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Abstract: Coumarins are a class of naturally occurring compounds found in various plants, fungi, and 
microorganisms, each with a unique chemical profile. These compounds exhibit a broad range of bioactivities, 
including antithrombotic, anti-inflammatory, antioxidant, antimicrobial, antiviral, anticancer, and 

neuroprotective properties. The effective extraction of coumarins, facilitated by methods such as maceration 
and microwave-assisted extraction, is integral to unlocking their potential across various applications. 
Nevertheless, safety and toxicology considerations assume paramount importance, particularly in 
pharmaceuticals, cosmetics, and food additives. While moderate dietary consumption of coumarin-rich foods 
is generally safe, excessive intake, whether through foods or supplements, raises concerns linked to 
hepatotoxicity and photosensitivity. Notably, specific coumarin derivatives, including the widely used 
anticoagulant warfarin, necessitate precise dosing and vigilant monitoring to mitigate the risk of bleeding 

complications. In conclusion, the versatile biological activities of coumarins underscore their significance; yet, 
their safety and toxicity profiles are contingent on multiple factors, encompassing compound type, dosage, 
and individual susceptibility. This review provides a holistic understanding of coumarins, encompassing their 
natural origins, biosynthesis, bioactivity spectrum, extraction techniques, and insights into safety, and 
toxicology. 
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1. INTRODUCTION 
 
Coumarins, a class of natural compounds 
characterized by their benzopyrone structure, have 
been the subject of significant scientific interest and 

research due to their widespread occurrence in 

nature and diverse biological activities (1). These 
compounds, originally identified in tonka beans 
(Dipteryx odorata) and later found in various plants, 
fungi, and microorganisms, have demonstrated a 
wide range of pharmacological properties, making 
them intriguing candidates for applications in 
pharmaceuticals, food additives, cosmetics, and 

beyond (2). 
 
The intriguing chemical structure of coumarins 
consists of a benzene ring fused to an α-pyrone 
(benzopyrone) ring, creating a scaffold with distinct 
electronic and steric properties. This structural 
arrangement confers upon coumarins a remarkable 

ability to interact with a myriad of biological targets, 

resulting in their diverse bioactivity spectrum (3). 
The presence of coumarins in edible plants and their 
established usage in traditional medicine practices 
have long hinted at their potential health benefits 
(4). 

 

Natural sources of coumarins are abundant and 
encompass a wide array of botanical species. Plants 
such as cinnamon, sweet woodruff, and sweet clover 
are renowned for their coumarin content. Coumarins 
are distributed across various plant parts, including 
flowers, seeds, and leaves, with distinct classes such 
as pyranocoumarins and furanocoumarins contri-

buting to their molecular diversity (5). Fruit and 
flowers often exhibit higher coumarin concentrations 
compared to other plant parts, rendering them 
noteworthy sources for isolation and analysis (6). 
Beyond plants, coumarins have also been identified 
in microorganisms, further expanding their 
biogeographical distribution. Fungi, in particular, 

have yielded coumarin derivatives from species 
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isolated in diverse ecological niches (7). These 
coumarins, typically encountered as secondary 
metabolites in plants and microorganisms, serve 

essential functions in protecting against various 
environmental threats, including herbivores and 
pathogens (8). 
 

The pharmacological importance of coumarins is 
undeniable. These compounds have demonstrated a 
myriad of bioactivities, including antithrombotic, 
anti-inflammatory, antioxidant, antimicrobial, anti-
viral, anticancer, and neuroprotective effects (1). 
Such a versatile pharmacological profile has spurred 

extensive research into their potential therapeutic 
applications. Coumarins have found utility in the 
treatment of various medical conditions, with some 
derivatives serving as anticoagulants to prevent 
blood clot formation (9). Additionally, their 
antioxidant properties make them attractive 

candidates for the development of novel therapies 

aimed at mitigating oxidative stress-related diseases 
(10). 
 
In the context of food and cosmetics, coumarins have 
been explored as natural additives and functional 
ingredients. Their fragrance and flavor-enhancing 
properties have led to their incorporation into 

perfumes, and food products (11). Furthermore, 
coumarins have shown potential in the cosmetic 
industry due to their skin-lightening and antioxidant 
effects (12). 
 
While coumarins offer remarkable promise, they are 

not without their challenges and risks. Excessive 
consumption of coumarin-rich foods or dietary 

supplements has raised concerns regarding potential 
adverse effects, including hepatotoxicity and 
photosensitivity (13). The delicate balance between 

their beneficial bioactivities and potential health risks 
underscores the need for a comprehensive 
understanding of coumarins' safety and toxicology 
profiles. 

 
This mini-review endeavors to provide an overview 
of coumarins, encompassing their natural sources, 
biosynthesis, bioactivities, extraction methods, and 
safety considerations. We aim to shed light on the 
multifaceted world of coumarins, offering insights 

into their potential applications, while emphasizing 
the importance of responsible use and vigilant 
monitoring to harness their benefits effectively. 
 
2. NATURAL SOURCES OF COUMARINS 
 

Coumarin is present in numerous vegetables, fruits, 

spices, and herbs, as illustrated in Figure 1. Within 
plants, coumarins are distributed across various 
plant parts, including flowers, seeds, and leaves (5). 
They exhibit varying concentrations and molecular 
diversities, with distinct classes such as 
pyranocoumarins (linear and angular) and 
furanocoumarins (linear and angular) (5). Generally, 

fruit and flowers contain higher coumarin 
concentrations compared to roots, stem bark, leaves, 
and seeds (6). Table 1 offers an overview of 
coumarin and its derivative classes, their isolation 
from various plant sources, as well as pertinent 
details such as the source parts and isolation 

methods, along with the number and types of 
coumarins identified. 

 

 
Figure 1: The structure and natural sources of various coumarin classes. 
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In addition to plants, coumarin and its derivatives 
have been discovered in microorganisms. In a 2015 
study, J. Wang et al. reported the isolation of a novel 

coumarin derivative from two fungal species found 
along the shores of the South China Sea, which they 
subsequently co-fermented (14). Similarly, Uma-
shankar et al. published a study in the same year 

where they extracted three coumarin compounds 
from Alternaria mushrooms isolated from the leaves 
of Crotalaria pallida (15). In a 2020 investigation, a 
new coumarin derivative was identified, along with 
pyron-derived compounds, in the Aspergillus 
versicolor fungal strain isolated from Coridius 

chinensis (16). These coumarins, typically 
encountered as secondary metabolites in plants and 
microorganisms, serve a critical function in defending 
against various threats (6). 
 
3. BIOSYNTHESIS OF COUMARINS 

 

Plants synthesize many phenolic compounds (37). 
These synthesized compounds are classified into four 
distinct groups according to their carbon scaffolds: 1) 
phenolic acids (C6-C1), 2) hydroxycinnamic acids 
(HCs, C6-C3), 3) stilbenes (C6-C2-C6), and 4) 
flavonoids (C6-C3-C6). The hydroxycinnamic acids 
class includes p-coumaric acid, caffeic acid, and 

ferulic acid (38). Phenolic compounds, including p-
coumaric acid, caffeic acid, and ferulic acid, are 
synthesized in plants from phenylalanine or tyrosine 
through the activity of phenylalanine ammonia lyase 
(PAL) or tyrosine ammonia lyase (TAL) enzymes. The 
biosynthesis of coumarins, as depicted in Figure 2, 

involves the conversion of phenylalanine and 
tyrosine using PAL or TAL, followed by enzymatic 

reactions catalysed by 4-cinnamic acid: coenzyme A 
ligase (4CL) and feruloyl CoA 6′-hydroxylase (F6′H) 
(also known as 2-oxoglutarate-dependent dioxyge-
nase, 2OGD, or p-coumaryol CoA 2′-hydroxylase, 
C2′H) enzymes (37,38). Following deamination by 

PAL, the initial enzyme in the phenylpropanoid 
pathway, cinnamic acid is produced and subsequ- 
ently hydroxylated by cinnamate 4-hydroxylase 
(C4H) to yield p-coumaric (4-coumaric) acid (39,40). 
p-Coumaric acid serves as a precursor for coumarin 
derivatives, including umbelliferone, catalysed by 
4CL and F6′H enzymes, and esculetin, which is 

produced with the participation of coumarate-3-
hydroxylase (C3H), 4CL, and F6′H enzymes (38,39). 
p-Coumaroyl-CoA can be converted to esculetin 
through a series of enzymatic reactions, starting with 

hydroxycinnamoyl transferase (HCT) and followed by 
C3H and HCT enzymes, respectively (41–44). Caffeic 
acid, derived from the hydroxylation of p-coumaric 

acid by the C3H enzyme (45), can further undergo 
O-methylation via caffeic acid O-methyl transferase 
(COMT) to produce ferulic acid (38). Ferulic acid is 
subsequently transformed into scopoletin, one of the 

coumarin derivatives, through the actions of 4CL and 
F6′H enzymes (46). The formation of feruloyl-CoA, 
an intermediate in the conversion of ferulic acid to 
scopoletin, can also occur from caffeoyl-CoA via 
caffeoyl-CoA O-methyltransferase (CCoAOMT) (47). 
 

While the conversion of phenylalanine-derived 
coumaric acid to coumarin has been reported to 
occur through a single-step ortho-hydroxylation 
process, except for the para- hydroxylation, this 
biosynthetic step remains relatively underexplored 
(48). An alternative pathway for coumarin 

biosynthesis begins with the conversion of 

phenylalanine-derived coumaric acid into trans-2-
cinnamate by the enzyme cinnamate 2-hydroxylase 
(C2H) and proceeds through subsequent 
transformations catalyzed by 2-coumarate O-β-
glucosyltransferase (2GT) and β-glucosidase (GBA) 
(49). 
 

Despite plants' capacity to synthesize various 
flavonoid compounds, including coumarins, their 
natural extraction is often insufficient for applications 
such as drug development. Traditional tissue culture 
and chemical synthesis methods prove impractical 
for large-scale coumarin production (37). 

Consequently, researchers have turned to 
microorganisms as an alternative for biosynthesizing 

phenolic compounds, including coumarins (40,50). 
These studies involve the transfer of structural genes 
isolated from plants, fungi, and bacteria into 
microorganisms like Escherichia coli and 
Saccharomyces cerevisiae, resulting in recombinant 

microbial strains capable of producing phenolic 
compounds (37). In 2015, Yang et al. achieved the 
synthesis of coumarin derivatives using E. coli. They 
cloned and transferred Os4CL and IbF6′H2 genes 
from Oryza sativa and Ipomoea batatas into E. coli. 
This genetic modification enabled the E. coli to 
produce three coumarin derivatives—umbelliferone, 

esculetin, and scopoletin—when cultured in media 
supplemented with hydroxycinnamic acids such as p-
coumaric acid, caffeic acid, and ferulic acid (38). 
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Table 1: Classes and Isolation of Plant-Derived Coumarins. 

Sources 
Part Of 
Source 

Isolation Method Solvent Temperature Time Coumarins Number and Type Ref. 

Ailanthus altis-
sima (Mill.) Swin-

gle 

Air-dried root 
barks 

- 70% EtOH-H2O 70 oC 3 h 
14 compounds 

(Simple coumarins) 
(17) 

Angelica dahurica 
Air-dried 

roots 
Reflux 95% EtOH-H2O - 3 h 

23 compounds 
(10 furanocoumarins + 3 furanocou-

marin dimers) 

(18) 

11 species of 

Bamboo 
Leaves 

Ultrasound-Assisted 
Extraction + Centrif-

ugation 

70% EtOH-H2O 

and MeOH 
RT and 4°C 30 min 

12 compounds 
(8 simple coumarins + 4 furanocou-

marins) 

(19) 

Bombax ceiba Dried flowers - 
MeOH and 70% 

MeOH 
55 oC and RT (20 

oC) 
5 + 20 h 

24 compounds 

(4 simple coumarins + 13 flavones + 
3 glycosides + 4 phenolic acids) 

(20) 

Calophyllum 
brasiliense 

Air-dried 
leaves 

- Hexane RT - 
3 compounds 

(Simple coumarins) 
(21) 

Calophyllum in-
ophyllum 

Air-dried 
leaves 

- 95% EtOH-H2O - - 
6 compounds 

(Pyranocoumarins) 
(22) 

5 species of Citrus Peels Percolation MeOH RT 5 days 
6 compounds 

(2 simple coumarins + 4 furanocou-

marins) 

(23) 

6 species of Citrus Dried peels Centrifugation 80% MeOH-H2O RT ~1.5 h 
27 compounds 

(6 simple coumarins + 21 furanocou-
marins) 

(24) 

Citrus grandis (L.) Dried fruits Reflux 70% EtOH-H2O - 1.5 h 
17 compounds 

(10 simple coumarins + 7 furanocou-
marins) 

(25) 

Clausena exca-
vate 

Air-dried 
roots 

Reflux 95% EtOH-H2O - - 
9 compounds 

(pyranocoumarins) 
(26) 

Cuphea ignea 

(Lythraceae) 

Fresh whole 

plant 
Reflux 

Hot EtOH/H2O 

(3:1) 
- 8 h 

1 compound 

(Simple coumarins) 
(27) 

Ferula sin-
kiangensis 

Seeds Reflux 95% EtOH-H2O - 2 h 
11 compounds 

(Simple coumarins) 
(28) 

Ferulago subvelu-
tina 

Milled roots Percolation Ethyl acetate RT 48 h 
6 compounds 

(2 simple coumarins + 4 furanocou-
marins) 

(29) 

Matricaria chamo-
milla (L.) 

Leaves - EtOH - - 
7 compounds 

(5 simple coumarin + 2 cinnamic acid 
derivatives) 

(30) 
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Melilotus offici-
nalis (L.) 

Air-dried 
flowering tops 

Soxhlet, Ultrasound-
Assisted Extraction, 
Microwave-Assisted 

Extraction 

95% and 50% 
EtOH-H2O 

- 8 h 
3 compounds 

(1 Simple coumarin + 2 phenolic acid) 
(31) 

Melittis melisso-

phyllum L. 

Air-dried and 

fresh leaves 
- 80% MeOH RT 30 min 

1 compound 

(o-coumaric acid glucoside) 
(32) 

Murraya panicu-
late (L.) Jack 

Air-dried 
leaves and 

stems 
- 

95% and 50% 
EtOH-H2O 

- - 
19 compounds 

(Simple coumarins) 
(33) 

Paxillus involutus 
Dried fruiting 

bodies 
- Ethyl acetate 4°C ~ 4 days 

4 compounds 
(1 furanocoumarins) 

(34) 

Trifolium repens Flowers Soxhlet 
Petrol and CHCl3 
+ MeOH and 70% 

MeOH 
RT 8 + 8 h 

5 compounds 
(2 simple coumarins + 3 biscouma-

rins) 
(35) 

Zanthoxylum 
schinifolium 

Freeze dried 
leaves 

- 80% MeOH - - 
9 compounds 

(Simple coumarins) 
(36) 
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Figure 2: Biosynthesis Pathway of Coumarins.
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4. BIOACTIVITY OF COUMARINS 
 
Coumarins, a class of naturally occurring compounds 

found in various plants, fungi, and microorganisms, 
have garnered significant attention due to their 
diverse and promising biological activities (51). 
These compounds exhibit a wide range of 

pharmacological properties, making them subjects of 
extensive research for potential therapeutic 
applications (2). Below, we delve into some of the 
notable bioactivities associated with coumarins: 
 
Antithrombotic Activity: One of the well-

documented bioactivities of coumarins is their 
antithrombotic (anticoagulant and antiplatelet) 
activity (52). The prototypical coumarin derivative, 
warfarin, has long been used as an oral anticoagulant 
to prevent blood clot formation. It functions by 
inhibiting vitamin K epoxide reductase, a key enzyme 

in the coagulation cascade (53). This property has 

led to the development of various coumarin-based 
anticoagulant drugs. 
 
Anti-Inflammatory Properties: Several coumarin 
compounds have demonstrated anti-inflammatory 
activity, which can be attributed to their ability to 
inhibit pro-inflammatory enzymes and cytokines 

(54). Coumarin derivatives, such as scopoletin and 
herniarin, have shown potential in attenuating 
inflammatory responses, making them of interest in 
conditions characterized by excessive inflammation 
(10,55). 
 

Antioxidant Effects: Many coumarins exhibit 
potent antioxidant properties, which can help protect 

cells and tissues from oxidative damage caused by 
reactive oxygen species (ROS) (56). These 
antioxidants scavenge free radicals and reduce 
oxidative stress, potentially contributing to the 
prevention of various chronic diseases (57). 

 
Antimicrobial Activity: Coumarins have displayed 
antimicrobial activity against a wide range of 
microorganisms, including bacteria (58), fungi (59), 
and parasites (60). Some coumarin derivatives have 
been investigated for their antibacterial and 
antifungal properties, suggesting their potential as 

natural antimicrobial agents. 
 
Antiviral Activity: Several studies have 
investigated the effects of coumarin derivatives on 

various viruses, highlighting their promising role in 
combating viral infections. Some coumarin 

derivatives have exhibited the ability to inhibit the 
replication of certain viruses. This inhibition can 
occur through different mechanisms, including 
interference with viral RNA or DNA synthesis, 
disruption of viral protein function, or inhibition of 
viral entry into host cells. Coumarins have shown 
efficacy against a range of viruses, including but not 

limited to hepatitis virus, Influenza Virus, and HIV 
(61). 
 
Anticancer Potential: Emerging research has 
highlighted the anticancer potential of certain 
coumarins. These compounds have shown cytotoxic 
effects on cancer cells and may inhibit tumor growth 

by various mechanisms, including apoptosis 
induction and cell cycle arrest (62). 
 

Neuroprotective Effects: Coumarins, such as 
esculetin and osthole, have exhibited 
neuroprotective properties by modulating 
neuroinflammatory responses and protecting 

neurons from oxidative stress (63). These findings 
raise the possibility of coumarin-based treatments 
for neurodegenerative disorders (64). 
 
In addition to the mentioned bioactivities, coumarins 
have also been investigated for their potential in 

managing various conditions such as diabetes and 
cardiovascular diseases (65,66). Their versatile 
pharmacological profile continues to drive research 
into their therapeutic applications (2). It is important 
to note that the bioactivity of coumarins can vary 
widely depending on their chemical structure, 

concentration, and the biological context. Further 

research is necessary to elucidate the specific 
mechanisms of action and clinical potential of 
different coumarin derivatives. 
 
5. EXTRACTION METHODS 
 
The efficient extraction of coumarins from natural 

sources is a critical step in harnessing their potential 
for various applications, including pharmaceuticals, 
food additives, and cosmetics (5). The choice of 
extraction method plays a pivotal role in determining 
the yield and purity of the extracted coumarins. 
Below, we explore several extraction techniques 

commonly employed to isolate coumarins from their 
natural matrices: 

 
Reflux Method: The reflux method involves heating 
a mixture of the coumarin-rich source material and 
solvent in a round-bottomed flask fitted with a 
condenser. The solvent vaporizes and condenses, 

creating a continuous cycle. This refluxing process 
facilitates the extraction of coumarins as the solvent 
repeatedly comes into contact with the source 
material. After refluxing for a specified time, the 
extract is collected (67). 
 
Soxhlet Extraction: Soxhlet extraction is a 

continuous extraction technique that involves solvent 
reflux. The raw material is placed in a porous 
thimble, which is inserted into a Soxhlet extractor. 
Solvent is continuously boiled, evaporating and 

condensing in a reflux system. The condensed 
solvent drips back onto the material, ensuring 

prolonged contact and efficient extraction. Soxhlet 
extraction is suitable for coumarins in samples with 
relatively low coumarin content (68). 
 
Hydrodistillation Method: Hydrodistillation is a 
method used primarily for extracting essential oils, 
including those containing coumarins. In this 

method, steam is passed through the source 
material, vaporizing compounds. The steam and 
extracted compounds are condensed and collected 
separately, with the essential oil enriched in 
coumarins obtained as the distillate (69). 
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Maceration: Maceration is a simple and widely used 
extraction technique, particularly suitable for 
extracting coumarins from dried plant material. In 

this method, the coumarin-rich source is soaked or 
immersed in a solvent at room temperature for an 
extended period (at least 3 days). During 
maceration, the solvent gradually absorbs the 

coumarins from the plant material. The resulting 
extract is then filtered to remove solid particles, and 
the solvent is evaporated to obtain the coumarin-rich 
extract. Maceration is a relatively gentle method and 
is especially useful for heat-sensitive compounds 
(68). 

 
Infusion Method: The infusion method involves 
soaking the coumarin-rich source material in a 
suitable solvent, typically at room temperature or 
slightly elevated temperatures. The solvent gradually 
absorbs the coumarins over time. After the desired 

extraction period, the mixture is filtered, and the 

solvent is evaporated to obtain the coumarin-rich 
infusion (68). This method is similar to the 
maceration method but differs in the duration and 
temperature of the solvent. 
 
Percolation Method: Percolation represents a 
continuous extraction technique that involves the 

passage of a solvent through a densely packed bed 
of coumarin-rich material. This method employs 
specialized equipment known as a percolator, 
typically a narrow, cone-shaped glass vessel open at 
both ends. To initiate the process, finely powdered 
plant material is moistened with the chosen 

extraction solvent. Subsequently, an additional 
quantity of solvent is introduced, and the mixture is 

allowed to rest. Following this, the content is 
transferred into the percolator and allowed to stand 
for 24 hours. This process results in the gradual 
dissolution of coumarins. Finally, the outlet of the 
percolator is opened, and the liquid contained therein 

is allowed to drip slowly. The resulting extract is then 
separated through filtration (68,70). This method is 
often used for both small and large-scale extraction 
processes and allows for precise control of solvent 
flow rates and extraction times (71). 
 
Supercritical Fluid Extraction (SFE): Supercritical 

fluid extraction is an advanced method that uses 
supercritical fluids, such as carbon dioxide (CO2), to 
extract coumarins. Under specific temperature and 
pressure conditions, CO2 becomes a supercritical 

fluid with unique solvation properties (72). It can 
selectively dissolve coumarins from the raw material, 

and upon depressurization, the coumarins 
precipitate, leaving behind a concentrated extract. 
SFE is considered environmentally friendly and offers 
precise control over extraction parameters (73). 
 
Microwave-Assisted Extraction (MAE): 
Microwave-assisted extraction is a rapid and efficient 

method for coumarin extraction. In MAE, the sample 
is exposed to microwave radiation in the presence of 
a suitable solvent. The microwave energy accelerates 
the extraction process by promoting the release of 
coumarins from the plant matrix. This method is 
known for its shorter extraction times and improved 
efficiency (68). 

Ultrasonic-Assisted Extraction (UAE): 
Ultrasonic-assisted extraction employs high-
frequency ultrasound waves to enhance the 

extraction process. The cavitation generated by 
ultrasound disrupts cell walls and facilitates the 
release of coumarins into the solvent (70). UAE is 
known for its shorter extraction times, reduced 

solvent consumption, and improved extraction 
efficiency (74). 
 
In a comparative study conducted by Molnar et al., it 
was found that the maceration method was at least 
five times more efficient than the Soxhlet, 

hydrodistillation, and supercritical CO2 extraction 
methods and provided the highest umbelliferone and 
herniarin extraction (75). In a study by Chanfrau et 
al., reflux and Ultrasonic-Assisted Extraction 
methods were compared. As a result of the study, it 
was found that reflux provides a higher coumarin 

yield, and the use of low-frequency ultrasound in the 

extraction method provides a higher coumarin yield 
than high-frequency ultrasound (74). 
 
As a result, the choice of extraction method should 
consider factors such as the nature of the source 
material, the desired coumarin compounds, and the 
specific requirements for purity and yield. 

Researchers often optimize extraction conditions, 
including solvent type, temperature, and extraction 
time, to maximize the recovery of coumarins while 
minimizing undesirable co-extracts. Ultimately, the 
selected method should align with the intended 
application of the extracted coumarins. 

 
6. SAFETY AND TOXICOLOGY 

 
The safety profile of coumarins has garnered 
significant interest, given their widespread presence 
in nature and their versatile applications in 
pharmaceuticals, food additives, and cosmetics (2). 

While coumarins offer diverse bioactivities, their 
consumption and exposure demand careful 
consideration to mitigate potential health risks. 
 
Coumarins are naturally occurring compounds found 
in various edible plants like cinnamon, tonka beans, 
and certain fruits. In these natural forms, coumarins 

are generally deemed safe when consumed in typical 
dietary quantities (76). However, excessive 
consumption of coumarin-rich foods or dietary 
supplements can raise concerns regarding 

cumulative exposure (5). While natural coumarins 
may offer potential health benefits, excessive intake 

can lead to adverse effects: 
 
Hepatotoxicity: Some coumarins, including 
coumarin itself, have been linked to hepatotoxicity 
(liver toxicity) when consumed in excessive 
amounts. Regulatory authorities in some countries 
have established tolerable daily intake (TDI) levels 

for coumarin, prompting efforts to limit its presence 
in certain foods (77). 
 
Photosensitivity: Specific coumarins, such as 
bergapten found in certain citrus fruits, can induce 
photosensitivity when applied topically or ingested in 
large quantities. This can result in skin reactions 
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upon exposure to sunlight, including sunburn and 
blistering (78). Similarly, psoralen can trigger 
photosensitization reactions when the skin 

encounters ultraviolet (UV) light, leading to skin 
irritation, rashes, and an elevated risk of sunburn 
(79). 
 

Anticoagulant Risk: Certain coumarin derivatives, 
like warfarin, serve as anticoagulant medications to 
prevent blood clotting. While effective for their 
intended purposes, these medications require 
vigilant monitoring and precise dosing due to their 
narrow therapeutic window. Overdosing can result in 

bleeding complications, underscoring the importance 
of medical supervision (80). 
 
In conclusion, coumarins encompass a wide range of 
biological activities, but their safety and toxicity 
profile hinge on various factors, including the specific 

coumarin compound, dosage, and individual 

susceptibility. While natural dietary intake is 
generally safe, vigilance is essential when dealing 
with coumarin derivatives used in pharmaceuticals 
and high-concentration cosmetic products. 
Regulatory guidelines and risk management 
strategies are vital to ensure the safe utilization of 
coumarins across various applications. 

 
7. CONCLUSION 
 
Coumarins, with their intriguing benzopyrone 
structure, have long captivated the attention of 
researchers and enthusiasts alike due to their 

widespread presence in nature and versatile 
pharmacological properties. The plethora of 

biological activities exhibited by coumarins, including 
antithrombotic, anti-inflammatory, antioxidant, 
antimicrobial, antiviral, anticancer, and 
neuroprotective effects, highlights their vast 
potential in both pharmaceutical and nutraceutical 

applications. Moreover, the employment of efficient 
extraction methods, such as maceration, microwave-
assisted extraction, and supercritical fluid extraction, 
enables the retrieval of these compounds for further 
investigation and industrial exploitation. However, it 
is crucial to acknowledge the potential health risks 
associated with excessive consumption of coumarin-

rich substances, including hepatotoxicity, 
photosensitivity, and anticoagulant effects. 
Therefore, careful consideration must be given to the 
safe usage of coumarins, involving thorough risk 

assessments, stringent quality control measures, 
and adherence to established regulations. Despite 

these caveats, the study of coumarins continues to 
captivate scientists, offering a wealth of 
opportunities for groundbreaking discoveries and 
innovations in medicine, food science, and related 
disciplines. By responsibly harnessing the power of 
coumarins, we may unlock novel therapeutic 
pathways and create new possibilities for improving 

human health and well-being. 
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