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ESTIMATION AND TESTING FOR COINTEGRATION: 
A SPECTRAL REGRESSION APPROACH 

Yılmaz AKDr David A. meKE\"· 

ABSTRACI' 

A popular topic in the econometrics and time series area is the cointegrating 
relationshlp among the components of a veetor autoregressive time series. 
The problem became importanl after Ihe work of Engle ond Gronger (1987) 
and has been oddressed by many authors: Johonsen (1988), Slock ond 
Watson among many othen. Engle and Granger's leosı lIquares method and 
Johansen's conditional maximum likelihood method have received the most 
attention. These tests are routinely applled to economk time series because 
the notion of cointegration has a natural inlerpretation. Our method wes low 
frequency components of the cross periodogram to estimate the comtegrana" 
relationship between eointegrated time series. The method improve.s the 
results of ordinary leasl squores method propased by Engle and Granger in 
samecasQ. 

Keywonlo: TIme lerIes, Cointegratlon, PerlocIogram ordlııate, Spectrai regreuloD. 

ı. INTRODUCTION 

Unit root tests comprise a standard diagnostic tool in applied time series analysk There 
are several procedures to test for a unit root (e.g. Dickey and Fuller, 1979). Test 
procedures have also been developed to test for seasonal unit roots (Dickey, Hasza and 
Fuller (1984), Hylleberg, Engle, Granger and Yoo, 1990). Dickey and Pantula (1987) 
propose a procedure to test for multiple unit roots. Series with unit roots described as 
integrated. Akdi and Dickey (1998) developed a procedure to test for a unit root using 
the periodogram ordinates of a univariate time series. 

Time series variables with a common Goint) stochastic trend form a cointegrated 
system. That is, if all of the individual time series are integrated, say of order one, it is 
sometimes possible that some linear combination of the series will be integrated of 
order zero (that is, stationary). Thus, the multiple time series rı is a vector of 

, 
nonstationary time series, but there exists a vector (or a matrix) !!. such that!!. rı is a 

stationary system. This notion is known as cointegration and !!. is called the 

cointegrating vector (or matrix). 

Engle and Granger (1987) have proposed an estimation procedure for the cointegrating 
vector. They used a regression approach to estimate the cointegrating vector !!.. 

Johansen (1988) gave an estimation procedure that has 1ıecome very popular. Levy 
(2002) lake adventage of a squared coherency, phase and gain to study the cointegrating 
relationship for a bivariate cointegrated system. He derives some restrictions by 
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studying cross-spectral properties of a cointegrated bivariate system. Boswijk and Lucas 
(2003) considers a semi-nonparametric cointegration test by using LM-testing 
principles. Breitung (2002) variance ratio testing procedure to test for a unit root and he 
suggests a generalization of the variance ratio test for cointegration. Chen and Hurvich 
(2003) study the asymptotic distribution of a tapered narrow-band least squares 
estimator of the cointegrating vector  in the framework of fractional cointegration. 
Deo and Hurvich (2001) study the estimators based on the log periodogram regression 
and they obtain the asymptotic bias and variance. They suggest to use low frequencies 
in the context of  the long memory stochastic volatility model. Finite sample properties 
of spectral regression estimators have been studied by Chambers (2001) with 
simulation. Marunicci (2000) deals with a somewhat related problem. He considers 
spectral regression for cointegrated time series with long memory innovations. He 
provides a functional central limit theorem as a quadratic forms in nonstationary 
fractionally integrated processes. We investigate an estimation procedure for the 
cointegrating vector based on the periodogram. For simplicity, bivariate series are 
considered in detail and the extensions to higher dimensional autoregressive processes 
are discussed. 

In section 2, some notation and definitions are introduced. Section 3 deals with the 
estimation procedures and consistency results. Several estimation strategies are given. 
These are regression using the frequency components of the series and different number 
of frequencies used. Simulation results indicate that using all frequencies in the 
regression gives the worst result. Even in this case, better results are obtained than those 
of least squares. Section 4 discusses the extension of the method to higher dimensional 
processes and finally Section 5 include real data example and a Monte-Carlo simulation 
study.

2. NOTATION AND MOTIVATION 

Consider a first order vector autoregressive (VAR(1)) time series model 

ttt eYAY 1                  (1) 

where te  is a sequence of independent normally distributed random variables with 
mean vector 0  and variance covariance matrix V . Note that the process is stationary if 
all eigenvalues of A  are less than 1 in absolute value and nonstationary otherwise. 

If the coefficient matrix A  has distinct eigenvalues, then there are matrices Q  and M
such that QMAQ  where M  is a diagonal matrix of the eigenvalues of A . The 

transformation tt YQZ 1  gives the canonical form of the series. For example, a 
bivariate series with 

2.02.1

8.08.1
A ,      

6.00

01
M ,   

31

21
Q
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the canonical form of the series can be obtained by setting 1QMQA  as  

ttt ZMZ 1  where ),( ttt SUZ  and ttt UU ,11  and ttt SS ,216.0 .

Substacting 1tY  from both sides of (1) we have 

tttttt eYeYIAYY 111 )( . That is, ttt eYY 1 . In our example, 
notice that the matrix  can be written as 

11
2.1

8.0

2.12.1

8.08.0

10

01

2.02.1

8.08.1
IA

such that ttt WW 16.0  is stationary. Here, tt YW .

The inverse transformation displays the cointegration relationship. One way to estimate 
this cointegrating vector in a bivariate case is to regress tY ,2  on tY ,1 . If the residual series 
is stationary, then the bivariate series is cointegrated. This has been studied by Engle 
and Granger (1987) and consistency properties have been discussed by Stock (1987). 

In a dimension p  process, ttt eYAY 1  subtract 1tY  from both sides to obtain 

tttttt eYeYIAYY 111 )(

where .IA  If . is of rank r , )0( pr  and .'  is nonsingular , the 
series is a linear combination of r  stationary and rp  unit root canonical series, as 
used by Johansen (1988). We have shown  for our bivariate example. 

When a bivariate series tY  is given, each component of the series can be considered as 
a sum of a stationary and a nonstationary series: 

ttt

ttt

SqUqY
SqUqY

2221,2

1211,1              (2) 

where tU  and tS  represent nonstationary (unit root series) and stationary series, 
respectively. From this representation, it can be seen that 

tttt cSSqqqqYqqY ))/(()/( 11122122,11121,2  is stationary.  That is, tY  is 

stationary when ).1,/( 1121 qq  That is,  is a cointegrating vector. Of course, the 
coefficient matrix A  is unknown and thus has to be estimated. 

Periodograms: Assume that a bivariate series tY  with components tY ,1  and tY ,2  is 
given and assume that the representation in (2) is available. For any univariate time 
series ntX t ,...,3,2,1, , the periodogram ordinate at the frequency kw  is defined by

22

2
)( kkkX banwI
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where .)sin()(2,)cos()(2
11

n

t
ktk

n

t
ktk twX

n
btwX

n
a  Here,  is the mean 

of the series  and when ,/2 nkwk since 0)sin()cos(
11

n

t
k

n

t
k twtw  the 

periodogram is invariant to the mean whether it is known or estimated.  

Given a set of observations nYYY ,...,, 21  the periodograms of tU  and tS  are defined 
as in (3) below: 

2
,

2
,,

2
,

2
,, 2

)(,
2

)( ksksknskukuknu banwIbanwI            (3) 

and the real part of the cross periodogram ordinate between tU  and tS  is defined as

kskukskuknsu bbaanwIal ,,,,,, 2
)(Re             (4) 

where ]2/[,...,2,1,0,/2 nknkwk  (here, ][x  denotes the integer part of x ). The 
Fourier coefficients for the series tU  and tS  are 

.)sin(2,)sin(2

.)cos(2,)cos(2

1
,

1
,

1
,

1
,

n

t
ktks

n

t
ktku

n

t
ktks

n

t
ktku

twS
n

btwU
n

b

twS
n

atwU
n

a
           (5) 

For any stationary time series tX , the normalized periodogram ordinate is 
asymptotically distributed as chi-square with two degrees of freedom. 

3. ESTIMATION AND CONSISTENCY RESULTS 

In this section, an estimation procedure for the cointegrating vector based on the 
periodogram ordinates is discussed. Note that, if a vector process is stationary, then 
each component is marginally stationary. Akdi and Dickey (1998) show that the 
periodogram of the unit root process tU  satisfies 

nasZZwI
n

k D
knu

2
2

2
1

2
,2

22

)(4           (6) 

Here, 1Z  and 2Z  are independent standard normal random variables. This result can be 
used to test for a unit root.  The critical values of the distribution under the null 
hypothesis of a unit root is tabulated in Akdi and Dickey (1998). For a stationary time 
series ntSt ,...,3,2,1, , )1()2/()( 22

, Pkkkns ObanwI  as shown in Fuller (1996). 
This means that the unit root dominates all the asymptotic properties. The cited 
references show that )( 2/1

, nOa Pku , )( 2/1
, nOa Pks  and )( 2/1

, nOb Pku ,

)( 2/1
, nOb Pks . Thus we have 

).()()()()()(
2

)(Re

2/12/12/12/1

,,,,,,

nOnOnOnOnOnO

bbaanwIal

PPPPP

kskukskuknsu

Theorem 1. Consider the transformation in (2). For ease of notation and to emphasize 
the analogy to regression, write tX  for tY ,1  and tY  for tY ,2 . For each fixed k , the ratio 
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)(Re kXYk wIaly  to )( kXk wIx  is a consistent estimator of the ratio 1121 / qq . That 
is, for each fixed k

nas
q
q

wI
wIal

wC P

kX

kXY
kn ,

)(
)(Re

)(
11

21 .

Proof: Notice that 
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n

t
ktkkX bqbqtwSqUq

n
twX

n
wb ,12,11

1
1211

1
, )sin()(2)sin(2)(

and similarly kskukkX aqaqwa ,12,11, )(  and thus 

).n(O)w(Inq)n(Obaq)n(

abbqaqaq)n(ba)n()w(In

PkuPk,uk,u

k,sk,uk,sk,uk,Xk,XkX
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Likewise the cross periodogram ordinate of tX  and tY  can be written as follows: 
)()()(Re 12

2111
2 nOwInqqwInal PkukXY

and thus,

)(
)(

)(Re
)(
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2
11

2111
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2
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wInal
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which completes the proof. 

As a result of Theorem 1, when we fix the number of frequencies in the regression, we 
still have the concictency. That is, consider the following regression model 

mkxy kkk ,...,3,2,1,                 (7) 
where ky  is the real part of the cross periodogram ordinate of the series tX  and tY  as 
defined in (4) at frequency k , and kx  is the periodogram ordinate of the series tX .

Then the ordinary least squares estimate n,1
ˆ  of  in model (7) is a consistent estimator 

of the ratio 1121 / qq . That is,
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ˆ            (8) 

Moreover, using the intercept term in the regression, 
mkxy kkk ,...,3,2,1,            (9) 

the ordinary least squares estimate of  is still a consistent estimator of the ratio 

1121 / qq . That is,
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4. HIGHER ORDER SERIES 

In this section, higher order and higher dimension vector autoregressive time series are 
considered. Consider the following time series model 

tptpttt eYAYAYAY ...2211           (11) 
where tY  is a k -variate random vector, iA ’s are appropriate matrices and te  is a 
sequence of ... dii  random vectors with mean-vector 0  and variance-covariance matrix 

. Subtracting 1tY  from both sides, the model becomes 

tptpttt eYBYBYY ...111  where pAAAI ...21 ,
)...( 21 piii AAAB . The number, rp , of unit roots of the characteristic 

equation 0|...| 1
1

p
pp AAmIm  is the rank deficiency of . In this case, there 

exist rank r  matrices  and  such that . We assume that each element of 
the response vector tY  has a unit root and stationary first difference. That is, tY  is 
integrated of order 1.  Thus, it is clear that 

ttt WBYAY 11              (12) 

where tW , being a linear combination of stationary series, is stationary. Thus, the 
problem reduces to estimating the coefficient matrix .

Using a similar argument to that in section 2 and partitioning tY , the following 
representation is available for the higher dimensional processes, too. 

ttt

ttt

SQUQY
SQUQY

2221,2

1211,1             (13) 

where tU  represents the components with unit roots and tS  represents stationary 
components of the series. Therefore, the problem reduces  to estimating 1

1121QQ . We are 
assuming 11Q  is )()( rprp  and of full rank, by which assumption we have 
identified as a set of series to construct tY ,1  involves all of the rp   nonstationary 
comment trends. That is, tYQ ,1

1
11  is tU  plus stationary components. Only in this way, 

tY ,1  can be used to remove all the nonstationary components from the other series. 
Analogous to the bivariate case 1

1121QQ  is to be estimated.  Exactly as in the bivariate 
case, the order of the unit root parts of the Fourier transforms of the data dominate. 
Specifically, the Fourier coefficient matrices for tY  are: 
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and those for the series tU  and tS  are similar and denoted by lower case letters 
correspondingly; kskuksku bbaa ,,,, ,,, . The relationship between the Fourier coefficients  

2,1,, ,, iBA kiki  and kskuksku bbaa ,,,, ,,,  is as follows: 

kskukkskuk

kskukkskuk

bQbQBaQaQA
bQbQBaQaQA

,22,21,2,22,21,2

,12,11,1,12,11,1

,
,

The periodogram ordinate of  tY ,1  can be calculated as follows: 

kkkkk BBAAnwP ,1,1,1,111 2
)(

and the real part of the cross periodogram ordinate will be 

kkkkk BBAAnwR ,2,1,2,112 2
)( . 

Now define the cointegrating spectrum as
.)()()( 1

1112 kkkn wPwRwC          (14) 

The following are the multivariate versions of Theorem 1. 

Theorem 2. The estimator in (14) is a consistent estimator of  1
1121QQ  for each fixed k .

As before, a fixed number of frequencies can be combined in a multivariate regression 
to give a consistent estimate. 

Theorem 3. Using the transformations in (13), the ordinary least squares estimator n
ˆ

of  is a consistent estimator for 1
1121QQ  using the regression model 

mkEXY kkk ,...,2,1,
where kY  and kX  are as before and the estimator is defined as 

.ˆ
1

11

m

k
kk

m

k
kkn XXXY

5. AN EXAMPLE AND SIMULATIONS 

A. Demonstration with Real Data: As an example, we use quarterly US consumption 
and  income data set of Beaulieu and Miron (1993). It covers the period 1946:1 through 
1985:4. Data are log transformed and seasonally adjusted using X12 adjustment 
program. First of all, we check if the series are of )1(I . The time series plots and their 
identification plots are given in Figure 1 below. 

Both series are modelled with first order autoregressive model, AR(1) as suggested by 
the values of AIC and SBC statistics obtained from PROC ARIMA in SAS. The 
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autocorrelations decay very slowly. Here, X  and Y  denote income and consumption 
under the logarithmic transformation, respectively. First differenced series and their 
identification plots are given in Figure 2. 

The stationarity of the series have been checked with standard Dickey-Fuller test and 
the periodogram based unit root test proposed by Akdi and Dickey (1998). The models 
for X  and Y  are 

160,...,3,2,1,
160,...,3,2,1,

,11,0,

,11,0,

teYY
teXX

tYtYYt

tXtXXt

and the results heve been summarized below:

Table 1. Summary of the Results 
ˆ Critical

Value 
Periodogram )( 1wTn

Critical
Value 

Conclusion 

tX    3.201 -2.89 66.9539 688.254 0.178 Unit Root 

tY    2.415 -2.89 50.6841 300.582 0.178 Unit Root 

tX -13.442 -2.89 0.0040204 0.03953 0.178 Stationary 

tY -14.811 -2.89 0.0041481 0.024176 0.178 Stationary 

The periodogram test is left tailed. We fail to reject the null hypothesis of a unit root for 
each series. That is, both series are integrated of order 1 according to the results of 
Dickey-Fuller and periodogram tests. The periodiogram based method has certain 
advantages over conventional tests.  Firstly, conventional tests require the estimation of 
too many AR parameters to account for the dynamics/seasonality of the series. 
Secondly, test results change with the sample size in conventional tests, while the 
periodogram based method requires no parameter estimation except for variance.  
Thirdly, the critical values of the test statistics are free of sample size constraints. Thus, 
these might have considerable advantages, especially for small samples.  

In order to check whether these series are cointegrated, we calculate the periodograms 
and the real part of the cross periodograms of the series and regress the real part of the 
cross periodograms on the periodogram of one of the series (income). The estimate of 
the regressioon coefficient with spectral regression is 87.086814.0 . The time series 
and its identification plots of ttt XYZ 87.0  given in Figure 3, seem to show a 
stationary series but this requires a statistical check. If this series is stationary, then the 
estimated cointegration vector is .)1,87.0(  The values of AIC statistic and the 
identification plots imply an AR(1) model for tttt ZZZ 1, . To test 1:0H
against 1|:|aH  one can regress 1ttt ZZD  on 1tZ  and calculate the standard t -
statistic as: 325.3)ˆ(/ˆˆ sa  which is smaller than 10% critical value 134.3
(obtained by simulation- see Table 2) and we reject 0H  at the 10% level. The parameter 
estimates and their standard errors are given below: 

Estimation and Testing for Cointegration: A Spectral Regression Approach
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325.3428.3
0313.00056.0..
104.00192.0.

ˆˆ 1
*
1

*
0

statt
ErrStd

Est
ZZ tt

The power is approximated as 804.0  which is obtained in a similar way given in Table 
3 in the Annex. 
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Figure 1. Original Series and Their Identification Plots 
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Figure 2. First Differences and Their Identification Plots 
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This critical value comes from a simulation reported in Table 2. Bivariate series with 
roots 1 and  were generated, Z  was computed by the periodogram method shown 
here and then the differenced Z  was regressed on its first lag Z  and empirical 
percentiles computed. The percentiles of a  can be used as the critical values for testing 
the null hypothesis of no cointegration. The table is similar to the table of Engle and 
Granger but here the periodogram method is used rather than ordinary regression to 
construct Z . In other words, adjusted consumption and income are cointegrated at 10% 
significance level. In a similar way, the performance of the test is tabulated for different 

’s as listed in Table 3. Here, 1000 replications are used and for different ’s  the 
number of rejections were counted. 

In addition, the cointegrating relationship between consumption and income is analyzed 
with the Engle and Granger approach. The estimated cointegrating vector 

)86.0856996.0(  is very close to the one estimated through the spectral regression 
approach. When the first differenced residual series tR  (obtained from the regression of 

tY  on tX ) is regressed on 1tR , we get the following estimation results: 

326.3620.0
)0327.0()0011.0(.

ˆ10886.0000684.0ˆ
1

statt
ErrStd

RR tt

Since, 033.3326.3)(ˆ GE , we reject the null hypothesis of no cointegration 
at the 10%  level.  The critical value 033.3  is obtained by simulation with 5000 
replications. Note that both tests fail to reject the null hypothesis of no cointegration at 
5% significance level. 

Moreover, the Johansen (1988) method is also applied for investigating the 
cointegration relation between these variables. The corresponding squared canonical 
correlations are 099310.0  and 050393.0 . Then, the value of Johansen’s trace statistics 
is calculated as 008.25)050393.01ln()099310.01ln(160ˆ

trace  which is 
greater than 10% critical value (10.3) and we reject the null hypothesis of no 
cointegration. Thus, we find that the consumption and income series are cointegrated at 
10% significance level. 

B. Simulation Study:  We consider the series generated from a normal distribution 
with mean zero and variance 1 according to (15). That is, )1,0(~,1 Ne t , )1,0(~,2 Ne t

with ttt eUU ,111  and ttt eSS ,212  for 11 , 1|| 2 . The equations in (2) 
allow us to write 

ttt

ttt

SUZ
SUZ
43

2

,2

,1           (15) 
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where tU  represent a unit root time series and tS  represents a stationary time series. 
Notice that both series tZ ,1  and tZ ,2  are nonstationary because both include tU . That is, 
the nonstationary bivariate series can be written as 

t

t

t

t

S

U

Z

Z

43

21

,2

,1

.         (16)  

But ttt SZZ 23 ,1,2  which is stationary. Based on this cointegration relationship, in 
the following simulations we expect to get estimates close to 3  for different numbers of 
observations. We run 10,000 regressions for each case (different 2  and n ) and 
average these spectral regression estimates of the cointegrating vectors. We also run 
10,000 regressions of tZ ,2  on tZ ,1  for each case and average these 10,000 ordinary least 
squares estimates of the cointegrating coefficient as in Engle and Granger (1987), 
labeled OLS in Table 1a. All frequency regressions does not have fixed k  as n  gets 
large so our asymptotic theory does not apply to it. Different number of frequencies 
were considered in the regressions and we observed that using all frequencies in the 
regression gives the worst result. We also analyze the bivariate series with Johansen’s 
method. Standard deviations and mean squared errors of estimation are reported for 
comparison. For the bivariate case, the sample sizes used as 200,100,50n . The 
values of the parameters 11  and 99.0,95.0,9.0,8.0,7.02  are considered and 
the results are tabulated in Table 1b.  Notice that there is no cointegration when 12 .
In our simulations, we observe that Johansen’s method produces some bizarre outliers 
which cause large mean squared error and standard deviations and therefore the bias of 
Johansen’s method is large. 

In Table 1a, we take the average of 10,000 regression estimates obtained from both 
ordinary least squares and spectral regression for different values of  2 . We are 
looking for the values close to 3. Using all frequencies in the regression yields the 
worse results. Even in the worst case spectral regression gives a better result than that 
obtained from ordinary least squares. As it is seen from the table, the estimates gets 
further away from 3 as 2  approaches 1. In Table 1b, SRE is our periodogram 
estimator using all frequencies in the regression. When 2  takes the value 1, there is no 
cointegration because the matrix  has rank of zero. 

6. CONCLUSION 

In this study, periodogram based cointegration method have been proposed. The method 
improves the OLS method proposed by Engle and Granger (1987) in certain cases. 
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E BÜTÜNLE ME Ç N TAHM N VE TEST:  
SPEKTRAL B R REGRESYON YAKLA IMI

ÖZET 

Ekonometri ve zaman serileri alanndaki popüler bir konu, vektör 
otoregressif  zaman serilerinin bile enleri arasndaki e bütünle me
ili kisidir.  Engle ve Granger (1987)’in çal malarndan sonra problem 
önemli hale gelmi  ve Johansen (1988), Stock ve Watson gibi ba ka pek çok 
yazar tarafndan da bu probleme i aret edilmi tir. Engle ve Granger’in en 
küçük kareler metodu ile Johansen’in ko ullu maksimum olabilirlik metodu 
en çok dikkati çekenlerdendir. Bu testler ekonomik zaman serilerine rutin 
olarak uygulanm tr  çünkü e bütünle me nosyonu do al bir yoruma 
sahiptir. Bizim metodumuz, e bütünle mi  zaman serileri arasndaki 
e bütünle me ili kisini tahmin etmek için çapraz periyodogramn dü ük
frekansl bile enlerini kullanr. Baz durumlarda bu metod, Engle ve Granger 
tarafndan önerilen sradan en küçük kareler metodunun sonuçlarn
geli tirir.

Anahtar Kelimeler: Zaman serileri, E bütünle me, Periyodogram ordinat, Spektral regresyon. 
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Annex. Tables 

Table 1a. Simulations (* marks the closest average to 3 in each row) 

 5 Freq 10 Freq. All Freq. OLS 
n=50

7.02 2.641* 2.619 2.600 2.482 
8.02 2.524* 2.511 2.498 2.421 
9.02 2.273 2.367* 2.362 2.329 

95.02 2.282* 2.280 2.279 2.268 
99.02 2.221* 2.221 2.220 2.217 

n=100
7.02 2.843* 2.822 2.786 2.617 
8.02 2.736* 2.715 2.684 2.552 
9.02 2.536* 2.523 2.507 2.436 

95.02 2.380* 2.373 2.367 2.337 
99.02 2.235* 2.234 2.233 2.231 

n=200
7.02 2.957* 2.948 2.916 2.746 
8.02 2.905* 2.890 2.852 2.687 
9.02 2.746* 2.727 2.693 2.569 

95.02 2.546* 2.533 2.514 2.446 
99.02 2.267* 2.267 2.265 2.260 
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Table 1b. Simulations (Comparisons for SRE with OLS and Johansen with respect to MSE and 
STD, used all frequencies in SRE) 

N=50 7.02 8.02 9.02 95.02 99.02
SRE 2.600 2.498 2.362 2.279 2.220 
MSE(SRE) 0.245 0.344 0.510 0.626 0.715 
STD(SRE) 0.292 0.305 0.321 0.325 0.327 
OLS(EG) 2.482 2.421 2.329 2.268 2.217 
MSE(EG) 0.311 0.381 0.310 0.238 0.247 
STD(EG) 0.205 0.215 0.310 0.238 0.247 
JOH 3.632 2.408 3.286 8.48 2.449 
MSE(JOH) 3482.5 7081.5 833.22 36382835 2427.5 
STD(JOH) 59.01 84.15 28.87 603.187 49.268 
N=100      
SRE 2.786 2.684 2.507 2.367 2.233 
MSE(SRE) 0.097 0.169 0.333 0.500 0.693 
STD(SRE) 0.227 0.264 0.300 0.315 0.326 
OLS(EG) 2.617 2.552 2.436 2.337 2.231 
MSE(EG) 0.178 0.238 0.364 0.491 0.652 
STD(EG) 0.179 0.194 0.215 0.228 0.246 
JOH 2.968 2.936 -70.28 1.0248 2.178 
MSE(JOH) 193.68 257.95 52078513 17247 1610.06 
STD(JOH) 13.91 16.06 7216.53 131.319 40.119 
N=200      
SRE 2.916 2.852 2.693 2.514 2.265 
MSE(SRE) 0.026 0.057 0.161 0.324 0.649 
STD(SRE) 0.168 0.188 0.258 0.297 0.332 
OLS(EG) 2.746 2.687 2.569 2.446 2.260 
MSE(EG) 0.084 0.124 0.223 0.353 0.608 
STD(EG) 0.141 0.162 0.193 0.216 0.248 
JOH 3.014 3.051 3.527 9.018 2.789 
MSE(JOH) 0.021 8.733 3028.01 35054277 14941.76 
STD(JOH) 0.144 2.95 55.03 592.06 122.24 
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Table 2. Critical values for a  (5,000 replicates) The values for 1 are used for testing the null 
hypothesis of no cointegration. 

 0.01 0.05 0.10 0.90 0.95 0.99 
N=50

1 -4.121 -3.464 -3.173 -0.885 -0.488 0.290 
95.0  -4.225 -3.613 -3.264 -1.203 -0.880 -0.300 
90.0  -4.318 -3.685 -3.336 -1.412 -1.148 -0.593 
80.0  -4.498 -3.906 -3.610 -1.774 -1.530 -1.079 
70.0  -4.788 -4.164 -3.873 -2.065 -1.851 -1.419 

N=100
1 -4.125 -3.434 -3.114 -0.967 -0.602 0.188 

95.0  -4.183 -3.659 -3.370 -1.523 -1.255 -0.677 
90.0  -4.420 -3.938 -3.655 -1.936 -1.714 -1.226 
80.0  -5.146 -4.513 -4.233 -2.563 -2.368 -1.982 
70.0  -5.650 -5.032 -4.737 -3.031 -2.835 -2.489 

N=160
1 -4.050 -3.415 -3.134 -1.005 -0.588 0.159 

95.0 -4.330 -3.810 -3.544 -1.820 -1.605 -1.133 
90.0 -4.815 -4.305 -4.043 -2.426 -2.231 -1.823 
80.0 -5.726 -5.183 -4.924 -3.318 -3.132 -2.735 
70.0 -6.432 -5.880 -5.629 -3.969 -3.796 -3.403 

N=200
1 -3.994 -4.424 -3.121 -1.047 -0.646 0.105 

95.0  -4.446 -3.925 -6.643 -1.995 -1.781 -1.317 
90.0  -5.022 -4.544 -4.278 -2.703 -2.502 -2.107 
80.0  -6.043 -5.538 -5.307 -3.734 -3.526 -3.099 
70.0  -6.807 -6.361 -6.103 -4.494 -4.261 -3.848 

Table 3. Power of a  (number of rejections out of 1,000 replications) 

05.0 10.0
N 100 160 200 

1.00 0.041 0.045 0.047 
0.95 0.087 0.133 0.169 
0.90 0.167 0.329 0.516 
0.80 0.452 0.866 0.960 
0.70 0.734 0.984 1.000 
0.60 0.886 1.000 1.000 
0.50 0.965 1.000 1.000 

N 100 160 200 
1.00 0.107 0.093 0.103 
0.95 0.160 0.213 0.290 
0.90 0.287 0.533 0.705 
0.80 0.649 0.950 0.978 
0.70 0.868 0.996 1.000 
0.60 0.964 1.000 1.000 
0.50 0.992 1.000 1.000 
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