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Abstract 

The Traveling Salesman Problem (TSP) is a well-known combinatorial optimization problem that has various implications in a variety 
of industries. Even the purest formulation of TSP has applications on from logistics routes to microchip manufacturing, unexpectedly, 
it can be used on DNA sequencing with slight modification as a sub-problem. In this paper, two versions of TSP were studied, a classical 
TSP and the TSP containing traffic congestion data. Two state-of-the-art solution methods were used, Ant Colony Optimization (ACO) 
and Beam-ACO. These algorithms were hybridized with 2-Opt local search and their performances compared on the same benchmark 
instances. The experimental results show the efficiency of Beam-ACO compared to ACO. 
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Ö  

Gezgin Satıcı Problemi (GSP), çeşitli endüstrilerde çeşitli etkileri olan, iyi bilinen bir kombinatoryal optimizasyon problemidir. GSP'nin 
en saf formülasyonu bile lojistik yollardan mikroçip üretimine kadar çeşitli uygulamalara sahiptir. Beklenmedik bir şekilde, bir alt 
problem olarak DNA dizilimi için küçük değişikliklerle kullanılabilir. Bu yazıda GSP'nin iki versiyonu incelenmiştir: klasik bir TSP ve 
trafik sıkışıklığı verilerini içeren GSP. Son teknoloji ürünü iki çözüm yöntemi kullanıldı: Karınca Kolonisi Optimizasyonu (KKO) ve 
Işın-KKO. Bu algoritmalar 2-Opt yerel arama ile hibritleştirildi ve performansları aynı kıyaslama örnekleriyle karşılaştırıldı. Deney 
sonuçları Işın-KKO'nun KKO'ya kıyasla verimliliğini göstermektedir. 

Anahtar Kelimeler: Gezgin Satıcı Problemi, Karınca Kolonisi Optimizasyonu, Beam-KKO, 2-Opt, Sürü Zekası Optimizasyonu, Trafik Sıkışıklığı 

 

1. Introduction 

The Traveling Salesman Problem (TSP) is a challenging 
optimization problem in which a salesman must find the shortest 
tour that visits a set of cities exactly once and returns to the 
starting point [1]. 

The challenging part of the TSP is where the problem 
exponentially increases the computation cost. As the number of 
cities increases, the number of possible routes grows at a factorial 
rate, making exhaustive search impractical for larger instances. 
Furthermore, TSP is classified as NP-hard [2], implying that there 
is no known polynomial-time algorithm to find the optimal 
solution efficiently. 

TSP has implications in a variety of industries. It helps businesses 
optimize their delivery routes, saving them time and money on 
fuel [3]. It assists in the design of effective machine routes in 
manufacturing [4], increasing production efficiency. Tourists 
employ TSP to plan itineraries that cover multiple attractions 
while minimizing travel time [5]. In network design, TSP can be 
used to determine the shortest cable layout in a network [6]. 

In real life, traffic is known to be a problem for everyone. It causes 
money and time loss as well as environmental damage and 
negative effects on human health [7]. The proposed algorithms 
try to solve this problem with a different version of TSP, created 
a simple model and called it “TSP with Traffic Congestion”. 

This paper combines the Beam Search algorithm with the Ant 
Colony Algorithm (ACO) and compares it with a standard Ant 
Colony Algorithm while adding an element to the problem as 
“Traffic between cities”. While the ACO is one of the swarm 
intelligent methods that is inspired by real ant colonies and 
proposed by Marco Dorigo [8, 9]. The algorithm mimics real-life 
ants that try to find food source and return them to nest. The 
Beam Search Algorithm is a method used in many Natural 
Language Processing (NLP) and Speech Recognition Models for 
decision making. The algorithm is like a tree search algorithm 
with a scoring system where the highest score is to one that is 
decided on.  

The Ant Colony Optimization (ACO) algorithm was proposed by 
Dorigo in 1992 in his PhD thesis [8]. His first algorithm aims to 
mimic an ant colony where an ant searches for a path between 
their colony and food source and this is used to search for an 
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optimal path in a graph. In his second paper [9], he applied this 
method to the Travelling Salesman Problem (TSP). His search 
proved that ACO had very promising results and encouraged to 
apply this method to other optimization problems. 

In 1997, Doringo improved his proposed algorithm and created a 
new algorithm called Ant Colony System (ACS)[10]. In this 
algorithm edge selection is biased towards favorability of the 
edge with its pheromone level. At the end of each iteration, only 
the best ant could update the global pheromone level. 

In 2000, Stützle proposed the "Max-Min Ant System"(MMAS) [11] 
to overcome ACO's poor performance when the instance is large 
enough and demonstrated that ACO could be an effective solution 
for hard combinatorial optimization problems. In his paper, he 
proved that MMAS is currently the best-performing ACO 
algorithm for Quadratic Assignment Problem (QAP) and TSP. 

Chu [12] proposed another approach to the ACO algorithm and 
added communication strategies to it in 2004. He called this 
algorithm Parallel Ant Colony Optimization (PACO). In the 
proposed algorithm, the population of ants is divided into 
multiple groups, and seven communication methods are applied 
to update the pheromone level between these groups. This 
method outperforms the previously proposed ACO algorithms. 

To increase the efficiency and collaboration of the ants in 
searching the solution space, Hu and Li [13] proposed Continuous 
Orthogonal Ant Colony (COAC) algorithm by using an orthogonal 
design method where ants can explore the chosen domain more 
efficiently and accurately. 

In order to find more accurate results in TSP, Gupta et al. [14] 
introduced a new algorithm called Recursive Ant Colony 
Optimization (RACO). Their algorithm divides the search space 
into multiple sub-spaces. After solving the TSP in these sub-
spaces, RACO selects the best solutions for each sub-space and 
carries them to the next step. The algorithm runs until finds a 
solution, and every process mentioned above repeats itself. 

The term Beam Search was first suggested by Reddy [15] in 1977. 
In 1987, Bisiani [16] implemented the Beam Search Algorithm as 
a combination of the best-first and breadth-first searches. It only 
searches for the best and prunes the tree which helps to reduce 
memory usage. 

Blum [17] was the first person to use the Beam Search algorithm 
and ACO together to solve a Scheduling problem in 2005. He 
called this method “Beam-ACO” and proved that Beam-ACO is 
getting better results than standard ACO algorithms. 

Proven that the Beam-ACO algorithm is better than the ACO 
algorithm, Caldeira et al. [18] applied this method to a supply 
chain management system. They have shown that Beam-ACO is 
always faster and better than ACO in supply chain problems. 
Although it’s slower than ACO, Beam-ACO still had better results 
on logistic systems. 

In 2008, Blum [19] applied Beam-ACO to the Simple Assembly 
Line Balancing (SALB) problem and showed that Beam-ACO gives 
the best solutions for the benchmark instances of the problem. He 
mentioned that Beam-ACO optimally solved the majority of the 
existing benchmark instances (SALB-1 problem). The solutions 
obtained for the rest of the instances by Beam-ACO were nearly 
optimal solutions. 

In 2009, López-Ibánez et al. [20] applied Beam-ACO on TSP with 
Time Windows (TSPTW) by replacing the bounding information 
in Beam-ACO by stochastic sampling. Based on their 
experimental results, they claim that their proposed algorithm 
was the state-of-the-art method for TSP. 

In 2010, López-Ibánez and Blum [21] improved their study [20] 
by implementing one-opt local search to it. Their results 
outperformed the results of the existing heuristic methods and 
were able to find good approximations in a much shorter time.  

In 2017, Simões et al. [22] applied a hybridized Beam Search 
algorithm with a Population-based Ant Colony Optimization 
algorithm and called it Beam Search with Population-based Ant 
Colony Optimization (P-ACO). They applied P-ACO to a Multi-
rendezvous Spacecraft Trajectory Optimization problem. The P-
ACO algorithm had superior worst-case performance which 
might be the preferable choice for the practical applications. 

In general, genetic algorithms (GA) are utilized in literature. In 
this paper, Beam-ACO and ACO are implemented and compared 
to each other. In addition, studied a different variation of TSP by 
adding the traffic congestion information to the TSP. 

In Section 2, Materials and Methods are given by the formulation 
of the problems, explanations of the algorithms and their pseudo 
codes and their respected parameters. In Section 3, Experimental 
Results were laid out by explaining how the test cases are done, 
and giving the results in the figures and tables. Section 4 contains 
the Discussion, where the results and the performances of the 
two algorithms are compared. Section 5 includes the Conclusion 
and Future Work, in which the concluding remarks and future 
work for improvement are mentioned. 

A combinatorial optimization problem known as the "Traveling 
Salesman Problem" (TSP) [1] [17] is defined as follows. There is 
a salesman who must travel to a given set of cities by visiting each 
city exactly once and returning to the initial city from which he or 
she began his or her tour. The goal of the salesman is to minimize 
the total distance (or cost) of this tour. Mathematically, TSP is a 
graph problem that searches for a Hamiltonian cycle on the given 
nodes (i.e. cities) that has the minimum total weight (i.e. total 
distance). The mathematical model is given below. 

TSP is defined as a graph 𝐺 = (𝑉, 𝐴) where 𝑉 and 𝐴 are the sets 
of cities and arcs between the cities, respectively. Let 𝑑𝑖,𝑗 define 

the distance between the cities 𝑖 and 𝑗. Then the TSP can be 
mathematically formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑ ∑ 𝑑𝑖,𝑗𝑥𝑖,𝑗

𝑗∈𝑉𝑖∈𝑉

 
(1) 

Subject to 

∑ 𝑥𝑖,𝑗

𝑖∈𝑉 𝑖≠𝑗 

= 1,              ∀𝑗 ∈ 𝑉 
(2) 

∑ 𝑥𝑖,𝑗

𝑗∈𝑉 𝑖≠𝑗 

= 1,              ∀𝑖 ∈ 𝑉 
(3) 

∑ 𝑥𝑖,𝑗

𝑖,𝑗∈𝑆 𝑖≠𝑗 

   ≤   |𝑆| − 1,           2 ≤ |𝑆| ≤ |𝑉|  𝑎𝑛𝑑  ∀𝑆

⊂ 𝑉 

(4) 

𝑥𝑖,𝑗 =  {
1, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑜𝑢𝑟
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(5) 
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Equation (1) is the objective function of the TSP which aims to 
minimize the tour distance. Equations (2) – (5) are the 
constraints of the TSP. Equations (2) and (3) ensure that each city 
is visited by the salesman exactly once. Equation (4) eliminates 
the sub-tours in the TSP tour and Equation (5) is the decision 
variable for selecting the arcs in the tour. 

In this paper, two types of TSP are studied. The first one is the 
classical TSP with the mathematical definition given above. We 
proposed a second type of TSP in addition to the classical TSP. We 
included traffic congestion information on each arc and updated 
the objective function with Equation (6). In the function, 𝑐𝑖,𝑗  

represents the traffic congestion unit which was randomly 
generated for each arc in the problem from the set {1,2,3,4,5}. 
Each value in the set represents the traffic density as “no traffic, 
less traffic, normal, semi-heavy traffic, and heavy traffic”, 
respectively. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑ ∑ 𝑐𝑖,𝑗𝑑𝑖,𝑗𝑥𝑖,𝑗

𝑗∈𝑉𝑖∈𝑉

 
(6) 

2. Material and Methods 

Since TSP is an NP-Hard problem, we used two well-known meta-
heuristic methods to solve the TSP in this study. We both 
implemented the classical Ant Colony Optimization (ACO) 
algorithm and the Beam Search ACO, as known as the Beam-ACO 
algorithm.  

ACO is a swarm intelligence method that was proposed by Marco 
Dorigo in 1992 in his PhD thesis [8]. ACO mimics the collective 
intelligent foraging behavior of ants. In the natural world, ants 
begin their exploration of food randomly. They leave pheromone 
hormones on the trails they traverse. Once they locate a food 
resource then they keep adding more pheromones on the path 
between the nest and the food. The pheromone hormones assist 
other ants to follow the same trail for the same food source. The 
shorter the distance between the food source and the nest the 
greater the amount of pheromone. This results in shortening the 
travel distances of the ants and directs the routes of the ants more 
intelligently. Nevertheless, the pheromones are volatile meaning 
it gradually evaporates in time. It means that more ant travels are 
needed on the same path to attract the other ants to follow that 
path. Consequently, the food sources that are farther away from 
the nest are less preferred by the ants. ACO simulates all this 
behavior in its search for the optimum tour for the TSP. 

Beam search is a popular search algorithm in AI, particularly in 
natural language processing. It keeps track of a collection of 
potential sequences, building on an initial sequence by taking 
into account a variety of potential following moves. Each choice 
is given a likelihood score, and the highest-scoring sequences are 
kept while the others are pruned.  

The beam-ACO algorithm takes these 2 algorithms and combines 
them. While the ant colony is working as usual, each and every 
ant runs the Beam Search algorithm to decide which city to go to 
next. When an ant is selecting the next city to move between 
unvisited cities, calculates their probability and distances. Then 
according to beam width, the amount of the best cities is selected 
among the unvisited cities. The ant will select the next city 
randomly within the selected cities, but the more probability the 
city has the more likely the ant will choose that city and vice 
versa. 

2.1. Pseudocode of the Beam-Aco Algorithm 

The GA procedure in this study is described below: 

Initialize the Ant Population 

Repeat 

Construct the Tour of Each Ant 

Evaluate Fitness Values of Each Ant Tour 

Apply 2-Opt on Each Tour 

Update Best Solution 

Update Pheromone 

Until (termination condition is satisfied) 

Return Best Solution 

2.2. Initialize the Ant Population 

Several ants are randomly located at the cities in the initializing 
of the ant population. The initial pheromone amounts on each arc 
is set to 1. Every ant has a random path assigned by giving cities 
and shuffling them. By shuffling the path for each ant, the initial 
generation will have a uniformly distributed solution pool. 

2.3. Constructing the Tour of Each Ant 

Each ant starts moving from their first city to the next unvisited 
city and continues from the current city to next unvisited city 
until it finishes constructing its tour. Each unvisited city has a 
probability of selection. This probability is highly influenced by 
the pheromone amount on the arc to that city and the length of 
(and traffic congestion on) that arc. In this study, the probability 
of city selection is calculated as in [23]. The formula is given in 
Equation (7). 

 

𝑝𝑖,𝑗
𝑘 (𝑡) =  {

[𝜏𝑖,𝑗(𝑡)𝛼] [𝜂𝑖,𝑗(𝑡)𝛽]

∑ [𝜏𝑖,𝑗(𝑡)𝛼] [𝜂𝑖,𝑗(𝑡)𝛽]𝑠∈𝑎𝑙𝑙𝑜𝑤𝑠𝑘

,  𝑗 ∈  𝑎𝑙𝑙𝑜𝑤𝑠𝑘  

0, 𝑗 ∉  𝑎𝑙𝑙𝑜𝑤𝑠𝑘 

 

 

(7) 

where, 

● 𝑝𝑖,𝑗
𝑘 (𝑡) is the probability of selecting a city by ant 𝑘 at 

time 𝑡 

● 𝜏𝑖,𝑗(𝑡) is the amount of pheromone on the arc between 

city 𝑖 and 𝑗 at time 𝑡 

● 𝜂𝑖,𝑗(𝑡) is the desirability of the arc between city 𝑖 and 𝑗 

at time 𝑡 (typically 1/𝑑𝑖,𝑗) 

● 𝛼 is a parameter that controls the influence of 𝜏𝑖,𝑗  

𝛽 is a parameter that controls the influence of 𝜂𝑖,𝑗 

In the classical ACO algorithm, at each city, an ant decides the next 
unvisited city by considering the probabilities of all unvisited 
cities. Although this approach explores all the possible candidate 
cities, it is a time and memory-consuming process. Beam-ACO 
speeds up and saves up from memory by limiting the choice of 
the ants in a beam width. Beam width is a predefined number that 
limits the unvisited city pool. Beam includes the number of cities 
according to Beam Width. The probabilities (Eq. 7) of each city 
are calculated beforehand, and the cities that have the best 
probabilities are selected for the beam. Within the selected 
unvisited cities, the city is selected randomly but the more 
probability the city has, the more likely the ant chooses it as the 
next city. The beam search procedure in this study is described 
below: 
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Beam Search 

Calculate Probabilities of Each City 

Get Cities with Best Probabilities [Beam Width] 

Choose Next City Randomly According to 
Probability Ratio 

 

2.4. Evaluate Fitness Values of Each Ant Tour 

Once the ant tours are constructed, the fitness values of each tour 
is also calculated. To calculate fitness values of each solution, 
Equation (1) is used for the classical TSP scenario and Equation 
(6) is used for TSP with traffic congestion scenario. 

2.5. Apply 2-Opt on Each Tour 

The current solutions obtained by the ants are improved by 2-
Opt. This algorithm was proposed by Croes [24]. 2-Opt local 
search is a well-known and often used local search heuristic, 
especially in permutation-based optimization problems such as 
TSP. In 2-Opt method, two connection points (or edges in TSP) in 
the permutation are successively broken and cross-connected 
with the aim of reducing the fitness of the solution (i.e. total 
distance or cost of the tour). If the new permutation’s fitness is 
better than the current one then the original permutation is 
replaced by the new permutation; otherwise, it remains 
unchanged. 2-Opt repeats this process consecutively on each 
edge in the tour and results in finding the best permutation 
possible on the ant tour. 

 

Figure 1. 2-Opt Local Search 

In Fig. 1, the breaking and cross-connection of edges of a tour in 
2-Opt local search algorithm is represented. Cities are shown in 
circles with their indices. Directed arrows demonstrate the order 
of the city sequence in the tour, and the lengths of these arrows 
represent the distance between 2 cities. In the first diagram (a) of 
Fig. 1, the path that an ant follows is changed by breaking the 
connections between city 1 and 4, and the cities between 2 and 5. 
Then, city 1 is connected to city 2, and city 4 is connected to city 
5. This way the total distance of the ant’s tour is decreased, which 

in turn, improves the fitness of the solution obtained by that ant. 
This breaking and cross-connecting process is repeatedly applied 
to all edges of the tour, until there is no improvement occur on 
the total distance. In the end, 2-Opt returns the tour with the best 
fitness that is found for the given tour. 

2.6. Update Best Solution 

After applying 2-Opt on each ant tour, the current best solution is 
updated according to these newly obtained tours. The solution 
with the best fitness value is assigned as the new best solution. 

2.7. Update Pheromone 

The final step in a generation of Beam-ACO is updating the 
amount of pheromones on each arc. In other words, some amount 
of pheromone evaporates before the next generation of ant 
moves. This pheromone update is done with Equation 8. 

 𝜏𝑖,𝑗 = (1 − 𝜌)𝜏𝑖,𝑗 + △ 𝜏𝑖,𝑗  (8) 

where, 

● 𝜏𝑖,𝑗  is the amount of pheromone on the arc between the 

cities 𝑖 and 𝑗 

● 𝜌 is the rate of pheromone evaporation 

● △ 𝜏𝑖,𝑗 is the amount of pheromone deposited, typically 

given by 
 

 
△𝜏𝑖,𝑗

𝑘
 =  {

1

𝐿𝑘

, 𝑖𝑓 𝑎𝑛𝑡 𝑘 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑎𝑟𝑐 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

 

(9) 

where 𝐿𝑘 is the distance of the 𝑘𝑡ℎ ant’s tour. 

2.8. Termination Criteria 

In our study, our Beam-ACO algorithm terminates either when it 
finds the known optimal solution in literature for the related 
problem instance or when it runs predefined number of 
generations. In the latter case the overall best solution of all 
generations is the result of Beam-ACO. 

2.9. Beam-Aco Parameters 

The values of the parameters in pheromone calculations and 
updates in the Beam-ACO used in this paper are adapted from the 
study [15]. The ant population size, beam width and iteration size 
values are determined by an experimental study done on one of 
the TSP instances used in this study which is “ch150.tsp”. The 
values of these parameters that yielded to best results are given 
in Table 1 below. Same parameters and values are also used for 
ACO. 

Table 1. Beam-ACO Parameters 
Parameter Value 

𝑚: number of ants in the Beam-ACO 
population 

200 

𝛼: pheromone factor 1 

𝛽: heuristic function factor 5 

𝑄: pheromone constant 100 

𝜌: evaporation rate 0.5 

𝑏𝑤: beam width. 30% of 𝑛 (𝑛 is the 
number of the cities) 
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𝑁: maximum number of iterations of 
Beam-ACO 

100 

3. Experimental Results 

The ACO and Beam-ACO algorithms used in this study are coded 
in Java programming language on a laptop computer with i7 
processor and 16 GB RAM. The graphics of the best results are 
coded in Python programming language.  

Four well-known TSP instances were selected in the 
experimental studies: berlin52.tsp, ch130.tsp, ch150.tsp, 
a280.tsp. These instances can be found at http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/tsp/. The numbers on the 
files are represent the number of the cities that instance contains.  

Two scenarios of the TSP were taken into consideration: classical 
TSP and TSP with traffic congestion. For each scenario, each 
instance was run 30 times for each ACO and Beam-ACO 
algorithms.  

In the first scenario, the performances of ACO and Beam-ACO 
algorithms were compared against each other and the optimum 
distances known in TSP literature for the related instance. Table 
2 contains the experimental results of the first scenario. In Table 
2, n is the number of cities that the instances have and provided. 
Literature Optimum values are obtained from TSBLIB95 at 
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/. 
ACO and Beam-ACO best values are calculated according to 
equation (1) in Table 2 and equation (6) in Table 3. 

 

Table 2. The performances of ACO and Beam-ACO for classical TSP 

Instance n Literature 
Optimum 

ACO 
Best 

ACO’s Convergence 
to the Optimum 

Beam-ACO 

Best 

Beam-ACO’s 
Convergence to 

the Optimum 

ACO 
Average 

Beam-
ACO 

Average 

berlin52 52 7542 7542 0.000% 7542 0.000% 7542 7542 

ch130 130 6110 6144 0.556% 6144 0.556% 6167.8 6165.43 

ch150 150 6528 6544 0.245% 6540 0.184% 6577.56 6579 

a280 280 2580 2649 2.674% 2647 2.597% 2674.5 2672.8 

ACO and Beam-ACO could find optimum values of berlin52.tsp 
instance. They, however, could not perform the same success on 
the other three instances. It is because, as the number of cities 
increases, the search space expands exponentially. On the other 
hand, while both ACO and Beam-ACO found the same best value 

for the ch130.tsp instance, Beam-ACO outperformed ACO with 
regards to its convergence to the optimum values for the other 
two instances, ch150.tsp and a280.tsp. Figure 2 shows the 
graphical results of both ACO’s and Beam-ACO’s best solutions in 
Euclidean space for the first scenario.

 

   

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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Figure 2. The graphics of ACO and Beam-ACO result in Euclidean space for the first scenario

The second scenario includes the traffic congestion information 
on the arcs between each city. This information consists of 
numbers from 1 to 5 representing the intense of traffic on that 
arc. Each color in Figure corresponds to the density of traffic 
congestion such as “no traffic, less traffic, normal, semi-heavy 
traffic, and heavy traffic” with colors “1-lime, 2-turquoise, 3-gold, 
4-red, 5-brown” respectively. These values are randomly 
assigned for each instance. To the best of our knowledge, this is 

the first study that proposed a TSP model which includes traffic 
congestion information on the arcs in the selected TSP instances 
and that the ACO and Beam-ACO algorithms are applied on such 
a setup. Since the optimum values for this TSP model do not exist 
in literature, the performances of ACO and Beam-ACO algorithms 
in this second scenario were compared against each other. Table 
3 contains the experimental results of the second scenario.

Table 3. The performances of ACO and Beam-ACO for the TSP model that includes traffic congestion 

Instance n ACO Best Beam-ACO Best ACO Average Beam-ACO Average 

berlin52 52 18942 18786 19156.2 19117.1 

ch130 130 15191 14953 15524.6 15516.2 
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ch150 150 17583 17545 17955.1 17883 

a280 280 7472 7562 7677.1 7704.46 

As the result shows in Table 3, Beam-ACO algorithm has a better 
performance on the majority of the instances both in best and 
average optimum values. ACO has better results on a280.tsp 
because as it is seen in the figures, some of the location has 
multiple option with exact same distance which is challenging for 
the algorithms. Adding traffic levels to the process, solving the 
TSP become harder since the objective function of this new TSP 
model contains travel times along with distances on each path. 
Both ACO and Beam-ACO algorithms try to find the fastest path 

to complete TSP while avoiding high-level traffic on the path. As 
it is seen in Figure 3 below, ACO and Beam-ACO aim to minimize 
the selection of high distance and traffic paths. The chosen high 
traffic paths are mostly short distances that can be travelled 
faster. Since Beam-ACO is utilizing the Beam Search Algorithm for 
selecting the next city to move, it has better results than ACO in 
general. Figure 3 shows the graphical results of both ACO’s and 
Beam-ACO’s best solutions in Euclidean space for the second 
scenario.
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Figure 3. The graphics of ACO and Beam-ACO results in Euclidean space for the second scenario 

 

4. Discussions 

For the classical TSP version studied in this paper, the literature 
optimum values for the berlin52.tsp instance was found by ACO 
and Beam-ACO as seen in Table 2. However, these two algorithms 
could not perform the same success for other instances. It's 
because the search space grows exponentially with the number 
of cities. While both algorithms found the same best value for the 
ch130.tsp instance, in terms of convergence to the optimal values 
for the other two instances of ch150.tsp and a280.tsp, Beam-ACO 
performed better than ACO.  

For the TSP with traffic congestion version of the experimental 
results as shown in Table 3, the Beam-ACO algorithm performs 
better than ACO in terms of both average and best values for the 
majority of instances. When traffic levels are added to the 
equation, the TSP becomes more difficult to solve since the new 
TSP model's objective function includes travel times and path 
lengths. To find the fastest route, both algorithms avoid high-
level traffic paths. It’s visible in Figure 3, both algorithms are 
avoiding such path and the chosen high-level traffic paths are 
mostly short distances. Beam-ACO has better results in general 
because in the city selection process, Beam-Search performed 
better search than classical ACO.  

5. Conclusions and Future Work 

In this study, a TSP was studied with two versions. The first 
version is the classical TSP while the second one includes traffic 
congestion data on the arcs of the classical one. As solution 
methods, we used state-of-the-art ACO and Beam-ACO enhanced 
by 2-Opt local search heuristic. The experimental studies of this 
paper indicate that Beam-ACO performed more successful results 
than ACO in both TSP versions on the same problem instances. 

The main contribution of this paper is to proposing a TSP version 
with traffic congestion data and comparing the performance of 
two state-of-the-art swarm intelligent optimization methods, i.e. 
ACO and Beam-ACO. This version of TSP brings a new dimension 
to the conventional TSP by changing the objective of the problem 
from distance minimization to travel time minimization of the 
salesman.  

As a future work, the proposed TSP model can be modified by 
replacing the randomly generated traffic congestion values with 
real-life case scenarios. This real-life data can even be arranged 
dynamically, that is, the traffic congestion data may vary in time 
as the salesman travels his or her tour. 
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