ‖B‖
[r]
(Γ:bs) and LB is compact if and only if limr ‖B‖[r](Γ:bs) = 0.
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(ii) If Γ has AK and B ∈ (Γ : cs), in that case

1
2

limsup
r

∥∥∥∥∥ r

∑
n=1

Bn−ξ

∥∥∥∥∥
�

Γ

≤ ‖LB‖χ ≤ limsup
r

∥∥∥∥∥ r

∑
n=1

Bn−ξ

∥∥∥∥∥
�

Γ

and LB is compact if and only if limr ‖∑
r
n=1 Bn−ξ‖�

Γ
= 0, where ξ = ξs with ξs = limr→∞ ∑

r
n=1 bns for each s ∈ N.

(iii) If B ∈ (Γ : bs), then 0≤ ‖LB‖χ
≤ limsupr ‖B‖

[r]
(Γ:bs) and LB is compact if limr ‖B‖[r](Γ:bs) = 0.

Theorem 5.9. Let 1 < p < ∞. In that case:

(i) If B ∈ (`p(µ) : cs0), then ‖LB‖χ = limsupr (∑s |∑r
n=1 φrs|q)

1
q and LB is compact if and only if limr (∑s |∑r

n=1 φrs|q)
1
q = 0.

(ii) If B ∈ (`p(µ) : cs), then

1
2

limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ãs

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ãs

∣∣∣∣∣
q) 1

q

and LB is compact if and only if limr (∑s |∑r
n=1 φns− ãs|q)

1
q = 0, where ã = (ãs) and ãs = limr ∑

r
n=1 φns.

(iii) If B ∈ (`p(µ) : bs), then

0≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns

∣∣∣∣∣
q) 1

q

and LB is compact if limr (∑s |∑r
n=1 φns|q)

1
q = 0.

Proof. (i) It is clear that∥∥∥∥∥ r

∑
n=1

Bn

∥∥∥∥∥
�

`p(µ)

=

∥∥∥∥∥ r

∑
n=1

Φn

∥∥∥∥∥
�

`p

=

∥∥∥∥∥ r

∑
n=1

φns

∥∥∥∥∥
�

`q

=

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns

∣∣∣∣∣
q) 1

q

.

Hence, by using Lemma 5.8-(i), it is obtained that ‖LB‖χ = limsupr (∑s |∑r
n=1 φns|q)

1
q and LB is compact if and only if

limr (∑s |∑r
n=1 φns|q)

1
q .

(ii) We have∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

=

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
`q

=

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

. (5.3)

If B ∈ (`p(µ) : cs), in that case by Lemma 5.6, it is reached that Φ ∈ (`p : cs). In that case, by the aid of the Lemma 5.8-(b), it
is deduced that

1
2

limsup
r

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

≤ ‖LB‖χ ≤ limsup
r

∥∥∥∥∥ r

∑
n=1

Φn− ã

∥∥∥∥∥
�

`p

,

which on using (5.3) gives us

1
2

limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

≤ ‖LB‖χ ≤ limsup
r

(
∑
s

∣∣∣∣∣ r

∑
n=1

φns− ã

∣∣∣∣∣
q) 1

q

and also, LB is compact if and only if limr (∑s |∑r
n=1 φns− ãs|q)

1
q = 0.

(iii) It can be done similarly to the proof of the first part, considering Lemma 5.8-(iii).

Theorem 5.10. (i) If B ∈ (`∞(µ) : c0), in that case ‖LB‖χ = limsupr ∑s |φrs| and LB is compact if limr ∑s |φrs|= 0.
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(ii) If B ∈ (`∞(µ) : c), then

1
2

limsup
r

(
∑
s
|φrs−as|

)
≤ ‖LB‖χ ≤ limsup

r

(
∑
s
|φrs−as|

)
and LB is compact if and only if limr (∑s |φrs−as|) = 0.

(iii) If B ∈ (`∞(µ) : `∞), in that case 0≤ ‖LB‖χ ≤ limsupr ∑s |φrs| and LB is compact if limr ∑s |φrs|= 0.

(iv) If B∈ (`∞(µ) : `1), then lim j ‖B‖( j)
(`∞(µ):`1)

≤‖LB‖χ ≤ 4. lim j ‖B‖( j)
(`∞(µ):`1)

and LB is compact if and only if lim j ‖B‖( j)
(`∞(µ):`1)

=

0, where ‖B‖( j)
(`∞(µ):`1)

= supE∈F j
(∑s |∑r∈E φrs|) for all j ∈ N.

Proof. It can be obtained in a similar way to the proof of Theorem 5.7. So, it is omitted.

Theorem 5.11. (i) If B∈ (`1(µ) : c0), in that case ‖LB‖χ = limsupr (sups |φrs|) and LB is compact if and only if limr (sups |φrs|)=
0.

(ii) If B ∈ (`1(µ) : c), in that case

1
2

limsup
r

(
sup

s
|φrs−as|

)
≤ ‖LB‖χ ≤ limsup

r

(
sup

s
|φrs−as|

)
and LB is compact if and only if limr (sups |φrs−as|) = 0.

(iii) If B ∈ (`1(µ) : `∞), in that case 0≤ ‖LB‖χ ≤ limsupr (sups |φrs|) and LB is compact if limr (sups |φrs|) = 0.

Proof. It can be acquired in a analogous procedure of Theorem 5.7. Thence, it is omitted, too.
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[15] M. C. Dağlı, A novel conservative matrix arising from Schröder numbers and its properties, Linear and Multilinear Algebra,

71(8) (2023), 1338-1351. DOI: 10.1080/03081087.2022.2061401.
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