
DEU FMD 26(78) (2024) 519-527

DOI: https://doi.org/10.21205/deufmd.2024267820 Geliş Tarihi / Received: 05.01.2024

Kabul Tarihi / Accepted: 07.03.2024

RESEARCH ARTICLE / ARAŞTIRMA MAKALESI

Ant Colony Optimization and Beam-Ant Colony Optimization on Traveling
Salesman Problem with Traffic Congestion

Trafik Sıkışıklığı Olan Gezgin Satıcı Probleminde Karınca Kolonisi
Optimizasyonu ve Işın-Karınca Kolonisi Optimizasyonu

Mustafa Orçun Uslu 1* , Kazım Erdoğdu 2
1 Yaşar University, Graduate School, Bornova, İzmir, TÜRKİYE
2 Yaşar University, Department of Software Engineering, Bornova, İzmir, TÜRKİYE

Corresponding Author / Sorumlu Yazar *: orcunuslu6@gmail.com

Abstract

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem that has various implications in a variety
of industries. Even the purest formulation of TSP has applications on from logistics routes to microchip manufacturing, unexpectedly,
it can be used on DNA sequencing with slight modification as a sub-problem. In this paper, two versions of TSP were studied, a classical
TSP and the TSP containing traffic congestion data. Two state-of-the-art solution methods were used, Ant Colony Optimization (ACO)
and Beam-ACO. These algorithms were hybridized with 2-Opt local search and their performances compared on the same benchmark
instances. The experimental results show the efficiency of Beam-ACO compared to ACO.

Keywords: Traveling Salesman Problem, Ant Colony Optimization, Beam-ACO, 2-Opt, Swarm Intelligence Optimization, Traffic Congestion

Ö

Gezgin Satıcı Problemi (GSP), çeşitli endüstrilerde çeşitli etkileri olan, iyi bilinen bir kombinatoryal optimizasyon problemidir. GSP'nin
en saf formülasyonu bile lojistik yollardan mikroçip üretimine kadar çeşitli uygulamalara sahiptir. Beklenmedik bir şekilde, bir alt
problem olarak DNA dizilimi için küçük değişikliklerle kullanılabilir. Bu yazıda GSP'nin iki versiyonu incelenmiştir: klasik bir TSP ve
trafik sıkışıklığı verilerini içeren GSP. Son teknoloji ürünü iki çözüm yöntemi kullanıldı: Karınca Kolonisi Optimizasyonu (KKO) ve
Işın-KKO. Bu algoritmalar 2-Opt yerel arama ile hibritleştirildi ve performansları aynı kıyaslama örnekleriyle karşılaştırıldı. Deney
sonuçları Işın-KKO'nun KKO'ya kıyasla verimliliğini göstermektedir.

Anahtar Kelimeler: Gezgin Satıcı Problemi, Karınca Kolonisi Optimizasyonu, Beam-KKO, 2-Opt, Sürü Zekası Optimizasyonu, Trafik Sıkışıklığı

1. Introduction

The Traveling Salesman Problem (TSP) is a challenging
optimization problem in which a salesman must find the shortest
tour that visits a set of cities exactly once and returns to the
starting point [1].

The challenging part of the TSP is where the problem
exponentially increases the computation cost. As the number of
cities increases, the number of possible routes grows at a factorial
rate, making exhaustive search impractical for larger instances.
Furthermore, TSP is classified as NP-hard [2], implying that there
is no known polynomial-time algorithm to find the optimal
solution efficiently.

TSP has implications in a variety of industries. It helps businesses
optimize their delivery routes, saving them time and money on
fuel [3]. It assists in the design of effective machine routes in
manufacturing [4], increasing production efficiency. Tourists
employ TSP to plan itineraries that cover multiple attractions
while minimizing travel time [5]. In network design, TSP can be
used to determine the shortest cable layout in a network [6].

In real life, traffic is known to be a problem for everyone. It causes
money and time loss as well as environmental damage and
negative effects on human health [7]. The proposed algorithms
try to solve this problem with a different version of TSP, created
a simple model and called it “TSP with Traffic Congestion”.

This paper combines the Beam Search algorithm with the Ant
Colony Algorithm (ACO) and compares it with a standard Ant
Colony Algorithm while adding an element to the problem as
“Traffic between cities”. While the ACO is one of the swarm
intelligent methods that is inspired by real ant colonies and
proposed by Marco Dorigo [8, 9]. The algorithm mimics real-life
ants that try to find food source and return them to nest. The
Beam Search Algorithm is a method used in many Natural
Language Processing (NLP) and Speech Recognition Models for
decision making. The algorithm is like a tree search algorithm
with a scoring system where the highest score is to one that is
decided on.

The Ant Colony Optimization (ACO) algorithm was proposed by
Dorigo in 1992 in his PhD thesis [8]. His first algorithm aims to
mimic an ant colony where an ant searches for a path between
their colony and food source and this is used to search for an

https://orcid.org/0009-0004-8579-6833
https://orcid.org/0000-0001-6256-3114

DEU FMD 26(78) (2024) 519-527

520

optimal path in a graph. In his second paper [9], he applied this
method to the Travelling Salesman Problem (TSP). His search
proved that ACO had very promising results and encouraged to
apply this method to other optimization problems.

In 1997, Doringo improved his proposed algorithm and created a
new algorithm called Ant Colony System (ACS)[10]. In this
algorithm edge selection is biased towards favorability of the
edge with its pheromone level. At the end of each iteration, only
the best ant could update the global pheromone level.

In 2000, Stützle proposed the "Max-Min Ant System"(MMAS) [11]
to overcome ACO's poor performance when the instance is large
enough and demonstrated that ACO could be an effective solution
for hard combinatorial optimization problems. In his paper, he
proved that MMAS is currently the best-performing ACO
algorithm for Quadratic Assignment Problem (QAP) and TSP.

Chu [12] proposed another approach to the ACO algorithm and
added communication strategies to it in 2004. He called this
algorithm Parallel Ant Colony Optimization (PACO). In the
proposed algorithm, the population of ants is divided into
multiple groups, and seven communication methods are applied
to update the pheromone level between these groups. This
method outperforms the previously proposed ACO algorithms.

To increase the efficiency and collaboration of the ants in
searching the solution space, Hu and Li [13] proposed Continuous
Orthogonal Ant Colony (COAC) algorithm by using an orthogonal
design method where ants can explore the chosen domain more
efficiently and accurately.

In order to find more accurate results in TSP, Gupta et al. [14]
introduced a new algorithm called Recursive Ant Colony
Optimization (RACO). Their algorithm divides the search space
into multiple sub-spaces. After solving the TSP in these sub-
spaces, RACO selects the best solutions for each sub-space and
carries them to the next step. The algorithm runs until finds a
solution, and every process mentioned above repeats itself.

The term Beam Search was first suggested by Reddy [15] in 1977.
In 1987, Bisiani [16] implemented the Beam Search Algorithm as
a combination of the best-first and breadth-first searches. It only
searches for the best and prunes the tree which helps to reduce
memory usage.

Blum [17] was the first person to use the Beam Search algorithm
and ACO together to solve a Scheduling problem in 2005. He
called this method “Beam-ACO” and proved that Beam-ACO is
getting better results than standard ACO algorithms.

Proven that the Beam-ACO algorithm is better than the ACO
algorithm, Caldeira et al. [18] applied this method to a supply
chain management system. They have shown that Beam-ACO is
always faster and better than ACO in supply chain problems.
Although it’s slower than ACO, Beam-ACO still had better results
on logistic systems.

In 2008, Blum [19] applied Beam-ACO to the Simple Assembly
Line Balancing (SALB) problem and showed that Beam-ACO gives
the best solutions for the benchmark instances of the problem. He
mentioned that Beam-ACO optimally solved the majority of the
existing benchmark instances (SALB-1 problem). The solutions
obtained for the rest of the instances by Beam-ACO were nearly
optimal solutions.

In 2009, López-Ibánez et al. [20] applied Beam-ACO on TSP with
Time Windows (TSPTW) by replacing the bounding information
in Beam-ACO by stochastic sampling. Based on their
experimental results, they claim that their proposed algorithm
was the state-of-the-art method for TSP.

In 2010, López-Ibánez and Blum [21] improved their study [20]
by implementing one-opt local search to it. Their results
outperformed the results of the existing heuristic methods and
were able to find good approximations in a much shorter time.

In 2017, Simões et al. [22] applied a hybridized Beam Search
algorithm with a Population-based Ant Colony Optimization
algorithm and called it Beam Search with Population-based Ant
Colony Optimization (P-ACO). They applied P-ACO to a Multi-
rendezvous Spacecraft Trajectory Optimization problem. The P-
ACO algorithm had superior worst-case performance which
might be the preferable choice for the practical applications.

In general, genetic algorithms (GA) are utilized in literature. In
this paper, Beam-ACO and ACO are implemented and compared
to each other. In addition, studied a different variation of TSP by
adding the traffic congestion information to the TSP.

In Section 2, Materials and Methods are given by the formulation
of the problems, explanations of the algorithms and their pseudo
codes and their respected parameters. In Section 3, Experimental
Results were laid out by explaining how the test cases are done,
and giving the results in the figures and tables. Section 4 contains
the Discussion, where the results and the performances of the
two algorithms are compared. Section 5 includes the Conclusion
and Future Work, in which the concluding remarks and future
work for improvement are mentioned.

A combinatorial optimization problem known as the "Traveling
Salesman Problem" (TSP) [1] [17] is defined as follows. There is
a salesman who must travel to a given set of cities by visiting each
city exactly once and returning to the initial city from which he or
she began his or her tour. The goal of the salesman is to minimize
the total distance (or cost) of this tour. Mathematically, TSP is a
graph problem that searches for a Hamiltonian cycle on the given
nodes (i.e. cities) that has the minimum total weight (i.e. total
distance). The mathematical model is given below.

TSP is defined as a graph 𝐺 = (𝑉, 𝐴) where 𝑉 and 𝐴 are the sets
of cities and arcs between the cities, respectively. Let 𝑑𝑖,𝑗 define

the distance between the cities 𝑖 and 𝑗. Then the TSP can be
mathematically formulated as follows:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑑𝑖,𝑗𝑥𝑖,𝑗

𝑗∈𝑉𝑖∈𝑉

(1)

Subject to

∑ 𝑥𝑖,𝑗

𝑖∈𝑉 𝑖≠𝑗

= 1, ∀𝑗 ∈ 𝑉
(2)

∑ 𝑥𝑖,𝑗

𝑗∈𝑉 𝑖≠𝑗

= 1, ∀𝑖 ∈ 𝑉
(3)

∑ 𝑥𝑖,𝑗

𝑖,𝑗∈𝑆 𝑖≠𝑗

 ≤ |𝑆| − 1, 2 ≤ |𝑆| ≤ |𝑉| 𝑎𝑛𝑑 ∀𝑆

⊂ 𝑉

(4)

𝑥𝑖,𝑗 = {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

DEU FMD 26(78) (2024) 519-527

521

Equation (1) is the objective function of the TSP which aims to
minimize the tour distance. Equations (2) – (5) are the
constraints of the TSP. Equations (2) and (3) ensure that each city
is visited by the salesman exactly once. Equation (4) eliminates
the sub-tours in the TSP tour and Equation (5) is the decision
variable for selecting the arcs in the tour.

In this paper, two types of TSP are studied. The first one is the
classical TSP with the mathematical definition given above. We
proposed a second type of TSP in addition to the classical TSP. We
included traffic congestion information on each arc and updated
the objective function with Equation (6). In the function, 𝑐𝑖,𝑗

represents the traffic congestion unit which was randomly
generated for each arc in the problem from the set {1,2,3,4,5}.
Each value in the set represents the traffic density as “no traffic,
less traffic, normal, semi-heavy traffic, and heavy traffic”,
respectively.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖,𝑗𝑑𝑖,𝑗𝑥𝑖,𝑗

𝑗∈𝑉𝑖∈𝑉

(6)

2. Material and Methods

Since TSP is an NP-Hard problem, we used two well-known meta-
heuristic methods to solve the TSP in this study. We both
implemented the classical Ant Colony Optimization (ACO)
algorithm and the Beam Search ACO, as known as the Beam-ACO
algorithm.

ACO is a swarm intelligence method that was proposed by Marco
Dorigo in 1992 in his PhD thesis [8]. ACO mimics the collective
intelligent foraging behavior of ants. In the natural world, ants
begin their exploration of food randomly. They leave pheromone
hormones on the trails they traverse. Once they locate a food
resource then they keep adding more pheromones on the path
between the nest and the food. The pheromone hormones assist
other ants to follow the same trail for the same food source. The
shorter the distance between the food source and the nest the
greater the amount of pheromone. This results in shortening the
travel distances of the ants and directs the routes of the ants more
intelligently. Nevertheless, the pheromones are volatile meaning
it gradually evaporates in time. It means that more ant travels are
needed on the same path to attract the other ants to follow that
path. Consequently, the food sources that are farther away from
the nest are less preferred by the ants. ACO simulates all this
behavior in its search for the optimum tour for the TSP.

Beam search is a popular search algorithm in AI, particularly in
natural language processing. It keeps track of a collection of
potential sequences, building on an initial sequence by taking
into account a variety of potential following moves. Each choice
is given a likelihood score, and the highest-scoring sequences are
kept while the others are pruned.

The beam-ACO algorithm takes these 2 algorithms and combines
them. While the ant colony is working as usual, each and every
ant runs the Beam Search algorithm to decide which city to go to
next. When an ant is selecting the next city to move between
unvisited cities, calculates their probability and distances. Then
according to beam width, the amount of the best cities is selected
among the unvisited cities. The ant will select the next city
randomly within the selected cities, but the more probability the
city has the more likely the ant will choose that city and vice
versa.

2.1. Pseudocode of the Beam-Aco Algorithm

The GA procedure in this study is described below:

Initialize the Ant Population

Repeat

Construct the Tour of Each Ant

Evaluate Fitness Values of Each Ant Tour

Apply 2-Opt on Each Tour

Update Best Solution

Update Pheromone

Until (termination condition is satisfied)

Return Best Solution

2.2. Initialize the Ant Population

Several ants are randomly located at the cities in the initializing
of the ant population. The initial pheromone amounts on each arc
is set to 1. Every ant has a random path assigned by giving cities
and shuffling them. By shuffling the path for each ant, the initial
generation will have a uniformly distributed solution pool.

2.3. Constructing the Tour of Each Ant

Each ant starts moving from their first city to the next unvisited
city and continues from the current city to next unvisited city
until it finishes constructing its tour. Each unvisited city has a
probability of selection. This probability is highly influenced by
the pheromone amount on the arc to that city and the length of
(and traffic congestion on) that arc. In this study, the probability
of city selection is calculated as in [23]. The formula is given in
Equation (7).

𝑝𝑖,𝑗
𝑘 (𝑡) = {

[𝜏𝑖,𝑗(𝑡)𝛼] [𝜂𝑖,𝑗(𝑡)𝛽]

∑ [𝜏𝑖,𝑗(𝑡)𝛼] [𝜂𝑖,𝑗(𝑡)𝛽]𝑠∈𝑎𝑙𝑙𝑜𝑤𝑠𝑘

, 𝑗 ∈ 𝑎𝑙𝑙𝑜𝑤𝑠𝑘

0, 𝑗 ∉ 𝑎𝑙𝑙𝑜𝑤𝑠𝑘

(7)

where,

● 𝑝𝑖,𝑗
𝑘 (𝑡) is the probability of selecting a city by ant 𝑘 at

time 𝑡

● 𝜏𝑖,𝑗(𝑡) is the amount of pheromone on the arc between

city 𝑖 and 𝑗 at time 𝑡

● 𝜂𝑖,𝑗(𝑡) is the desirability of the arc between city 𝑖 and 𝑗

at time 𝑡 (typically 1/𝑑𝑖,𝑗)

● 𝛼 is a parameter that controls the influence of 𝜏𝑖,𝑗

𝛽 is a parameter that controls the influence of 𝜂𝑖,𝑗

In the classical ACO algorithm, at each city, an ant decides the next
unvisited city by considering the probabilities of all unvisited
cities. Although this approach explores all the possible candidate
cities, it is a time and memory-consuming process. Beam-ACO
speeds up and saves up from memory by limiting the choice of
the ants in a beam width. Beam width is a predefined number that
limits the unvisited city pool. Beam includes the number of cities
according to Beam Width. The probabilities (Eq. 7) of each city
are calculated beforehand, and the cities that have the best
probabilities are selected for the beam. Within the selected
unvisited cities, the city is selected randomly but the more
probability the city has, the more likely the ant chooses it as the
next city. The beam search procedure in this study is described
below:

DEU FMD 26(78) (2024) 519-527

522

Beam Search

Calculate Probabilities of Each City

Get Cities with Best Probabilities [Beam Width]

Choose Next City Randomly According to
Probability Ratio

2.4. Evaluate Fitness Values of Each Ant Tour

Once the ant tours are constructed, the fitness values of each tour
is also calculated. To calculate fitness values of each solution,
Equation (1) is used for the classical TSP scenario and Equation
(6) is used for TSP with traffic congestion scenario.

2.5. Apply 2-Opt on Each Tour

The current solutions obtained by the ants are improved by 2-
Opt. This algorithm was proposed by Croes [24]. 2-Opt local
search is a well-known and often used local search heuristic,
especially in permutation-based optimization problems such as
TSP. In 2-Opt method, two connection points (or edges in TSP) in
the permutation are successively broken and cross-connected
with the aim of reducing the fitness of the solution (i.e. total
distance or cost of the tour). If the new permutation’s fitness is
better than the current one then the original permutation is
replaced by the new permutation; otherwise, it remains
unchanged. 2-Opt repeats this process consecutively on each
edge in the tour and results in finding the best permutation
possible on the ant tour.

Figure 1. 2-Opt Local Search

In Fig. 1, the breaking and cross-connection of edges of a tour in
2-Opt local search algorithm is represented. Cities are shown in
circles with their indices. Directed arrows demonstrate the order
of the city sequence in the tour, and the lengths of these arrows
represent the distance between 2 cities. In the first diagram (a) of
Fig. 1, the path that an ant follows is changed by breaking the
connections between city 1 and 4, and the cities between 2 and 5.
Then, city 1 is connected to city 2, and city 4 is connected to city
5. This way the total distance of the ant’s tour is decreased, which

in turn, improves the fitness of the solution obtained by that ant.
This breaking and cross-connecting process is repeatedly applied
to all edges of the tour, until there is no improvement occur on
the total distance. In the end, 2-Opt returns the tour with the best
fitness that is found for the given tour.

2.6. Update Best Solution

After applying 2-Opt on each ant tour, the current best solution is
updated according to these newly obtained tours. The solution
with the best fitness value is assigned as the new best solution.

2.7. Update Pheromone

The final step in a generation of Beam-ACO is updating the
amount of pheromones on each arc. In other words, some amount
of pheromone evaporates before the next generation of ant
moves. This pheromone update is done with Equation 8.

 𝜏𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 + △ 𝜏𝑖,𝑗 (8)

where,

● 𝜏𝑖,𝑗 is the amount of pheromone on the arc between the

cities 𝑖 and 𝑗

● 𝜌 is the rate of pheromone evaporation

● △ 𝜏𝑖,𝑗 is the amount of pheromone deposited, typically

given by

△𝜏𝑖,𝑗

𝑘
 = {

1

𝐿𝑘

, 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑟𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

where 𝐿𝑘 is the distance of the 𝑘𝑡ℎ ant’s tour.

2.8. Termination Criteria

In our study, our Beam-ACO algorithm terminates either when it
finds the known optimal solution in literature for the related
problem instance or when it runs predefined number of
generations. In the latter case the overall best solution of all
generations is the result of Beam-ACO.

2.9. Beam-Aco Parameters

The values of the parameters in pheromone calculations and
updates in the Beam-ACO used in this paper are adapted from the
study [15]. The ant population size, beam width and iteration size
values are determined by an experimental study done on one of
the TSP instances used in this study which is “ch150.tsp”. The
values of these parameters that yielded to best results are given
in Table 1 below. Same parameters and values are also used for
ACO.

Table 1. Beam-ACO Parameters
Parameter Value

𝑚: number of ants in the Beam-ACO
population

200

𝛼: pheromone factor 1

𝛽: heuristic function factor 5

𝑄: pheromone constant 100

𝜌: evaporation rate 0.5

𝑏𝑤: beam width. 30% of 𝑛 (𝑛 is the
number of the cities)

DEU FMD 26(78) (2024) 519-527

523

𝑁: maximum number of iterations of
Beam-ACO

100

3. Experimental Results

The ACO and Beam-ACO algorithms used in this study are coded
in Java programming language on a laptop computer with i7
processor and 16 GB RAM. The graphics of the best results are
coded in Python programming language.

Four well-known TSP instances were selected in the
experimental studies: berlin52.tsp, ch130.tsp, ch150.tsp,
a280.tsp. These instances can be found at http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/tsp/. The numbers on the
files are represent the number of the cities that instance contains.

Two scenarios of the TSP were taken into consideration: classical
TSP and TSP with traffic congestion. For each scenario, each
instance was run 30 times for each ACO and Beam-ACO
algorithms.

In the first scenario, the performances of ACO and Beam-ACO
algorithms were compared against each other and the optimum
distances known in TSP literature for the related instance. Table
2 contains the experimental results of the first scenario. In Table
2, n is the number of cities that the instances have and provided.
Literature Optimum values are obtained from TSBLIB95 at
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/.
ACO and Beam-ACO best values are calculated according to
equation (1) in Table 2 and equation (6) in Table 3.

Table 2. The performances of ACO and Beam-ACO for classical TSP

Instance n Literature
Optimum

ACO
Best

ACO’s Convergence
to the Optimum

Beam-ACO

Best

Beam-ACO’s
Convergence to

the Optimum

ACO
Average

Beam-
ACO

Average

berlin52 52 7542 7542 0.000% 7542 0.000% 7542 7542

ch130 130 6110 6144 0.556% 6144 0.556% 6167.8 6165.43

ch150 150 6528 6544 0.245% 6540 0.184% 6577.56 6579

a280 280 2580 2649 2.674% 2647 2.597% 2674.5 2672.8

ACO and Beam-ACO could find optimum values of berlin52.tsp
instance. They, however, could not perform the same success on
the other three instances. It is because, as the number of cities
increases, the search space expands exponentially. On the other
hand, while both ACO and Beam-ACO found the same best value

for the ch130.tsp instance, Beam-ACO outperformed ACO with
regards to its convergence to the optimum values for the other
two instances, ch150.tsp and a280.tsp. Figure 2 shows the
graphical results of both ACO’s and Beam-ACO’s best solutions in
Euclidean space for the first scenario.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

DEU FMD 26(78) (2024) 519-527

524

Figure 2. The graphics of ACO and Beam-ACO result in Euclidean space for the first scenario

The second scenario includes the traffic congestion information
on the arcs between each city. This information consists of
numbers from 1 to 5 representing the intense of traffic on that
arc. Each color in Figure corresponds to the density of traffic
congestion such as “no traffic, less traffic, normal, semi-heavy
traffic, and heavy traffic” with colors “1-lime, 2-turquoise, 3-gold,
4-red, 5-brown” respectively. These values are randomly
assigned for each instance. To the best of our knowledge, this is

the first study that proposed a TSP model which includes traffic
congestion information on the arcs in the selected TSP instances
and that the ACO and Beam-ACO algorithms are applied on such
a setup. Since the optimum values for this TSP model do not exist
in literature, the performances of ACO and Beam-ACO algorithms
in this second scenario were compared against each other. Table
3 contains the experimental results of the second scenario.

Table 3. The performances of ACO and Beam-ACO for the TSP model that includes traffic congestion

Instance n ACO Best Beam-ACO Best ACO Average Beam-ACO Average

berlin52 52 18942 18786 19156.2 19117.1

ch130 130 15191 14953 15524.6 15516.2

DEU FMD 26(78) (2024) 519-527

525

ch150 150 17583 17545 17955.1 17883

a280 280 7472 7562 7677.1 7704.46

As the result shows in Table 3, Beam-ACO algorithm has a better
performance on the majority of the instances both in best and
average optimum values. ACO has better results on a280.tsp
because as it is seen in the figures, some of the location has
multiple option with exact same distance which is challenging for
the algorithms. Adding traffic levels to the process, solving the
TSP become harder since the objective function of this new TSP
model contains travel times along with distances on each path.
Both ACO and Beam-ACO algorithms try to find the fastest path

to complete TSP while avoiding high-level traffic on the path. As
it is seen in Figure 3 below, ACO and Beam-ACO aim to minimize
the selection of high distance and traffic paths. The chosen high
traffic paths are mostly short distances that can be travelled
faster. Since Beam-ACO is utilizing the Beam Search Algorithm for
selecting the next city to move, it has better results than ACO in
general. Figure 3 shows the graphical results of both ACO’s and
Beam-ACO’s best solutions in Euclidean space for the second
scenario.

DEU FMD 26(78) (2024) 519-527

526

Figure 3. The graphics of ACO and Beam-ACO results in Euclidean space for the second scenario

4. Discussions

For the classical TSP version studied in this paper, the literature
optimum values for the berlin52.tsp instance was found by ACO
and Beam-ACO as seen in Table 2. However, these two algorithms
could not perform the same success for other instances. It's
because the search space grows exponentially with the number
of cities. While both algorithms found the same best value for the
ch130.tsp instance, in terms of convergence to the optimal values
for the other two instances of ch150.tsp and a280.tsp, Beam-ACO
performed better than ACO.

For the TSP with traffic congestion version of the experimental
results as shown in Table 3, the Beam-ACO algorithm performs
better than ACO in terms of both average and best values for the
majority of instances. When traffic levels are added to the
equation, the TSP becomes more difficult to solve since the new
TSP model's objective function includes travel times and path
lengths. To find the fastest route, both algorithms avoid high-
level traffic paths. It’s visible in Figure 3, both algorithms are
avoiding such path and the chosen high-level traffic paths are
mostly short distances. Beam-ACO has better results in general
because in the city selection process, Beam-Search performed
better search than classical ACO.

5. Conclusions and Future Work

In this study, a TSP was studied with two versions. The first
version is the classical TSP while the second one includes traffic
congestion data on the arcs of the classical one. As solution
methods, we used state-of-the-art ACO and Beam-ACO enhanced
by 2-Opt local search heuristic. The experimental studies of this
paper indicate that Beam-ACO performed more successful results
than ACO in both TSP versions on the same problem instances.

The main contribution of this paper is to proposing a TSP version
with traffic congestion data and comparing the performance of
two state-of-the-art swarm intelligent optimization methods, i.e.
ACO and Beam-ACO. This version of TSP brings a new dimension
to the conventional TSP by changing the objective of the problem
from distance minimization to travel time minimization of the
salesman.

As a future work, the proposed TSP model can be modified by
replacing the randomly generated traffic congestion values with
real-life case scenarios. This real-life data can even be arranged
dynamically, that is, the traffic congestion data may vary in time
as the salesman travels his or her tour.

Ethics committee approval and conflict of interest statement

The prepared article does not require ethical committee
approval. There is no conflict of interest with any person or
institution in the prepared article.

Author Contribution Statement

Mustafa Orçun Uslu made contributions in coding the main
algorithms, running the experimental studies, and writing of the
article. Kazım Erdoğdu made contributions in developing the
model, coding the heuristics, improvement of the parameters,
writing and proof reading the article.

References

[1] G. Laporte, “The traveling salesman problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research, vol.
59, no. 2, pp. 231–247, Jun. 1992, doi: 10.1016/0377-2217(92)90138-Y.

[2] S. H. Rubin, T. Bouabana-Tebibel, Y. Hoadjli, and Z. Ghalem, “Reusing the
NP-Hard Traveling-Salesman Problem to Demonstrate That P~NP
(Invited Paper),” in 2016 IEEE 17th International Conference on
Information Reuse and Integration (IRI), Pittsburgh, PA, USA: IEEE, Jul.
2016, pp. 574–581. doi: 10.1109/IRI.2016.84.

[3] Y. S. Chang and H. J. Lee, “Optimal delivery routing with wider drone-
delivery areas along a shorter truck-route,” Expert Systems with
Applications, vol. 104, pp. 307–317, Aug. 2018, doi:
10.1016/j.eswa.2018.03.032.

[4] C. H. Cheng, Y. P. Gupta, W. H. Lee, and K. F. Wong, “A TSP-based heuristic
for forming machine groups and part families,” International Journal of
Production Research, vol. 36, no. 5, pp. 1325–1337, May 1998, doi:
10.1080/002075498193345.

[5] V. Shinkarenko, S. Nezdoyminov, S. Galasyuk, and L. Shynkarenko,
“Optimization of the tourist route by solving the problem of a salesman,”
Journ. Geol., Geogr., and Geoec.., vol. 29, no. 3, pp. 572–579, Oct. 2020,
doi: 10.15421/112052.

[6] E. Duman, M. H. Ozcelik, and A. N. Ceranoglu, “A TSP (1,2) application
arising in cable assembly shops,” Journal of the Operational Research
Society, vol. 56, no. 6, pp. 642–648, Jun. 2005, doi:
10.1057/palgrave.jors.2601850.

[7] A. Meijer, M. A. J. Huijbregts, E. Hertwich, and L. Reijnders, “Including
human health damages due to road traffic in life cycle assessment of
dwellings,” Int. J. Life Cycle Assess., vol. 11, pp. 64–71, Apr. 2006, doi:
10.1065/lca2006.04.013.

[8] A. Colorni, M. Dorigo, and V. Maniezzo, “An Investigation of Some
Properties of an Ant Algorithm,” in PARALLEL PROBLEM SOLVING
FROM NATURE, 2, R. Manner and B. Manderick, Eds., Amsterdam:
Elsevier Science Publ B V, 1992, pp. 509–520. Accessed: Nov. 20, 2023.
[Online]. Available: https://www.webofscience.com/wos/woscc/full-
record/WOS:A1992BX92H00051(overlay:export/exp)

[9] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed Optimization by Ant
Colonies,” in TOWARD A PRACTICE OF AUTONOMOUS SYSTEMS:
PROCEEDINGS OF THE FIRST EUROPEAN CONFERENCE ON ARTIFICIAL
LIFE, F. Varela and P. Bourgine, Eds., Cambridge: M I T Press, 1992, pp.
134–142. Accessed: Nov. 20, 2023. [Online]. Available:
https://www.webofscience.com/wos/woscc/full-
record/WOS:A1992BW87V00017

DEU FMD 26(78) (2024) 519-527

527

[10] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative
learning approach to the traveling salesman problem,” IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53–66, Apr.
1997, doi: 10.1109/4235.585892.

[11] “MAX–MIN Ant System - ScienceDirect.” Accessed: Nov. 20, 2023.
[Online]. Available:
https://www.sciencedirect.com/science/article/abs/pii/S0167739X00
000431?via%3Dihub

[12] S.-C. Chu, J. F. Roddick, and J.-S. Pan, “Ant colony system with
communication strategies,” Information Sciences, vol. 167, no. 1, pp. 63–
76, Dec. 2004, doi: 10.1016/j.ins.2003.10.013.

[13] X.-M. Hu, J. Zhang, and Y. Li, “Orthogonal Methods Based Ant Colony
Search for Solving Continuous Optimization Problems,” J. Comput. Sci.
Technol., vol. 23, no. 1, pp. 2–18, Jan. 2008, doi: 10.1007/s11390-008-
9111-5.

[14] D. K. Gupta, Y. Arora, U. K. Singh, and J. P. Gupta, “Recursive Ant Colony
Optimization for estimation of parameters of a function,” in 2012 1st
International Conference on Recent Advances in Information
Technology (RAIT), Mar. 2012, pp. 448–454. doi:
10.1109/RAIT.2012.6194620.

[15] “Speech Understanding Systems. Summary of Results of the Five-Year
Research Effort at Carnegie-Mellon University.” Accessed: Dec. 21, 2023.
[Online]. Available: https://apps.dtic.mil/sti/citations/ADA049288

[16] R. Bisiani, “Beam search,” Encyclopedia of Artificial Intelligence. Wiley &
Sons, pp. 56–58, 1987.

[17] C. Blum, “Beam-ACO—hybridizing ant colony optimization with beam
search: an application to open shop scheduling,” Computers &
Operations Research, vol. 32, no. 6, pp. 1565–1591, Jun. 2005, doi:
10.1016/j.cor.2003.11.018.

[18] J. L. Caldeira, R. C. Azevedo, C. A. Silva, and J. M. C. Sousa, “Supply-Chain
Management Using ACO and Beam-ACO Algorithms,” in 2007 IEEE
International Fuzzy Systems Conference, Jul. 2007, pp. 1–6. doi:
10.1109/FUZZY.2007.4295615.

[19] C. Blum, “Beam-ACO for Simple Assembly Line Balancing,” INFORMS J.
Comput., vol. 20, no. 4, pp. 618–627, FAL 2008, doi:
10.1287/ijoc.1080.0271.

[20] M. Lopez-Ibanez, C. Blum, D. Thiruvady, A. T. Ernst, and B. Meyer, “Beam-
ACO Based on Stochastic Sampling for Makespan Optimization
Concerning the TSP with Time Windows,” in EVOLUTIONARY
COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, C.
Cotta and P. Crowling, Eds., Berlin: Springer-Verlag Berlin, 2009, pp. 97-
+. Accessed: Nov. 20, 2023. [Online]. Available:
https://www.webofscience.com/wos/woscc/full-
record/WOS:000265680900009

[21] M. López-Ibáñez and C. Blum, “Beam-ACO for the travelling salesman
problem with time windows,” Computers & Operations Research, vol. 37,
no. 9, pp. 1570–1583, Sep. 2010, doi: 10.1016/j.cor.2009.11.015.

[22] L. F. Simões, D. Izzo, E. Haasdijk, and A. E. Eiben, “Multi-rendezvous
Spacecraft Trajectory Optimization with Beam P-ACO,” in Evolutionary
Computation in Combinatorial Optimization, B. Hu and M. López-Ibáñez,
Eds., in Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2017, pp. 141–156. doi: 10.1007/978-3-319-55453-2_10.

[23] [T. Fei et al., “Research on improved ant colony optimization for traveling
salesman problem,” MBE, vol. 19, no. 8, pp. 8152–8186, 2022, doi:
10.3934/mbe.2022381.

[24] G. A. Croes, “A Method for Solving Traveling-Salesman Problems,”
Operations Research, vol. 6, no. 6, pp. 791–812, Dec. 1958, doi:
10.1287/opre.6.6.791.

	1. Introduction
	2. Material and Methods
	3. Experimental Results
	4. Discussions
	5. Conclusions and Future Work
	Ethics committee approval and conflict of interest statement

	Author Contribution Statement
	References

