
Abstract—Weather conditions are one of the major factors
significantly influencing the daily lives of individuals. Unfavorable
weather conditions adversely affect their lives and directly
impede the progress of the subsequent image-processing steps
necessary for real-world vision tasks such as object detection and
autonomous driving. For this reason, the correct classification of
the weather conditions is of great importance. Although tra-
ditional classification methods achieve high accuracy in various
tasks, they cannot achieve the same success in classifying weather
conditions. In this paper, we propose a novel convolutional neural
network (CNN) framework for the classification of weather con-
ditions with high accuracy. The proposed network outperforms
the existing methods with 95.50% accuracy for a classification
problem with five different scenarios.

Index Terms—Multi-class classification, deep learning, convo-
lutional neural networks, weather classification

I. INTRODUCTION

WEATHER conditions influence outdoor imaging sys-
tems, leading to low-contrast and reduced image vis-

ibility. It can also directly affect the operation of many real-
world visual systems, such as autonomous vehicles, intelligent 
driver assistance systems, and outdoor video analysis. Most 
research in computer vision is based on the assumption that 
the weather is clear in the processed images. However, one 
of the most critical issues in developing these systems is their 
poor performance in adverse weather conditions such as rain, 
snow, fog, and haze [1], [2]. Therefore, weather classification 
applications have great importance in providing more reliable 
and better visibility of imagery.

Over the past decades, the authors have generally focused on 
the single-class weather recognition problem in which they try 
to determine whether an image belongs to a particular category 
or not [3], [4], [5], [6]. It is a fact that single-class classification 
tasks are unable to provide a comprehensive description of 
weather conditions. On the other hand, some of them deal 
with two-class recognition problems, e.g., sunny and cloudy 
weather [7], [8]. To the best of our knowledge, despite its 
numerous application areas, a limited number of multi-class 
weather classification s tudies [9], [10] have been carried out.

With the rapid development of machine learning, learning-
based models have been widely used in classification prob-
lems. Furthermore, collecting large data sets has become more
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accessible in recent years, owing to the progress in image
acquisition systems and their increased accessibility. These
developments have facilitated the training process of learning-
based networks. Weather classification is a multi-class classi-
fication problem for which numerous learning-based methods
have been proposed for such problems. Generally speaking,
learning-based approaches are roughly divided into four main
groups [11]. The first group, supervised learning methods,
utilize information from labeled training data to predict out-
put classes [12]. The second category, unsupervised learning
methods, is applied when the training data lacks labeling. In
such cases, these methods classify based on certain features
and inferences from the available data [13]. The third group,
semi-supervised learning methods, are between supervised and
unsupervised techniques as they use a combination of labeled
and unlabelled data for training, and the amount of unlabelled
data is higher in this techniques [14]. The last category,
reinforcement learning methods, estimates the consequences
of system actions in environments that lead from one situation
to another through rewards and punishments scheme [15].
These learning-based methods provide significant advantages
in terms of flexibility in a wide range of applications.

Weather conditions classification holds crucial importance
for various computer vision applications in outdoor surveil-
lance systems, robotic vision, and driver assistance systems,
to name a few. It can play a vital role in deciding which pre-
processing steps to execute for an application. For example,
computer vision processes suffer from hazy environments, and
dehazing methods deal with these circumstances to improve
the visual quality of images. Detecting a hazy environment
during autonomous driving will allow the proper functioning
of required pre-processing steps.

In this paper, we propose an effective convolutional neural
network (CNN) framework to classify images captured in
adverse weather scenarios. By doing this, we attempt to
address multi-class weather classification problems for the
benefit of further image processing algorithms such as dehaz-
ing, defogging, and low-light image enhancement methods.
To summarize, the main contributions of this paper can be
summarized as follows:

• As part of this work, we have compiled a dataset from
several publicly available datasets for those interested in
further research on this task.

• We propose a novel multi-label CNN-based weather
classification network that can accurately categorize poor
weather images, including haze, snow, and rain.

• Low-light illuminations degrade the performance of vi-
sion applications. Considering this fact, we aim to extend
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the applicability of the proposed model by adding a new
category to the dataset called low light class for bad
weather conditions.

• We have created a normal class devoid of any adverse
weather conditions. By doing this, we have tried com-
pletely separating bad weather conditions from clear ones.

The rest of the paper is organized as follows. Section II gives
the most common deep learning methods used specifically
in image classification tasks. Section III details the proposed
architecture for classifying different weather scenarios. Section
IV presents the experimental results, and the conclusion is
given in Section V.

II. RELATED WORK

Many deep learning (DL) models have been proposed
for image classification including convolutional neural net-
works, dynamic Bayesian networks, autoencoders, and re-
stricted Boltzmann machine models [16]. In this section,
we first provide a brief overview of commonly used deep
learning models for image classification. Then, we review the
image-based weather detection and classification works in the
literature.

A. Convolutional Neural Networks

Convolutional neural networks (CNNs) are one of the most
widely used DL models, generally consisting of convolution
layers, pooling layers, and fully connected layers. LeNet-5, a
leading model, is composed of two convolutional layers, two
fully connected layers, multiple pooling layers, and a Gaussian
connection layer. With large-scale datasets and significant ad-
vances in computational capabilities, more advanced networks
have been proposed, such as AlexNet [17], which leverages the
ImageNet dataset [18]. AlexNet is structured with five convo-
lutional layers and three subsequent fully connected layers.
VGGNet [19], another inspiring model, has been proposed
to achieve better performance by increasing the depth of the
network while reducing the number of model parameters. It
has also introduced innovations such as modular networks,
smaller convolution, and multi-scale training. In contrast to
previous approaches, the Network in Network (NIN) [20]
model adopts a combination of multi-layer perceptron and con-
volution, resulting in a more complex micro-neural network
structure than the traditional convolutional layers.

B. Dynamic Bayesian Networks

Bayesian Networks (BNs) play a significant role in various
applications, including anomaly detection, classification, and
clustering. BNs provide a better efficient representation of the
joint probability distribution over a group of random variables
[21]. Dynamic Bayesian Networks (DBNs), a specialized
variant of BNs, recursively capture the dynamics of the system
in a time-dependent fashion [22]. In a DBN, the first layer is
referred to as the input layer, the middle layer is the hidden
layer, and the final layer is designated as the output layer [23].

C. Autoencoders

Autoencoders serve as a technique for extracting principal
components within large data distributions [24]. Due to its
adaptable network structure that can be customized for various
domains, it has the ability to create deeper networks. The
autoencoder stands out as one of the most effective pre-
processing techniques for image classification. Sparse au-
toencoder is a commonly used deep learning approach for
automatically extracting features from unlabeled data [25].
Since deep learning applications are not robust against noisy
data, pre-training with noisy data is necessary. To cope with
these circumstances, denoising autoencoder structures [26]
have been proposed. In the denoising autoencoder, the input is
distorted by adding random noise. The model is then trained to
generate predictions for the original, uncorrupted data. Deep
Wavelet Autoencoder is an autoencoder architecture that has
gained interest in recent years [27]. It integrates concepts from
wavelet transforms into its design, employing these transforms
within the network’s operations to enhance its capacity for
acquiring hierarchical and multi-scale data representations.

D. Restricted Boltzman Machine

Restricted Boltzmann Machine (RBM) is frequently used
as a feature extractor in image classification. RBM shares
parametrization with the layers of the deep belief network
and is therefore considered the building block of the deep
belief network. This model was first introduced under the
name Harmonium [28]. Recently, many deep learning algo-
rithms have been proposed using the RBM model [29], [30].
Model structures generally consist of two layers: the visible
layer and the hidden layer. While RBMs may not effectively
represent certain distributions, they demonstrate the capability
to represent any discrete distribution when an adequate number
of hidden layers are employed [31]. This characteristic renders
RBMs one of the most suitable types of deep networks for
feature extraction in unsupervised learning applications.

E. Image-based Weather Detection and Classification

Weather classification involves the identification of different
weather conditions from a single image, which is a challenging
task due to the diversity of weather phenomena and the lack of
distinctive features. Early attempts are based on handcrafted
features and traditional machine-learning techniques. For ex-
ample, Kurihata et al. defined raindrop characteristics using
image features from principal component analysis (PCA) that
represent the essential characters of raindrops [4]. Roser and
Moosmann proposed a classification method on single color
images based on Support Vector Machines (SVM) using some
features of the image such as contrast, minimum brightness,
sharpness, and color [7]; The authors of [5] proposed an algo-
rithm based on Real Adaboost that combines three features:
histogram of gradient amplitude (HGA), histogram of HSV
color space and road information.

These works are pioneers in the task of weather classifica-
tion, but can only recognize rainy weather, while applications
are limited due to fixed target scenes. Over the last decades,
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Fig. 1. Illustration of the proposed method.

researchers have focused on two-class weather classification
to estimate weather conditions from images. For example;
the authors of [32] use a correlation between weather and
scene illumination to categorize classes; the authors of [8]
proposed a collaborative learning framework that uses some
specific image features such as sky, shadow, and haze to
identify images as sunny or cloudy; the authors of [6] used the
bag of words method for feature extraction from images and
multiple kernel learning (MKL) to classify images into three
class; Elhoseiny et al. introduced a CNN architecture for two-
class weather classification [33]; Kang et al. [34] utilized a
deep learning-based method to classify weather images into
one of four classes: hazy, rainy, snowy, and other. They
have achieved better performance than traditional methods
by using the GoogleNet deep CNN model. Zhao and Wu
[35] proposed a weather forecast classifier for four classes
(rainy, snowy, sunny, and foggy) using the CNN method to
extract high-dimensional features from images. The images
were preprocessed with Mask R-CNN to improve classification
performance.

III. THE PROPOSED FRAMEWORK

Here, we give the details of the proposed network. CNNs
are widely used in applications such as object recognition
[36] and classification [37], predominantly owing to their
superior classification accuracy. This paper proposes a CNN-
based structure as shown in Fig. 1.

A. Convolution layer

The main purpose of the layer is to obtain the filtered image
by moving the filters of certain sizes over the entire image.
The dimensions of these filters are generally chosen as 3× 3,
5× 5, and 7× 7. This process results in an output image with
higher-level features in a hierarchical manner. We set the filter
sizes to 3× 3 and 5× 5 in convolution layers.

B. Pooling layer

Reducing the number of hyper-parameters is crucial to
prevent the model from memorizing the training data and
to alleviate the computational burden. To do this, CNNs
utilize pooling layers. Similar to the convolution operation, the
pooling process is also carried out via specific filters. These
filters execute maximum, minimum, and averaging operations
with certain window sizes. In the proposed model, we set the
size of the pooling layers as 2× 2.

C. Leaky ReLU

Activation functions play a crucial role in introducing non-
linearities to CNNs. Different activation functions, including
Linear, Tanh, ReLU, Swish, and Leaky ReLU (LReLU), have
been employed in numerous studies. To investigate the influ-
ence of activation functions on the proposed model, we employ
different activation functions and present the corresponding
training accuracy in Table I. As seen from Table, we have
achieved the highest training accuracy with LReLU. Thus, we
choose LReLU as the activation function. LReLU, a variant of
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TABLE I
ABLATION STUDY ON ACTIVATION FUNCTIONS

Activation function Training accuracy(%)

Linear 93.12
Tanh 93.44
ReLU 96.18
Swish 96.88
LReLU 97.69

the classical ReLU, also has a small slope for negative inputs.
LReLU addresses the issue of neurons struggling to learn after
entering the negative range, thanks to its small slope. It is
also known that although it is slower than classical ReLU, it
demonstrates better performance [38]. Mathematically, LReLU
is defined as

f(x) =

{
0.01x x < 0

x x ≥ 0
(1)

and visually it looks as shown in Fig. 2.

-1.5 -1 -0.5 0 0.5 1 1.5

0

0.5

1

1.5

Fig. 2. Graph of the LReLU activation function.

D. Fully connected layer

The fully connected layer utilizes a weight matrix for
each neuron to perform a linear transformation to the input.
Through this process, all possible connections between layers
ensure that the entries of the input influence every entry of the
output. Typically, the fully connected layer is used at the end
of CNN models to optimize classification scores.

E. Classification layer

As its name implies, the classification layer is used in DL
networks for classification tasks. The output dimension of the
classification layer is equivalent to the number of classified
objects. Among the classifiers used in CNNs, softmax is
the most commonly used and highly effective one. Softmax
generates a probability output value within the range of 0 to
1 for each object to be classified. Softmax assigns the output
as the class of the item for a probability value close to 1.

TABLE II
DETAILS OF THE CONSTRUCTED DATASET

Image class # of image Dataset

Hazy 340 [39]-[40]
Rainy 381 [41]-[42]
Snowy 430 [43]
Low-light 444 [44]
Normal 500 [45]
Test 200 40 of each class

IV. EXPERIMENTS

In this section, we first provide the procedure for creating
the dataset and then give the implementation details. Finally,
we present the evaluation metrics and experimental results in
turn.

A. Dataset

For the multi-class weather classification experiment, we
identified five different weather-related attributes: hazy, rainy,
snowy, low-light, and normal. We choose images for individual
classes from various datasets that are publicly accessible. To
enhance the effectiveness of the proposed model, we intro-
duce challenging scene images to diversify the dataset. For
example, the model should recognize an image taken in snowy
conditions as snowy weather and classify an image containing
snow but not snowfall as representing normal weather. In doing
so, we allow for the examination of weather conditions that
affect the visibility of objects in the scene. Considering these
conditions, we have constructed the dataset as follows:

• Hazy images: We select the images for this class from the
O-Haze [39] dataset and the hazy weather [40] dataset of
road images captured in foggy weather.

• Rainy images: Images are chosen from the datasets given
in [41] and [42].

• Snowy images: We pick snowy images from the
Snow100k [43].

• Low-light images: We randomly select low-light images
from the ExDark [44], which contains images taken in
various low-light conditions.

• Normal images: Finally, normal images without any
adverse weather conditions have been chosen from the
Part2 Subset [45].

When determining images within each class from the
datasets, we consider the presence of only one feature in a
single image. For example, we disregard hazy information
present in a snowy image. Detailed information on the dataset
is presented in Table II. The last row of Table II corresponds
to the number of test images, which includes 40 randomly
selected images for each class.

B. Implementation results

It is common knowledge that fine-tuning the hyperparame-
ters is crucial for achieving high performance in DL methods.
We have conducted several experiments to demonstrate the
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TABLE III
ABLATION STUDY ON MODEL TRAINING WITH K-FOLD

# of fold Average accuracy (%)

5 89
10 91.5

validity of the proposed CNN model. The test set has been
created from unseen images not used in the training phase.
We set the batch size to 32, and the number of epochs to
200. With these parameters, we use the k-fold cross-validation
technique to evaluate the performance of the proposed model.
We set k to 5 and 10, and have obtained the results given in
Table III. We have achieved a training accuracy of 97.88%
and a test accuracy of 95.50% using the model parameters
that provide the highest classification accuracy among the k-
folding results. Moreover, we present the confusion matrix in
Fig. 3 to evaluate the performance of the proposed model on
the test set. As can be seen from Fig. 3, the proposed model
demonstrates a classification performance exceeding 97% for
all classes, except for the Hazy class. Fig. 4 illustrates a few
examples where we give some failure cases from different k-
fold validation results.

It is apparent from Fig. 4 that hazy weather tends to be
misclassified as normal. We believe that this tendency arises
from the insufficient learning of the airlight in hazy images.
We note from Fig. 3 and Fig. 4 that the hazy class is the
most challenging weather condition to classify among the five
weather conditions.

The proposed CNN architecture was modeled using the
open-source TensorFlow library in version 3.9.13 of the
Python programming language [46]. Experimental operations
such as training and testing were carried out on a personal
computer with 11th Generation Intel® CoreTM i7-11800H
CPU and NVIDIA Geforce RTX 3060 GPU.
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Fig. 3. Confusion matrix of five-class classification results.

C. Comparison with related methods
We have chosen four assessment criteria to quantitatively

measure the performance of the compared methods. The first

evaluation criterion is accuracy, which is popular in multi-
class classification. Accuracy is defined as the ratio of correctly
predicted data to the total amount of data and is calculated as
follows.

accuracy =
TP + TN

TP+ TN+ FP + FN
(2)

Here, TP,TN,FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively. Using Eq.
(2), we calculate the accuracy of the proposed model as 0.955.
Although accuracy is a useful metric, it may not be sufficient
when evaluating datasets characterized by uneven distributions
or unbiased data. Therefore, precision has been used for a
more comprehensive evaluation. It is particularly employed in
scenarios where the cost of making a false positive prediction
is high. Mathematically, the precision metric is computed as
follows.

precision =
TP

TP + FP
(3)

We get the precision as 0.9646 by Eq. (3). Another assessment
metric is recall, which becomes particularly crucial when the
cost of predicting false negatives is substantial. The recall is
defined by the following expression.

recall =
TP

TP + FN
(4)

The recall value is evaluated as 0.9845. The last performance
discriminator is the F1 score, which comprehensively evaluates
every aspect of prediction success on a dataset, as it considers
all error costs. The F1 score [49] is calculated as in Eq. (5).
The F1 score for the proposed model is computed as 0.9744.

F1 = 2×
(
precision× recall

precision + recall

)
(5)

We compare the performance of the proposed method with
several competing methods, including AlexNet [17], VGGNet
[19], ResNet101 [33], ML-KNN [47], SRN [48] and CNN-
RNN [9]. We adopt overall precision (OP), overall recall (OR),
and overall F1 (OF1) as evaluation metrics, and tabulate the
results in Table IV. As highlighted in Table IV, the proposed
model outperforms the compared methods in all metrics,
except for the rainy class. Moreover, we achieve superior
performance in the newly introduced classes, namely low-light
and normal.

V. CONCLUSION

In this paper, we have proposed a CNN framework for
multi-label weather classification tasks. We have identified five
different classes for weather conditions. To train the proposed
network model, we have created a new training and test
set by selecting images suitable for five classes from public
datasets. On the constructed dataset, we have demonstrated the
effectiveness of the proposed method and proved that it yields
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(a) hazy/rainy (b) low-light/normal (c) low-light/normal

(d) normal/low-light (e) normal/snowy (f) rainy/normal

(g) hazy/normal (h) hazy/normal (i) hazy/normal

Fig. 4. Examples of some failure cases. The captions of the sub-figures represent the true class/predicted class.
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quantitatively superior results compared to other competing
algorithms. The proposed model, designed to predict weather
conditions for specified classes, is expected to improve the
utilization of further image enhancement algorithms. In this
way, it will be possible to prevent applications such as object
detection and target tracking against the disruptive effect of
adverse weather conditions.

We are aware that the proposed framework has limitations
in classifying multiple weather types within a single image. In
further studies, we focus on labeling multi-weather types in a
single image to provide a more comprehensive description of
weather conditions.
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