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ABSTRACT

The study seeks to investigate whether non-linear patterns are present in the returns of two indices on the stock markets in Ghana and Nigeria between the 
period of 2011 and 2015. The results of applying four linearity tests on the returns concluded that the null of linearity is rejected on all four tests for the 
Ghanaian index but mixed for the Nigerian index. We modelled the indices under the non-linear self-exciting threshold autoregressive (SETAR) model. 
We compared the modelling performance of the non-linear SETAR model with that of the standard AR (1) and AR (2) by analyzing Akaike information 
criterion values of the respective models. Our results show that the SETAR model fits the data well. Hence, modelling stock market returns from Ghana 
and Nigeria using linear models might lead to spurious conclusions.

Keywords: Threshold Models, Linearity Tests, Self-exciting Threshold Autoregressive Model 
JEL Classifications: C12, C13, C24

1. INTRODUCTION

The efficient market hypothesis (EMH) posits that information 
on a market is correctly and instantaneously incorporated in 
setting current asset prices. This assertion means there is a linear 
relationship between information flow to market participants and 
how prices are set on the market.

Thus modelling and forecasting of the returns are done using linear 
models. However, some researchers have raised objection to the 
EMH. Researchers such as Hinich and Paterson (1985), Cochrane 
(1998), Fama and French (1988), Lo and McKinlay (1988), 
Hsieh (1991), Ryden et al. (1998), Garcia and Genay (2000) have 
questioned whether it is appropriate for linear models to be used 
in analyzing complex models that come about as a result of how 
prices are determined and the market negotiation process. These 
researchers believe that market participants do not have an even 
trading field. It is believed that information flow on the market is 
not simultaneously relayed to all agents on the market therefore 
a non-linear model is appropriate for capturing the dynamics on 
the market. Non-linearity on the market might be due to agents 
having different objectives and targets for trading on the market. 

Also agents vary in their negotiation times and how agents view 
risk and the need to diversify their portfolio.

These sources of non-linearity on the market has increased the 
interest in analyzing stock returns with non-linear methods. 
Though it is reported in the extant literature of the non-easiness 
of non-linear models because they can sometimes create spurious 
fits; Granger and Terasvirta (1993), we employ a discrete transition 
regime switching model; the self-exciting threshold autoregressive 
(SETAR) model because of its variety and flexibility. The SETAR 
model is robust to heteroscedasticity in the data.

The aim of this study is to determine if there exits non-linear 
patterns on the composite index of Ghana. We first apply four 
linearity tests on the returns of the series; Keenan (1985) test, 
Tsay (1986) test, BDS (1987) test and the delay vector variance 
(DVV) test developed by Gautama et al. (2004). If non-linearity 
exists, we model the returns of the series with the SETAR model 
and compare the results of the SETAR model with the results of 
the standard AR (1) and AR (2) models to see which model fits 
the data well by analyzing Akaike information criterion (AIC) 
values. The study is organised as follows:
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Section two describes the data and the methodology employed. 
Section three presents the empirical results and discusses the 
findings observed. Section four concludes the study.

2. DATA AND METHODOLOGY

2.1. Data
We used the daily closing values from the Nigeria all share index 
(NIGALSH) and the Ghana composite index (GSEALSH) for the 
period between January 04, 2011 to August 09, 2015. The data 
was obtained from DatamStream. The daily closing prices were 
transformed into returns which were calculated as: Yt = Pt−Pt−1 
where Pt and Pt−1 are the daily closing prices of the index on two 
consecutive trading days.

2.2. Methodology
We employ Keenan test, Tsay test, the BDS test and the DVV test 
to confirm the existence or otherwise of non-linear patterns in the 
data. If non-linearity is present, we model the returns using the 
non-linear SETAR.

2.2.1. Linearity tests
We first test if the return series exhibit non-linear patterns before 
we proceed with modelling with non-linear models. We present 
four linearity tests, namely Keenan (1985) test and Tsay (1986) 
test, BDS (1987) test and the DVV (2004) test.

2.2.2. Keenan test
We present the Keenan test (1985) as in Cryer and Chan (2008). 
This test is based on a second-order Volterra type expansion 
similar to the Taylor expansion. The Volterra expansion is used 
for non-linear modelling and it is able to capture memory effects.

The Keenan test can be written as:
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Here {εt, −∞ < t < ∞} are a sequence of independent and identically 
distributed (IID) random variables with mean zero while y1,…,yn 
are the observations. The process {yt} is linear if the double sum 
of the right hand side of the equation disappears. Thus, testing the 
non-linearity of a series yt consists practically in testing whether 
the double sum is zero or not.

Alternatively, as proven by Cryer and Chan (2008), Keenan test 
can also be heuristically derived as follows:
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Where, {et} are independent and normally distributed with zero 
mean and finite variance. If the regression coefficient η = 0 then the 
exponential term becomes 1. Equation (2) becomes an AR model 
with order m. However, if the regression coefficient η is different 
from zero, then Equation (2) is non-linear. Using the expansion 

exp(x) ≈ 1+x, which holds for x of small magnitude, we can see 
that for small η, Yt follows approximately a quadratic AR model:
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2.2.3. Tsay test
Tsay (1986) extended the Keenan test due to its some limitations. 
As shown in Keenan (1985), though Keenan test is robust 
in detecting non-linearity in the form of the square of the 
approximating linear conditional mean function, the strength of the 
test is sometimes low. This limitation brought about Tsay (1986) 
test. We again present the Tsay test as in Cryer and Chan (2008).
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From this approximation in Equation (4), we can observe that the 
non-linear model is approximately a quadratic AR model but the 
coefficient of the quadratic terms are unconstrained. Therefore, 
the Tsay test considers the following quadratic regression model:
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And tests whether all m (m + 1)/2 coefficients ςi,j = 0.

The autoregressive order m must be specified using the AIC to 
test the null of linearity.

2.2.4. BDS test
The BDS test was developed in 1987 by Brock, Dechert and 
Scheinkman and not Brock, Dechert. We employed the BDS 
test to detect non-linearity because it is used in detecting serial 
dependence in time series. The null of IID hypothesis is tested 
against an unspecified alternative. We present the procedure below 
in computing the BDS test:

Let {yt} be a time series with N observations. Thus {yt} is the first 
difference of the natural logarithms of raw data in time series. Thus:

{yt}=[y1, y2, y3,…,yN] (6)

An embedding dimension, m is selected to embed the time series 
into m-dimensional vectors, by taking each m successive points in 
the series. The series of scalars is as thus converted into a series 
of vectors with overlapping entries.
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We compute the correlation integral, which is a measure of the 
spatial correlation among the points, by adding the number of 
pairs of points (t,j) where:

1 ≤ t ≤ N and 1 ≤ j ≤ N, in the m-dimensional space which are 
“close” in the sense that the points are within a radius or tolerance 
ε of each other.
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BDS (1987) proved that if the time series is IID.
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According to Lin (1997), if the ratio N
m
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σ
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(Brock et al., 1996).

The quantity [Cε,m−(Cε,1)
m] has an asymptotic normal distribution 

with zero mean and a variance Vε,m defined as:
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The null of an IID is rejected at the 5% significance level if 
|BDSε,m| > 1.96.

2.3. DVV
The DVV was developed by Gautama et al. (2004a) for signal 
characterization. Characterizing signal non-linearities have been 
adopted in predicting survival in heart failure cases, practical 
engineering applications (Ho et al., 1997; Chambers and Mandic, 
2001) and in economic time series (Caraiani, 2015; Addo et al., 
2013a; 2013b; 2013c).

DVV is based on surrogate data and it is more suitable for signal 
processing application because the data generating process can 

be described by a linear or non-linear equations theoretically. The 
combination with the concept of surrogate data gives an additional 
account of the non-linear behavior of the time series.

The DVV analysis calculates the target variance, σ*2 which is an 
inverse measure of the predictability of a time series. We present 
the summarized algorithm of the DVV analysis below:
1. For an optimal embedding dimension m which are obtained 

via a differential entropy based method using wavelet-based 
surrogates and time lag τ, generate DV: y(k)=[yk−τ,…,yk−mτ] 
and corresponding target yk

2. The mean μd and standard deviation, σd are computed over all 
pairwise distances between DVs, ‖y(t)−y(j)‖ for t ≠ j

3. The sets Ωk are generated such that Ωk = {y(t)|||y(k)−y(t)||| ≤ ϱd}, 
i.e., sets which consist of all DVs that lie closer to x(k) than a 
certain ϱd taken from the interval [min{0, µd−ndσd}; µd + ndσd], 
e.g., uniformly spaced, where nd is a parameter controlling 
the span over which to perform the DVV analysis

4. For every set Ωk the variance of the corresponding targets σ k
2  

is computed. The average over all sets Ωk, normalized by the 
variance of the time series,σ k

2  yields the target variance σ*2, as:
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Where, N denotes the total number of sets Ωk(ϱd).

The DVV analysis can be represented by graphically plotting of 
σ*2(ϱd) as a function of the standardized distance (ϱd). The minimum 
target variance, σ*2

min = min(ϱd) [σ*2((ϱd)]. A measure of the amount 
of noise present corresponds to the lowest point of the curve.

A DVV analysis where the surrogate and the original time series 
provide similar plots, the series is said to be linear else non-linear. 
Also, because of the standardization of the distance axis, the plots 
can be combined within a scatter diagram, where the horizontal 
axis corresponds to the DVV plot of the original time series and 
the vertical axis corresponds to the surrogate time series. If the 
DVV scatter diagram deviates from the bisector line, the series is 
said to be non-linear.

2.4. SETAR Model
The SETAR model is the simplest form of threshold autoregressive 
models (TAR). Tong (1978) and Tong and Lim (1980) proposed 
TAR models where the regime was determined by the value of 
an observable variable relative to a threshold value. The SETAR 
model can account for conditional heteroscedasticity in the data 
because the error variance may be different in the regimes.

We employ a first-order SETAR model for our analysis. The 
SETAR model is presented in summary from Cryer and Chan 
(2008) as below:
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t t t
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t t t

y e if y
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Where, ρ are the autoregressive parameters, σ are noise standard 
deviations, θ is the threshold parameter and {et}is a sequence of 
IID random variables with mean 0 and variance 1.
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Therefore, if the lag 1 value of yt is not greater than the threshold, 
then the conditional distribution of yt is similar to the first AR (1) 
process and we are in the lower regime, else the second AR (1) 
model is operational and we will be in the upper regime. This 
means the process switches between two linear models depending 
on the position of the lag 1 value.

3. EMPIRICAL RESULTS

The results of the summary statistics as shown in Table 1 indicates 
that the return series is non-normal with high values of kurtosis 
and highly skewed. The Jarque-Bera test statistic null hypothesis 
is rejected at the 1% level of significance. The augmented Dickey-
Fuller test result shows return series is stationary.

We use AIC to select autoregressive order m in testing for linearity 
using the Keenan, Tsay, DVV and BDS tests. The autoregressive 
order m was given as 10 for GSEALSH and 1 for NIGALSH.

Even though the Keenan test at lags 2 and 6 fail to reject the null 
of linearity for GSEALSH in Table 2 and the Keenan and Tsay 
tests fail to reject the null of linearity for NIGALSH in Tables 3-5; 
the Tsay test in Table 2 for GSEALSH rejects the null of linearity, 
the BDS tests results in Tables 6 and 7 give an indication of the 
presence of non-linearity in the returns of the series because the 
P < 0.05.

Also the DVV analysis with iterative amplitude adjusted Fourier 
Transform surrogates performed on the returns of GSEALSH using 
m = 10 and on NIGALSH using m = 1 via the differential entropy-
based method (Gautama et al., 2003) shows that there is a clear 
deviation from the bisector line on the DVV scatter plots in 
Figures 1 and 2. The DVV plots in Figures 1 and 2 also show that 
non-linear patterns exist in the series.

Since non-linearity exists in the data, we proceed to model the 
data under the SETAR model with 2-regimes, low and high. 
The 2-regime SETAR was chosen after observing the data and 
concluding that there are no derivatives on the GSEALSH and 
the NIGALSH. The maximum autoregressive order for the low 
and high regimes was chosen to be 2. The findings are presented 
in Tables 8 and 9.

3.1. SETAR model - GSEALSH
• Non-linear autoregressive model
• SETAR model (2 regimes)
• Proportion of points

a. Low regime: 15.43%
b. High regime: 84.57%.

• Fit: Residuals variance = 3.532e−05, AIC = −12431, 
MAPE = 257%.

3.2. SETAR model - NIGALSH
• Non-linear autoregressive model
• SETAR model (2 regimes)
• Proportion of points:

a. Low regime: 84.82%
b. High regime: 15.18%.

• Fit: Residuals variance = 7.58e-05, AIC = −11504, 
MAPE = 639.7%.

The results show that SETAR for both GSEALSH and NIGALSH 
is stationary because the coefficients in the low and high regimes 
are <1 and also the product of the coefficients in the low and high 
regimes are <1. Thus the necessary and sufficient condition as in 
Chan et al. (1985) is satisfied.

The SETAR model results for GSEALSH shows that the number 
of observations in the high regime (84.57%) is more than that 
in the low regime (15.43%). Growth in returns are decreasing in 
the low regime with negative coefficients hence agents are found 
more in the high regime because of the high opportunities. The 
positive coefficients show an increasing rate of returns in the 
high regime.

However, results for NIGALSH are opposite that of GSEALSH. 
The number of observations is higher in the low regime (84.82%) 
than in the low regime (15.18%). Returns are increasing in the 
low regime because coefficients are positive making it risky for 
agents to in the high regime.

3.3. Modeling Performance
We compared the modelling performance of the SETAR model 
with the standard AR (1) and AR (2) models to confirm whether 
it is appropriate to model stock market returns from Ghana and 
Nigeria with the non-linear SETAR model. Comparing AIC values 
as shown in Tables 10 and 11 for GSEALSH and NIGALSH, we 
conclude that the SETAR model performs and fit the data well 
than the standard AR (1) and AR (2) models.

Table 1: Summary statistics for returns
Index Mean Standard deviation Skewness Kurtosis ADF Jarque-Bera
GSEALSH 0.0006 0.0063 −0.2349 46.4947 −7.0935 95704
NIGALSH 0.0001 0.0093 0.4674 7.6474 −11.029 3002.4
GSEALSH: Ghana composite index, NIGALSH: Nigeria all share index, ADF: Augmented Dickey-Fuller

Table 2: Keenan test results-GSEALSH
m 1 2 3 4 5 6 7 8 9 10
F-test 108.50 2.05 5.76 5.46 3.91 2.12 4.99 5.67 6.75 7.54
P value 0.0002 0.15 0.02 0.02 0.05 0.15 0.03 0.02 0.01 0.01
GSEALSH: Ghana composite index

Table 3: Keenan test results-NIGALSH
m 1
F-test 0.07
P 0.79
NIGALSH: Nigeria all share index
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Figure 1: Delay vector variance plot and delay vector variance scatter plot for Ghana composite index

Figure 2: Delay vector variance plot and delay vector variance scatter plot for Nigeria all share index 

Table 6: BDS test results-GSEALSH
m 2 3 4 5 6 7 8 9 10
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
GSEALSH: Ghana composite index

4. CONCLUSION

We have shown that non-linear patterns exist in the GSEALSH 
and NIGALSH on the Ghanaian and Nigerian stock markets by 
employing four linearity tests; Keenan (1985), Tsay (1986), BDS 
(1987) and DVV (2004) tests. The BDS and DVV tests consistently 
detected non-linearities in both series unlike the Tsay test which 
failed to reject the null of linearity in NIGALSH. The series was 
therefore modelled using the SETAR model. The AIC results of the 
SETAR model was compared with that of the standard AR (1) and 

Table 4: Tsay test results-GSEALSH
m 1 2 3 4 5 6 7 8 9 10
F-test 99.9 59.3 28.9 18.7 13.7 9.8 7.9 6.3 5.7 5.1
P 1.17e-22 9.89e-36 1.65e-32 3.63e-32 1.55e-32 1.42e-29 8.49e-29 1.82e-26 2.21e-27 2.89e-27
NIGALSH: Nigeria all share index

Table 5: Tsay test results-NIGALSH
m 1
F-test 0.05
P 0.83
NIGALSH: Nigeria all share index
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AR (2) models. We observed that, the SETAR model fits the data 
well than the AR (1) and AR (2) models. Therefore, the GSEALSH 
and the NIGALSH are best modelled with non-linear models like 
the SETAR model else results might be spurious.
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Table 7: BDS test results-NIGALSH
m 2 3 4 5 6 7 8 9 10
P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NIGALSH: Nigeria all share index

Table 8: SETAR model results-GSEALSH
Coefficient Estimate Standard 

error
t-value Pr(>|t|)

const.L −0.00511 0.00066 −7.7588 1.815E-14***
phiL.1 −0.70410 0.06421 −10.9653 2.2E-16***
phiL.2 0.30660 0.08313 3.6882 0.0002359***
const.H 0.00025 0.00021 1.1957 0.232067
phiH.1 0.17359 0.03827 4.5363 6.296e-6
phiH.2 0.10713 0.02881 3.7184 0.0002096
Significant codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1, Threshold variable:  
Z(t)=+(1) X(t) +(0) X(t−1). Value: −0.003436. GSEALSH: Ghana composite index

Table 9: SETAR model-NIGALSH
Coefficient Estimate Standard error t-value Pr(>|t|)
const.L 0.00030 0.00029 1.0488 0.29450
phiL.1 0.36066 0.04154 8.6815 2.2e-16***
phiL.2 0.00755 0.03266 0.2312 0.81718
const.H −0.00276 0.00132 −2.1003 0.03591
phiH.1 0.44584 0.08498 5.2466 1.829e-7
phiH.2 0.03383 0.06048 0.5593 0.57604
Significant codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1. Threshold variable: 
Z(t)=+(1) X(t)+(0) X(t−1). Value: 0.007295. NIGALSH: Nigeria all share index, 
SETAR: Self-exciting threshold autoregressive

Table 10: AIC values comparison-GSEALSH
Model AR (1) AR (2) SETAR
AIC −8844.56 −8856.39 −12431
GSEALSH: Ghana composite index, AIC: Akaike information criterion

Table 11: AIC values comparison-NIGALSH
Model AR (1) AR (2) SETAR
AIC −8045.03 −8043.55 −11504
AIC: Akaike information criterion, NIGALSH: Nigeria all share index


