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Abstract
This article introduces a novel approach to forecasting gold prices over an extended period by leverag-
ing a sophisticated stochastic process. Departing from traditional models, our proposed framework
accommodates the non-Gaussian and non-homogeneous nature of gold market dynamics. Rooted in
the α-stable distribution, our model captures time-dependent characteristics and exhibits flexibility
in handling the distinctive features observed in real gold prices. Building upon prior research, we
present a comprehensive methodology for estimating time-dependent parameters and validate its
efficacy through simulations. The results affirm the universality of our stochastic model, showcasing
its applicability for accurate and robust long-term predictions in gold prices.
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1 Introduction

Forecasting metal prices poses a significant challenge due to their intricate dependencies. The
volatility and unpredictability of metal prices stem not only from fundamental factors such
as supply-demand dynamics but also from macroeconomic conditions and investor sentiment.
For mining companies, price assumptions are crucial not only for estimating revenue streams
from metal sales but also for determining the optimal extraction plan in mines. This extraction
plan forms the foundation for the entire budgeting and planning process. In the mining industry,
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forecasting extends beyond the short term and focuses on a horizon spanning several years, adding
complexity to the task. Employing stochastic modeling proves invaluable in comprehensively
gauging and understanding the magnitude and likelihood of potential price movements. This
becomes a pivotal undertaking for companies, enabling them to formulate effective business
strategies in case base-case price scenarios deviate from expectations. The most critical metal risk
factors for KGHM, one of the largest mining companies globally, include copper, silver, and gold.
In the literature, various approaches have been employed to model mineral commodity prices.
While our focus in this paper primarily revolves around the stochastic-based approach, alternative
methodologies exist, such as time series modeling [1–6] and econometric-based methods [7, 8].
Utilizing the stochastic approach for forecasting market prices stems from the widespread belief
that market fluctuations have random origins [9, 10]. Analyzing real data through continuous-time
models involves the discrete-time approximation of the theoretical stochastic process, proving
more effective for long-term predictions. One of the classical continuous-time stochastic processes
applied in describing financial data is the Ornstein–Uhlenbeck model, introduced by Uhlenbeck
and Ornstein [11] as a suitable system for velocity in classical Brownian diffusion. Also known as
the Vasicek model [12], the Ornstein–Uhlenbeck process was among the earliest stochastic systems
used for term structure. It demonstrates the mean-reversion property, indicating that over time,
the process tends towards its long-term mean. This behavior is observable in mineral commodity
price data.
The classical Ornstein–Uhlenbeck process follows a Gaussian distribution and is represented by
the following stochastic differential equation:

dXt = (ψ1 + ψ2Xt)dt + δ1dBt, (1)

where ψ1, ψ2, and δ1 are constants, and {Bt}t≥0 represents standard Brownian motion. The process
defined in Eq. (1) can be viewed as a modification of the random walk in continuous time. It is
also recognized as the continuous version of the discrete-time autoregressive model of order 1
(AR(1)) time series [13, 14]. However, some authors [9, 15] argue that financial variables exhibit
non-Gaussian distributions, emphasizing that assuming a Gaussian distribution of prices is in-
appropriate. Consequently, in the literature, many researchers propose modifying the process
defined in Eq. (1) by using processes other than Brownian motion as noise [16, 17].
In this paper, we follow this approach and replace the standard Brownian motion with a process
of stationary independent increments having a α-stable distribution [18, 19]. Models based on the
α-stable distribution have been employed to model various phenomena [18, 20].
The second characteristic observed in financial data, in addition to non-Gaussian behavior, is
its inhomogeneous nature. Consequently, model (1) with constant coefficients is unsuitable for
modeling data with a time-dependent mean and time-dependent scale parameter, especially
variance. To address this, various modifications of the classical Ornstein–Uhlenbeck process use
time-dependent coefficients instead of constants. Well-known examples include the Ho–Lee [21]
and Hull–White [22] models.
In this study, we propose the application of a stochastic model to describe metals’ prices, taking
into account the aforementioned characteristics of real data. This new model is, in a sense, an
extension of the Chan–Karolyi–Longstaff–Sander process based on the α-stable distribution, as
described in [23], which has been utilized for currency exchange rate modeling. The model
assumes time-dependent coefficients, capturing the crucial property of the analyzed real prices.
These time-varying coefficients represent the time-dependent mean and time-dependent scale
parameters of the theoretical process, reflecting the observed behavior in real-time series. Fur-
thermore, the adoption of the general class of α-stable distributions appears more suitable than
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the Gaussian distribution. The α-stable distribution is more versatile than the Gaussian one,
serving as a generalization of the classical distribution. For specific parameter values, it reduces
to the normal distribution. Additionally, the α-stable distribution can describe leptokurtic (like
Student’s t) or platykurtic (like uniform) distributions, depending on parameter values, enhancing
its universality. These considerations suggest that the new stochastic model can effectively capture
the specific behavior exhibited by real data.
However, the utilization of the stochastic model with time-dependent parameters and a non-
Gaussian distribution necessitates employing more sophisticated parameter estimation techniques.
While the literature offers various approaches to estimate the parameters of model (1) [24, 25],
only a limited number of research papers propose techniques for estimating the time-dependent
parameters of stochastic models [26, 27]. Therefore, one of the main objectives of this paper is to
present a step-by-step estimation procedure for the proposed stochastic model. Through Monte
Carlo simulations, we demonstrate the efficiency of the developed methodology. The applied
section of the paper is dedicated to the analysis of real data. We consider three real datasets
representing the daily prices of Gold. These analyzed prices are regarded as the main risk factors
in the KGHM mining company, making their long-term prediction a crucial task from a risk
management perspective.
The remaining part of the paper is structured as follows:
Section 2 provides a brief overview of the main characteristics of the α-stable distribution and
introduces the stochastic model with time-dependent parameters, which will be subsequently
employed for the description of real data.
In Section 3, we outline a step-by-step procedure for estimating the parameters of the introduced
model. This procedure involves more advanced techniques compared to the case of fixed coeffi-
cients, and the assumption of the α-stable distribution necessitates non-standard approaches.
Moving on to Section 4, we showcase the efficacy of the new estimation procedure using simulated
data. Section 4 is dedicated to the analysis of real data, specifically examining the datasets of
gold prices. The obtained results suggest that the proposed stochastic model is versatile and can
successfully predict long-term trends in gold prices. The concluding Section 5 summarizes the
paper.

2 General stochastic model based on the α-stable distribution

Generally, the discovery of α-stable laws is attributed to [28], in this article, Lévy explores the
central limit theorem and notes that when imposing an infinite variance, the limit law is an
α-stable law. Lévy then sets out to determine the expression of the Fourier transform of all α-stable
probability densities. The probability density of an α-stable distribution is often characterized as a
"heavy-tailed" distribution, indicating that the tail of the distribution decreases asymptotically
more slowly than the Gaussian law. It also distinguishes itself by an asymmetry coefficient,
reflecting the fact that the probability density is not symmetric about its mode, and it exhibits
leptokurtic behavior, indicating that most events are situated near the mean.
The concept of stability arises from the fact that any linear combination of α-stable random
variables also generates an α-stable law. However, the main obstacle to the use of α-stable laws
lies in the lack of an exact analytical expression for their probability density.
Several application domains (such as finance, including stock market, stock market variation,
financial returns, etc.) using α-stable distributions are listed in the literature, with detailed
bibliographies provided by [23, 29–34]. This category of processes plays a major role and exhibits
heavy-tailed distributions. It is involved in stochastic modeling in applied sciences, particularly
in financial mathematics, and also in the theoretical motivation for the study of their properties
[20, 35].
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[28] mathematically described the definition of α-stable laws as an extension of Gaussian laws
used in error theory. However, the challenge with the definition of α-stable laws lies in the absence
of an analytical expression, except for special cases such as the Gaussian law, the Cauchy law,
or the Lévy law. Therefore, α-stable laws remained relatively unknown until the work done by
[36] in the 1960s, at a time when financial markets were primarily based on the principles of [37],
respecting the three principles of the law of large numbers, the central limit theorem, and the
independence of present action from its past. However, these mathematical models proved invalid
during financial crises. Then, [36] suggested modeling cotton price variations using an α-stable
distribution. Stable laws are now used to represent stock market speculation fluctuations, interest
rates, and other aspects of financial markets, providing a robust alternative during crisis periods.

Definition 1 Let X be a random variable, X is called to be a stable law or α−stable distribution random
variable if ∀(a, b) ∈ R∗

+ × R∗
+, ∃c > 0 and k ∈ R such that:

aX1 + bX2
d
= cX + k, (2)

where X1 and X2 are two random independent variable copies of X;
d
=: designates convergence in distribution.
If k = 0 then, the distribution is strictly stable.

Definition 2 A random variable X is said to have a α- stable distribution if and only if, for any integer n ≥
1 and for any family X1, X2, · · · , Xn of i.i.d random variables of the same law as X, ∃(an, bn) ∈ R∗

+ × R

such that:

(X1 + X2 + · · ·+ Xn)− bn

an

d
= X. (3)

Variables with a Levy-stable distribution have the disadvantage of not having (except in three cases) explicit
forms for the probability density and the distribution function.

Definition 3 A random variable X with a α-stable law is typically described by its characteristic function
∆X defined on R by:

∆X(t) = E [exp(itx)] = exp(iµt − gα,β,σ(t)), (4)

where

gα,β,σ(t) =
{

σα|t|α
[
1 − iβsign(t) tan

(
πα
2
)]

if α ̸= 1
σ|t|[1 + 2

π iβsign(t) log |t|] if α = 1,
; sign(t) =

t
|t|

=


1 if t > 0
0 if t = 0

−1 if t < 0,

and having several representations according to the different parameterizations of the stable laws. The most
famous of these representations is given in [23, 33].

The α−stable law is thus characterized by four real parameters Ψ = (α, β, µ, σ). The parameter
α, called characteristic exponent or stability index, is an indicator of the degree of thickness of
the tails of the distribution: the smaller it is, the thicker the tails are which corresponds to very
large fluctuations. It is the most important parameter, it is between 0 and 2 (0 < α ≤ 2). Its
maximum value α = 2, corresponds to a particular stable law: the Gaussian law or normal law. β



Coulibaly et al. | 169

is the parameter of dissymmetry, it varies between -1 and 1 (−1 ≤ β ≤ 1) and when it is null, the
distribution is symmetrical with respect to µ. When α approaches 2, β loses its effect leading to
a trend towards the normal distribution. The parameters µ ∈ R and σ > 0 represent the usual
characteristics of position and scale respectively with the remark that for the Gaussian distribution,
the standard deviation is σ

√
2. A random variable X of stable distribution will be noted, according

to [33], by: X ∼ Sα(β, µ, σ). The three exceptions mentioned above are the very famous Gaussian
law S2(0, µ, σ) and the less known Cauchy’s law S1(0, µ, σ). and Lévy’s law S 1

2
(1, µ, σ). The stable

law has an additivity property according to which the sum of two independent stable random
variables of the same stability index α is still stable with the same characteristic exponent α. This
very interesting property is used in finance to study portfolios where two assets with the same
value for α can be considered together. One of the particularities of the stable distribution is
that it has infinite variance as soon as α is strictly less than 2. In fact, the moments of order p of
X ∼ Sα(β, µ, σ) are such that for α = 2, E|X|p < +∞, ∀p ∈ N.

E|X|p =

{
< ∞ if 0 < α < p,
= ∞ if p ≥ α.

More precisely, it is shown that (see for example [33])

lim
t→∞ tαP(X > t) = Cα

1 + β

2
σα; lim

t→∞ tαP(X < −t) = Cα
1 − β

2
σα,

where Cα is a constant given by:

Cα =

(∫∞
0

x−α sin xdx
)−1

=

{ 1−α
Γ(2−α) cos( πα

2 )
if α ̸= 1,

2
π if α = 1,

with Γ(θ) is the Euler gamma function defined for θ > 0, by:

Γ(θ) =
∫+∞

0
xθ−1e−xdx. (5)

Figure 1 illustrates the influence of each parameter of the α-stable distribution on its probability
density function (PDF).
We can thus see that the stable law takes into account the distribution tails which are often carriers
of essential information, whereas the Gaussian law neglects these tails thus leading to an error
which can be fatal for the investor. The disadvantage of the characteristic function 4 is that it is not
continuous if α = 1 which makes it not adapted to numerical calculations and for these reasons
[19] proposed another parameterization called S0

α which is usable for numerical calculations.
simulate stable laws, there is an algorithm developed by [38]. This one allows to generate a law
Sα(β, 0, 1). To obtain a law Sα(β, µ, σ), with α ∈]0, 2] and β ∈ [−1, 1].
The parameters α and σ for this generator are very well estimated by the method of [20]. The
parameters µ and β are correctly estimated by the method of [20] for small values of β, which
is often the case for stock exchange chronicles. A bibliography of methods for estimating the
parameters of a α-stable law has been compiled by [39–42]. The PDF of a standard random variable
α-stable law in the S0 representation [43] i.e. X ∼ S0

α(1, β, 0).
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Figure 1. Influences of the parameters of the α-stable distribution on its PDF.

Let’s commence the analysis of the stochastic process described by the following stochastic
differential equation [44]:

dXt = ψ(Xt, t)dt + δ(Xt, t)dBt. (6)

In general, ψ(.) and δ(.) are functions defined as ψ(.), δ(.) : R × [0, T] −→ R, and {Bt}t≥0 repre-
sents standard Brownian motion.
Consequently, dBt = Bt+dt − Bt follows a Gaussian distribution, denoted as dBt ∼ N (0, dt) [45].
The conditional distribution of the increments of the process defined in Eq. (6) is outlined in
Lemma 2.
Several well-known examples that conform to Model (6), where the functions ψ(.) and δ(.)
are constant, include Merton [46], Vasicek [12], Brennan–Schwartz ([47]), Dothan [48], and
Cox–Ingersoll–Ross [49] processes. Notable models with non-constant functions ψ(.) and δ(.)
comprise Ho–Lee [21], Hull–White [22], and Black–Krasiński [50], as detailed in Table 1.
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However, in numerous real-world applications, the Gaussian distribution in model (6) may prove
inadequate. Therefore, we propose modifying the model and assuming that the considered process
satisfies the subsequent stochastic differential equation:

dXt = ψ(Xt, t)dt + δ(Xt, t)dSt. (7)

Similar to the previous scenario, in the general case, ψ(.) and δ(.): R× [0, T] −→ R are appropriate
functions. In this context, we assume that {St} is a process with stationary independent increments,
following the α-stable distribution. In this case, the increment process {dSt} = {St+dt − St} con-
stitutes a sequence of independent identically distributed (iid) random variables of the α-stable
distribution, with the assumption E(dSt) = 0 and E(dS2

t ) = dt.
In the subsequent calculations, we assume specific forms for the functions ψ(.) and δ(.), and
ultimately, the analyzed process is described by the stochastic differential equation:

dXt = (ψ1(t) + ψ2(t)Xt)dt + (δ1(t) + δ2(t)Xt)dSt, (8)

for the general functions ψ1(.), ψ2(.), δ1(.) and δ2(.): [0, T] −→ R. Additionally, we restrict our
consideration to the case where 0 < α < 2. Further constraints on the functions are provided in
the subsequent section.

Table 1. Classical models described by Eq. (6)

Model ψ(Xt, t) δ(Xt, t)

Merton ψ1 δ1
Vasicek ψ1 + ψ2Xt δ1
Dothan ψ1Xt δ1Xt
Brennan–Schwartz ψ1 + ψ2Xt δ1Xt
Cox–Ingersoll–Ross ψ1 + ψ2Xt δ1

√
Xt

Ho–Lee ψ1(t) δ1(t)
Hull–White ψ1(t) + ψ2(t)Xt δ1(t)
Black–Derman–Toy ψ1(t) + ψ2(t) ln Xt δ1(t)
Black–Krasiński ψ1(t) + ψ2(t)Xt ln Xt δ1(t)

Proposition 1 Let X1, X2 be two random variables α-stable with X1 ∼ Sα(β, µ, σ) and X2 = X1−µ

σ
1
α

.

For α ̸= 1 then, we have the following equivalences:

i. X1 ∼ Sα(β, µ, σ);
ii. X2 = X−µ

σ
1
α

∼ Sα(β, 0, 1).

For α = 1 then, we have the following equivalences:

i. X1 ∼ S1(β, µ, σ);
ii. X2 = X1−µ

σ ∼ S1(β, 2
π β log(σ), 1).
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Proof For α ̸= 1 then, we have (1)=⇒ (2):

∆X2(r) = E
[

exp
(

ir
(

X1 − µ

σ
1
α

))]
= E

[
exp

(
irX1

σ
1
α

)
exp

(
−irµ

σ
1
α

)]
= exp

(
−irµ

σ
1
α

)
E
[

exp
(

irX1

σ
1
α

)]
= exp

(
−irµ

σ
1
α

)
∆X1

(
r

σ
1
α

)
= exp

(
−irµ

σ
1
α

)
exp

(
irµ

σ
1
α

− σ
∣∣ r

σ
1
α

∣∣α [1 − iβsign
(

r

σ
1
α

)
tan

(πα

2

)])
.

Such as σ > 0 so: sign
(

r

σ
1
α

)
= sign(r).sign

(
1

σ
1
α

)
= sign(r).

Subsequently:

∆X2(r) = exp
(
−irµ

σ
1
α

)
exp

(
irµ

σ
1
α

− σ
∣∣ r

σ
1
α

∣∣α [1 − iβsign(r) tan
(πα

2

)])
= exp

(
−|r|α

[
1 − iβsign(r) tan

(πα

2

)])
.

So Y ∼ Sα(β, 0, 1).
(2)=⇒ (1) is proven in the same way as (1)=⇒ (2).

For α = 1 then, (1)=⇒ (2) we have:

∆X2(r) = E
[

exp
(

ir
(

X1 − µ

σ

))]
= E

[
exp

(
irX1

σ

)
exp

(
−irµ

σ

)]
= exp

(
−irµ

σ

)
E
[

exp
(

irX1

σ

)]
= exp

(
−irµ

σ

)
exp

(
irµ

σ
− σ

∣∣ r
σ

∣∣ (1 + i
2
π

βsign
( r

σ

)
log

∣∣ r
σ

∣∣))
= exp

(
−|r|

[
1 + i

2
π

βsign(r) log
(∣∣ r

σ

∣∣)])
= exp

(
i

2
π

β|r|sign(r) log(σ)− |r|
[

1 + i
2
π

βsign(r) log(|r|)
])

= exp
(

i
2
π

β log(σ)r − |r|
[

1 + i
2
π

βsign(r) log(|r|)
])

.

So X2 = X1−µ

σ
1
α

∼ Sα(β, 2
π β log(σ), 1).

(2)=⇒ (1) is demonstrated in the same way as (1)=⇒ (2). This completes the proof of this Propo-
sition 1.

Lemma 1 Let X1 and X2 two random variables α-stable.
For α ̸= 1, if X1 ∼ Sα(β, 0, 1) and X2 ∼ Sα(β, µ, σ). Then,

σX1 + µ
d
= X2.
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Proof Let us define X1 ∼ Sα(β, 0, 1) and X2 ∼ Sα(β, µ, σ). We will show that:

P(σX1 + µ < r) = P(X2 < r). (9)

If f is the probability density function of the α-stable random variable X1 then, we have:

f (r, α, β, µ, σ) =
1
σ

f
(

r − µ

σ
, α, β, 0, 1

)
. (10)

We use the formula from Eq. (10) for the PDF of α-stable distribution given in Eq. (9):

P(σX1 + µ < r) = P
(

X1 <
r − µ

σ

)
=

∫ r−µ
σ

−∞ f (t, α, β, 0, 1)dt

=

∫ r

−∞
1
σ

f
(

t − µ

σ
, α, β, 0, 1

)
dt

=

∫ r

−∞ f (t, α, β, µ, σ) dt

= P(X2 < r).

Lemma 2 For the stochastic process {Xt} as defined in Eq. (6), the increment dXt = Xt+dt − Xt follows
the subsequent relationship:

dXt | Xt ∼ N
(

ψ(Xt, Xt)dt, δ2(Xt, t)dt
)

.

Proof Initially, we will demonstrate that:

E(dXt | Xt) = ψ(Xt, t)dt; and Var(dXt | Xt) = δ2(Xt, Xt)dt.

To establish this, we will leverage the properties of standard Brownian motion, where E(dBt) = 0
and E(dB2

t ) = dt. Consequently, we derive:

E(dXt | Xt) = E(ψ(Xt, t)dt + δ(Xt, t)dBt | Xt)

= E(ψ(Xt, t)dt|Xt) + E(δ(Xt, t)dBt | Xt)

= ψ(Xt, t)dt + δ(Xt, t)E(dBt)

= ψ(Xt, t)dt.

The second moment of dXt | Xt is expressed as:

E(dX2
t | Xt) = E((ψ(Xt, t)dt + δ(Xt, t)dBt)

2 | Xt)

= E(ψ2(Xt, t)dt2 | Xt) + 2E(ψ(Xt, t)dtδ(Xt, t)dBt | Xt) + E(δ2(Xt, t)dB2
t | Xt)

= ψ2(Xt, t)dt2 + 2ψ(Xt, t)dtδ(Xt, t)E(dBt | Xt) + δ2(Xt, t)E(dB2
t | Xt)

= ψ2(Xt, t)dt2 + δ2(Xt, t)dt.



174 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 2, 165–192

Thus, the variance of dXt | Xt can be expressed as:

Var(dXt | Xt) = E(dX2
t | Xt)− [E(dXt | Xt)]

2

= ψ2(Xt, t)dt2 + δ2(Xt, t)dt − [ψ(Xt, t)dt]2

= δ2(Xt, t)dt.

Due to the Gaussian distribution of dBt and the property E(X + c) = E(X) + c for any random
variable X, as well as Var(cX) = c2Var(X), we can express dXt | Xt as:

dXt | Xt ∼ N
(

ψ(Xt, t)dt, δ2(Xt, t)dt
)

.

3 Estimation of the parameters for general model based on α-stable distribution

In this section, we outline a method for estimating the parameters of the stochastic process
described in Eq. (8).
Let’s assume we have a vector of realizations of the stochastic process given by Eq. (8), denoted as
X0, X2, · · · , Xn, with corresponding time points t0, t1, · · · , tn, such that ∀j∈{1,2,··· ,n}

tj − tj−1 = Θ.

For the sake of simplicity, we assume Θ = 1.
Consequently, we represent the increments of the observed data as y0, y1, · · · , yn−1, where
yj = Xj+1 − Xj for j = 0, 1, · · · , n− 1. To achieve this, we initially transform Eq. (8) into its discrete
form.

yj = Xj+1 − Xj

= ψ1(tj) + ψ2(tj)Xj + (δ1(tj) + δ2(tj)Xj)Sj; j = 0, 1, · · · , n − 1. (11)

In this context, {sj} represents a time series of independent and identically distributed (iid) random
variables following the α-stable distribution Sα(β, µ = 0, σ = 1).
In this paper, we employ the local regression approach [51], following a similar methodology
as in [27], to derive estimates for the functions ψ1(.) and ψ2(.) within Model (8). We make

the assumption that ψ1(.) ∈ Cdψ
1 and ψ2(.) ∈ Cdψ

2 , allowing them to be expanded into Taylor’s
polynomials [52] at every time point t∗ ∈ {t0, t1, · · · , tn−1} of degrees dψ

1 and dψ
2 , respectively:

ψl(tj) =

dψ
l∑

k=0

ψ
(k)
l (t∗)

k!
(tj − t∗)k + Rdψ

l
(tj); l = 1, 2, (12)

where Rdψ
l
(.) represents Peano’s remainder, which we, in further considerations, neglect. After

expanding (12) and consolidating constants for common tk
j , we arrive at the following approxima-

tion:

ψl(tj) ≈
dψ

l∑
k=0

kψltk
j ; l = 1, 2. (13)
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To obtain kψl estimates for all tj in the vicinity of ρ from Eq. (13), we formulate the loss function as a
weighted sum of squared errors. It’s important to emphasize that {kψl} is estimated independently
for each time point t∗ ∈ {t0, t1, · · · , tn−1}. Deriving from Eq. (11), we derive the following:

Sj =
yj − (ψ1(tj) + ψ2(tj)Xj)

δ1(tj) + δ2(tj)Xj

≈
yj −

(∑dψ
1

k=0 kψ1tk
j +

∑dψ
2

k=0 kψ2tk
j Xj

)
δ1(tj) + δ2(tj)Xj

=: S̃j; j = 0, 1, · · · , n − 1. (14)

In this paper, we posit that the loss function, utilized in the estimation algorithm for each t∗ ∈
{t0, t1, · · · , tn−1}, adopts the following form:

G∗
Ω̃

({
Xj

}
,
{

tj
}
; {kψl}

)
=

n−1∑
j=0

S̃2
j K

ρψ,ρψ
r

(
tj − t∗

)
+ η

 dψ
1∑

k=0
kψ2

1 +

dψ
2∑

k=0
kψ2

2

 , (15)

with Ω̃ = (t∗, δ, η, dψ
1 , dψ

2 , ρψ, ρ
ψ
r ).

The first component of the loss function, specifically S̃2
j K

ρψ,ρψ
r

(
tj − t∗

)
, is linked to the fact that the

estimators are fitted locally (rather than globally). Additionally, akin to Ridge regression [53], we
have incorporated into the loss function a second component.
Tikhonov regularization [54] (with parameter η). This regularization compensates for the po-
tentially non-unique solution and high variance of the estimators. In this paper, we utilized a
single-valued parameter η; however, it can be replaced with a vector

{
ηj
}

. This substitution
results in improved estimates but requires the entire vector

{
ηj
}

to be determined. In this paper,
we suggest using the asymmetric kernel function Kρ,ρr (.) in Eq. (15), defined as follows:

Kρ,ρr (t) =
2K

(
t

ρ−ρr

)
1t≤0 + K

(
t

ρr

)
1t>0

ρ
. (16)

In this context, "ρ" represents the width of the kernel function Kρ,ρr(.), denoting the distance from
the left root to the right, while "ρr" represents the distance to the right root from 0. This specific
form of the kernel provides the flexibility to strike a balance between the traditional symmetric
and causal kernel functions, resulting in estimators with reduced variance. The parameters
ρψ, ρ

ψ
r , dψ

1 , dψ
2 and η in the estimation process are referred to as hyperparameters. In practical

applications, three commonly utilized kernel functions K(.) in Eq. (16) are [27, 51, 55, 56]:

• Gaussian kernel: K(t) = 1√
2π

exp(− t2

2 );

• Epanechnikov kernel: K(t) = 3
4 (1 − t2)1t∈(−1,1);

• Tricube kernel: K(t) = 70
81 (1 − |t|3)31t∈(−1,1).

Because of their compact support, the Epanechnikov and tricube kernels are commonly employed
in modeling financial data problems [27, 51, 56]. In our applications, we opted for the tricube
kernel.
To streamline the calculations, the initial step of the estimation procedure involves treating the
δ1(.) and δ2(.) functions in model (8) as known. We utilize an iterative method to derive estimates,
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commencing with a predefined starting condition:

ζ
(0)
j,η := δ̂1(tj) + δ̂2(tj)Xj ≡ 1. (17)

Nevertheless, the optimal values for dψ
1 , dψ

2 (refer to Eq. (13)), as well as the kernel widths ρψ, ρ
ψ
r ,

remain unknown. We determine the optimal values for hyperparameters ρψ, ρ
ψ
r , dψ

1 , dψ
2 and η (refer

to Eq. (15)) by selecting those that result in the lowest mean squared error (MSE) statistics:

MSEY =
n−1∑
j=0

yj −

 dψ
1∑

k=0
kψ̂1tk

j +

dψ
2∑

k=0
kψ̂2tk

j Xj




2

ωj, (18)

MSEX =
n∑

j=1

Xj − X0 −

j∑
h=1

 dψ
1∑

k=0
kψ̂1tk

h +

dψ
2∑

k=0
kψ̂2tk

hXh




2

ωj, (19)

and the Augmented Dickey–Fuller test statistic [57] (where the null hypothesis assumes the
presence of a unit root in the time series data) for the vectoryj −

 dψ
1∑

k=0
kψ̂1tk

j +

dψ
2∑

k=0
kψ̂2tk

j Xj


 .

The weights {ωj} in Eqs. (18) and (19) are computed using the exponential smoothing method [58].
Once the optimal values for hyperparameters are determined, we can express the loss function
G∗(·) defined in Eq. (15) using matrices:

Y =



y0

y1

...

yn−1


; Ψ =



0ψ1

1ψ1

2ψ1

...

dψ
1
ψ1

0ψ2

1ψ2

...

dψ
2
ψ2



; T =



1 1 · · · 1

t0 t1 · · · tn−1

t2
0 t2

1 · · · t2
n−1

...
... . . . ...

tdψ
1

0 tdψ
1

1 · · · tdψ
1

n−1

X0 X1 · · · Xn−1

t0X0 t1X1 · · · tn−1Xn−1

...
... . . . ...

tdψ
2

0 X0 tdψ
2

1 X1 · · · tdψ
2

n−1Xn−1



;
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Kt∗ =



K
ρψ ,ρ

ψ
r
(t0−t∗)(

ζ
(0)
0,η

)2 0 0 · · · 0

0
K

ρψ ,ρ
ψ
r
(t1−t∗)(

ζ
(0)
1,η

)2 0 · · · 0

...
...

... . . . ...

0 0 · · · 0
K

ρψ ,ρ
ψ
r
(tn−1−t∗)(

ζ
(0)
n−1,η

)2


.

Then, the loss function from Eq. (15) takes the form:

G∗ = (Y − T′Ψ)′Kt∗(Y − T′Ψ) + ηΨ′Ψ; (20)

which we minimize Eq. (20) with respect to the vector Ψ:

∂G∗

∂Ψ
= −2TKt∗(Y − T′Ψ) + 2η IΨ = 0. (21)

Then,

(TKt∗T′ + η I)Ψ = TKt∗Y =⇒ Ψ̂ = (TKt∗T′ + η I)−1TKt∗Y. (22)

With the estimation of ψ1(.) and ψ2(.) functions from model (8), we can proceed to estimate the
functions δ1(.) and δ2(.). In a manner similar to the estimation of ψ1(.) and ψ2(.) functions, we
will employ Taylor’s polynomials [52] to approximate the functions δ1(.) and δ2(.) from model (8):

δl(tj) ≈
dδ

l∑
k=0

kδltk
j , l = 1, 2. (23)

Subsequently, the parameters {kδl} can be determined through the maximum likelihood method
[51]. Leveraging properties established in Lemma 1 and considering the independence and
identically distributed (iid) nature of

{
Sj
}

, the log-likelihood function can be expressed as:

l∗Ω̃δ
(Ω̃par) =

n−1∑
j=0

ln

 f

êj;

dδ
1∑

k=0
kδ1tk

j +

dδ
2∑

k=0
kδ2tk

j , α, β, 0, σ

)Kρδ,ρδ
r

(
tj − t∗

)
; (24)

with: Ω̃δ = (t∗, δ, η, dδ
1, dδ

2, ρδ, ρδ
r ); Ω̃par = (

{
êj
}

,
{

tj
}
; {kδl} , α, β, σ)).

where êj is derived by transforming Eq. (11) in the following manner:

êj := yj − (ψ̂1(tj) + ψ̂2(tj)Xj) ≈ (δ1(tj) + δ2(tj)Xj)Sj; j = 0, 1, 2, · · · , n − 1. (25)

In this scenario, additional optimal hyperparameters, namely dδ
j ( j = 1, 2), ρδ and ρδ

r , must be
determined. We suggest employing the Breusch–Pagan test statistic [59] with the null hypothesis
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that the variance is independent of descriptive (independent) variables, indicating homoscedastic-
ity in the time series. We aim to identify the set of hyperparameters dδ

j ( j = 1, 2), ρδ and ρδ
r that

minimizes the test statistic calculated for the time series:

{
Ŝj
}
=

yj −

(∑dψ
1

k=0 kψ̂1tk
j +

∑dψ
2

k=0 kψ̂2tk
j Xj

)
δ̂1(tj) + δ̂2(tj)Xj

. (26)

Once hyperparameters are determined, we optimize the log-likelihood function (Eq. 24) with
respect to

{
kδj

}
(as defined in Eq. 23) and the unknown parameters α, β, σ associated with residuals.

Since there is no analytical solution for maximizing the function (Eq. 24), numerical algorithms
are required to find the function’s maximum. To streamline the computations, we exploit the
invariance property of maximum likelihood estimators [23, 30, 60, 61].
Note that α ∈]0, 2], β ∈ [−1, 1], and σ > 0. We aim to maximize the function l∗(.) (Eq. 24) with
respect to the parameters: kδj ∈ R (j = 1, 2; and k = 0, · · · , dδ

j ); α̂ ∈]0, 2], β̂ ∈ [−1, 1], and σ̂ ∈ R∗
+.

Optimization can be achieved using a broader and more straightforward class of algorithms, such
as the Broyden–Fletcher–Goldfarb–Shanno algorithm [62].
The initial proposition of ζ

(0)
j,δ ≡ 1 (refer to Eq. (17)) can be highly questionable, particularly in

cases of evident heteroskedasticity in time series.
To address this concern, we employ an iterative method for estimating ψ1(.), ψ2(.), δ1 and δ2(.). In
the subsequent step of the estimation, we set:{

ζ
(1)
j,ψ

}
=

{
ψ̂1(tj) + ψ̂2(tj)Xj

}
; and

{
ζ
(1)
j,δ

}
=

{
δ̂1(tj) + δ̂2(tj)Xj

}
;

and repeat the entire estimation procedure until the changes in the estimated functions become
negligible, that is, until:

∃j

∥∥∥ζ
(γ)
j,ψ − ζ

(γ−1)
j,ψ

∥∥∥ > ϵψ or ∃j

∥∥∥ζ
(γ)
j,δ − ζ

(γ−1)
j,δ

∥∥∥ > ϵδ,

where ϵψ and ϵδ are defined thresholds, and γ represents the current iteration number (or after a
specified number of iterations).
After estimating the ψ1(.), ψ2(.), δ1 and δ2(.) functions, we can ultimately estimate the global
parameters of residuals

{
Ŝj
}

(defined in Eq. (26)) modeled by the α-stable distribution. In the
previous steps of the estimation procedure, only local estimates of the parameters are obtained.
We find α̂, β̂, and σ̂ by numerically maximizing the likelihood function with respect to α̂, β̂, and σ̂

refer to [30, 60]:

L
({

Ŝj
}

, α̂, β̂, σ̂
)
=

n−1∏
j=0

1
σ

f (Ŝj, α, β, 0, 1). (27)

An algorithm describing the parameter estimation procedure is shown in Figure 2.
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Start

Load data to
{

Xj
}

Set γ = 0
ζ
(−1)
j,ψ ≡ ∞, ζ

(−1)
j,δ ≡ ∞

ζ
(0)
j,ψ ≡ 0, ζ

(0)
j,δ ≡ 1

No Yes

Choose Kernel function K(.)

Set Max_iter to the maximum number of iterations, ϵψ and ϵδ

to the minimum change in the functions ’s estimates

∃j|ζ
(γ)
j,ψ − ζ

(γ−1)
j,ψ | > ϵψ

∃j|ζ
(γ)
j,δ − ζ

(γ−1)
j,δ | > ϵδ

and γ < Max_iter

Calculate
{

Ŝj
}

(26)

MLE (27) to find α̂, β̂, σ̂

Output
{

kψ̂j
}

,
{

k δ̂j
}

, α̂, β̂, σ̂

End

Set γ = γ + 1

Find dψ
1 , dψ

2 , η, ρψ, ρ
ψ
r

Calculate ∀t∗ ψ̂ (22)

Set ∀ i, ζ
(γ)
j,ψ = ψ̂1(tj) + ψ̂2(tj)Xj

Set ∀ i, ζ
(γ)
j,δ = δ̂1(tj) + δ̂2(tj)Xj

Find l∗ (24) ∀ t∗ with
respect to kδj, α̂, β̂, σ̂

Find dδ
1, dδ

2, η, ρδ, ρδ
r

Calculate
{

êj
}

(25)

Figure 2. Algorithm describing the parameter estimation procedure
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4 Numerical simulation

Simulated data analysis

Utilizing the methodology outlined in Section 3, we evaluate the efficacy of the estimation proce-
dure through the analysis of simulated data. Employing Euler’s method, Runge Kutta’s method
and Milstein’s method [63], we simulate the trajectory of the process governed by the stochastic
differential equation:

dXt = (0.1 + 0.025t − 0.015Xt)dt + (0.03 + 0.001t)dSt, (28)

under the assumption: dSt ∼ Sα(β, µ, σ) with α = 1.8, β = 0.8, µ = 0 and σ = 1.
The illustration of the {dSt} and {Xt} processes is depicted in Figure 3 as an exemplary represen-
tation. Model parameters are intentionally selected in a manner that allows them to be, in some
sense, comparable to the parameters derived from real data.

0 2 4 6 8 10

1
7

.5
1

7
.6

1
7

.7
1

7
.8

1
7

.9
1

8
.0

Exemplary realization of  Xt

Time

X
t

Euler
RK4
Milstein 

Figure 3. The illustrative realizations of the stochastic process defined by Eq. (28) with residuals following the
α-stable distribution

Applying the outlined methodology, we have computed the ψ1(.), ψ2(.), δ1(.), and δ2(.) functions
based on model (8). In Figure 4 and Figure 5, we display both the estimated functions and the
theoretical counterparts from Model (28). It is evident from the observation that the estimates align
well with the theoretical functions. The estimated parameters for the α-stale distribution (using the
method for estimating [20]) are α̂ = 1.84385, β̂ = 0.7672, µ̂ = 0, and σ̂ = 0.9873 demonstrating
close proximity to the theoretical parameters α = 1.8, β = 0.8, µ = 0 and σ = 1. Additionally, the
Kolmogorov–Smirnov test [64] resulted in a statistic K = 0.00586 and a p-value of 0.930, leading
to the conclusion that the model parameters have been accurately estimated.
Moreover, we have conducted Monte-Carlo simulations [65] for the process defined by Eq.
(28). Specifically, we have generated 100 realizations of the process and applied the estima-
tion methodology outlined in the preceding section. Subsequently, we have obtained estimates
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for [0.05, 0.25, 0.5, 0.75, 0.95] quantiles of the ψ1(.), ψ2(.), δ1(.), and δ2(.) functions’ estimators.
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Figure 4. Comparison of the theoretical functions δ1(t) + δ2(t) = 0.03 + 0.001t with its estimate
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Figure 5. Comparison of the theoretical functions ψ1(t) + ψ2(t)xt = 0.1 + 0.025t − 0.015xt with its estimate
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The results are illustrated in Figure 6 and Figure 7. In both Figure 6 and Figure 7, we observe that
the initial points of the functions’ estimators exhibit significant variance, attributed to the limited
number of samples employed in the estimation process.
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Figure 6. Estimation of ψ1(.) and ψ2(.) functions
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Additionally, we depicted box-plots of the estimated parameters for the α-stable distribution, as
shown in Figure 8. For each estimated parameter, we note that the medians closely align with the
theoretical values, and the variance of the estimated parameters is minimal.
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Figure 8. Box-plots of α-stable distribution’s parameters’ estimates for 100 Monte Carlo simulations

Real data analysis

In this section, we examine the real-time series that depict the prices of metals, specifically focusing
on the price of gold. Our analysis aims to showcase the acceptability of the proposed model
(designated as Model (8)), which is based on the α-stable distribution, for all the examined time
series. Additionally, we present the outcomes of long-term predictions derived from the model
we have developed.
Furthermore, in the process of estimation, we set Maxiter to be 2, indicating two iterations of
estimation. We employed the tricube as the kernel function K(.) in Eq. (16). It is important to
emphasize that the actual data pertaining to metals’ prices is utilized solely for illustrating the
introduced methodology in this context. We posit that the versatility of the proposed model
extends beyond metals’ prices and can be effectively applied to real data originating from diverse
domains.
We examine the time series associated with the gold price, comprising a dataset with 4274 ob-
servations spanning from january 01, 2007, to december 22, 2023. Figure 9 visually represents
the considered data. Observing the non-stable variance apparent in the observation vector, we
address this issue by transforming the data through the Box-Cox transformation [49]:

∀t Xt = ln(X∗
t ).
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Here, X∗
t represents the vector of gold price data. The transformed vector is illustrated in Figure 9.

The dataset is partitioned into a training time series, covering the period from the start of 2007 to
the conclusion of December 31, 2018 (utilized for model parameter estimation), and a testing time
series, spanning from 2019 to December 22, 2023 (utilized for model validation). The training time
series comprises 3020 observations, while the validation time series consist of 1254 observations.
In the initial phase, we determine the optimal hyperparameters, namely dψ

1 , dψ
2 , ρψ, ρr

ψ and η,
essential for minimizing the loss function (15). Following the approach outlined in Section 3, we
employ MSEx (19), MSEy (18), and the Augmented Dickey–Fuller test statistic. We obtain weights{

ωj
}

(for statistics MSEx and MSEy, as per Eqs. (18) and (19)) using the exponential smoothing
method [58] with a smoothing parameter ϕ = 8 × 10−4. The calculation of weights

{
ωj

}
is based

on the following formula:

ωj =
1 − exp(−ϕ)

1 − exp(−nϕ)
exp(ϕ(j − n)); j = 1, . . . , n. (29)

Utilizing specified hyperparameters (dψ
1 = 0, dψ

2 = 1, ρψ = 750, ρ
ψ
r = 237.5, η = 0.7), we proceed

to estimate the ψ1(.) and ψ2(.) functions based on Model (8) employing Eq. (22).
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Figure 9. Evolution of Gold prices from January 01, 2007 to December 22, 2023
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Table 2. Descriptive statistics Gold prices from January 01, 2007 to December 22, 2023

Values
Data Min. 1st Qu. Median Mean 3rd Qu. Max S.d
Gold 60.14 113.26 125.17 131.04 161.10 193.74 31.79816

Table 3. α-Stable law parameters extracted from the GOLD prices data

α-Stable law parameters
Data α β σ µ

GOLD 1.85150999 0.76486510 93.81960439 0.07620218
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Figure 10. Comparison of estimated trend line to the examined time series from the first iteration of estimation
of ψ1(.) and ψ2(.) functions

The resulting estimates are depicted in Figure 10, demonstrating a well-fitted alignment with
the observed data. However, it is noteworthy that such a fit may suggest potential overfitting.
The presence of heteroskedasticity in the time series introduces complexities, as changes in the
process’s variance during the initial iteration may be erroneously attributed to the ψ1(.) and ψ2(.)
functions. To mitigate this challenge, we leverage an iterative estimation method, as discussed
in Section 3.
We computed the vector

{
êj
}

using formula (25) and determined the optimal hyperparameters for
estimating the δ1(.) and δ2(.) functions as follows: dδ

1 = 0, dδ
2 = 0, ρδ = 1000, ρδ

r = 10. The optimal
estimates were obtained by maximizing the function (24).
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Subsequently, based on these estimates, their composition was calculated and visually presented
in Figure 11, alongside a series of

{
êj
}

for comparative analysis. The results reveal that the
composition of the estimates for δ1(.) and δ2(.) functions serves as a reliable approximation of the
standard deviation of the observed time series.
Continuing, we iterate through the previously outlined steps, incorporating:

ζ
(1)
j,δ = δ̂1(tj) + δ̂1(tj)Xj.

The ensuing results are as follows:

i. The chosen hyperparameters for estimating ψ1(.) and ψ2(.) functions:
dψ

1 = 0, dψ
2 = 0, ρψ = 937.5, ρ

ψ
r = 1.25, η = 8 × 10−3;

ii. The resulting estimates for ψ1(.) and ψ2(.) functions (refer to Figure 12);

iii. Selected hyperparameters for estimating δ1(.) and δ2(.) functions
dδ

1 = 1, dδ
2 = 0, ρδ = 1437.5, ρδ

r = 60;

iv. The estimated δ1(.) and δ2(.) functions (see Figure 13).
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series from the first iteration of estimation
of δ1(.) and δ2(.) functions
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Figure 12. Comparison of the estimated trend line to the examined time series from the second iteration of
estimation of ψ1(.) and ψ2(.) functions
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5 Conclusion

In this study, our focus has been on modeling the prices of metals for long-term predictions,
specifically addressing the significant risk factors associated with metals, such as the price of
gold, relevant to the KGHM mining company. We have delved into the analysis of a general
time-inhomogeneous stochastic process grounded in the α-stable distribution. This model serves
as an extension of the classical Ornstein–Uhlenbeck process and the CKLS model previously
investigated in our prior work [66].
Within the examined model, we incorporate time-dependent parameters and exhibit non-Gaussian
behavior, aligning with the observed characteristics in metals’ prices—namely, time-dependent
features (mean and scale) and a heavy-tailed (non-Gaussian) distribution. Consequently, the
proposed stochastic model is anticipated to outperform classical models with fixed coefficients
and Gaussian behavior.
The primary objective of this research has been to introduce a model with time-dependent coeffi-
cients based on the α-stable distribution and to propose a novel estimation procedure. Through
Monte Carlo simulations, we have demonstrated the effectiveness of the proposed estimation al-
gorithm in describing data. Furthermore, to underscore the universality of the proposed stochastic
process, we have applied Model to actual data related to metals’ prices, using them to illustrate
the new methodology.
It is essential to note that while we have utilized metals’ prices for illustration, the generality and
universality of this model extend beyond financial data description. We recognize significant
potential for applying the proposed model to datasets where key characteristics, such as mean or
scale, undergo temporal changes, coupled with the presence of non-Gaussian behavior within the
observation vector.
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