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Introduction 

 Machine Learning (ML) algorithms significantly 
contribute to improving effectiveness, efficiency and 
accuracy of various tasks in contemporary computing [1], 
[2]. This paper explores the performance and applicability 
of several prominent ML algorithms in the context of an 
Internet of Things (IoT) application. Specifically, it focuses 
on algorithms such as Random Forest, AdaBoost, Decision 
Trees, Naive Bayes, Logistic Regression, Support Vector 
Machines (SVM), and k-Nearest Neighbors (k-NN). Each 
algorithm is examined in terms of its characteristics, 
strengths, and weaknesses, and their performances are 
evaluated through a comprehensive experimental setup 
involving attacks on an IoT network. 

The research commences by presenting the Random 
Forest algorithm, an ensemble learning technique 
extensively employed in tasks related to classification and 
regression [3]. It discusses its operation, emphasizing its 
ability to mitigate overfitting through randomness injection 
during training. Following Random Forest, the paper 
explores AdaBoost, a robust ensemble learning algorithm 
designed to enhance weak learners sequentially [4]. 
Subsequently, Decision Trees are introduced as versatile 
and interpretable ML algorithms commonly used for 
classification and regression [5]. The Naive Bayes 
algorithm, a probabilistic method based on Bayes' theorem, 
is presented as an efficient tool for classification tasks,  

especially in natural language processing [6]. Logistic 
Regression, despite its name, is described as a classification 
algorithm widely used for binary classification tasks, valued 
for its simplicity and interpretability [7]. Support Vector 
Machines (SVMs) are discussed as powerful algorithms for 
supervised learning, excelling in scenarios with complex 
decision boundaries [8]. The paper further explores K-
Nearest Neighbors (k-NN), a straightforward yet efficient 
algorithm that depends on proximity for tasks involving 
classification and regression [9]. Additionally, fundamental 
performance metrics such as the confusion matrix, 
accuracy, precision, recall, and F1-score are introduced to 
assess the effectiveness of the ML algorithms. 

In the literature, several datasets have been utilized to 
test algorithms proposed for intrusion detection. One such 
dataset is KDD-CUP 99, which is generated from raw 
network traffic data collected from a simulated military 
network environment at the University of California. This 
dataset has been extensively used by various algorithms to 
classify network connections as "normal" or "intrusion". 
Faraknakian and Heikkonen [10] tested their Deep Auto-
Encoder based Intrusion Detection system on the KDD-
CUP99 dataset, achieving a binary classification accuracy 
of 96%. Khalvati et al. [11] introduced a hybrid learning 
approach for intrusion detection. They utilized 10% of the 
KDD-CUP99 dataset and created a new training dataset 
using K-Medoids clustering. Feature selection was 
performed using SVM, followed by evaluation with the 
Naive Bayes classifier. 
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Machine Learning (ML) algorithms play a crucial role in fortifying the security of Internet of Things (IoT) 
environments. In this study, we focus on several key ML algorithms, namely Random Forest, AdaBoost, 
Decision Trees, Naive Bayes, Logistic Regression, Support Vector Machines (SVM), and k-Nearest 
Neighbors (k-NN). These algorithms are evaluated within the unique context of IoT security, employing an 
original dataset meticulously crafted for this study. The dataset OGU-IoT23 is designed to capture the 
intricacies of cyber threats in an IoT network, featuring attacks such as DDoS, HTTP Flood, SYN Flood, 
Port Scan, and UDP Flood. This original dataset OGU-IoT23 serves as a foundation for the comprehensive 
evaluation of ML algorithms, allowing us to assess their effectiveness in identifying and mitigating diverse 
attack patterns targeting IoT devices. The algorithms are examined based on their performance metrics such 
as accuracy, F1-score, precision, recall, and test accuracy, emphasizing their suitability for real-world IoT 
security applications. The results show that Random Forest and AdaBoost are the top performers in terms 
of performance metrics. The study aims to provide valuable insights into the strengths and limitations of 
these ML algorithms, aiding researchers and practitioners in developing resilient security measures designed 
for IoT settings. Doi: 10.24012/dumf.1421337 
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The CICDDoS2019 dataset was created by a research 
institute called CIC at the University of New Brunswick in 
Canada to analyze DDoS attacks and design mitigation 
techniques. This dataset is considered significant as it 
covers 12 different types of DDoS attacks and comprises a 
large volume of 12,794,627 samples. Ullah and Mahmoud 
[12] introduced another large dataset, IoTID20, containing 
625,783 samples from various IoT devices, including 
normal and four types of attack data: Scan, DoS, Mirai, and 
MitM. They evaluated seven supervised machine learning 
algorithms for both binary and multiclass classification. 

The ToN-IoT dataset was created in 2019 at the 
Australian Defence Force Academy (ADFA), University of 
New South Wales, Canberra, in the Cyber Range and IoT 
Laboratories. It comprises information gathered from 
interconnected devices, as well as logs from Windows and 
Linux systems, along with network traffic data from the 
system. ToN-IoT mimics complex IoT infrastructures, 
including virtual machines, cloud layers, edges, and 
physical systems. Represented in CSV format, each record 
in the ToN-IoT dataset is categorized as either an attack or 
normal behavior. Ferrag et al. [13] proposed a deep 
learning-based intrusion detection system using 
convolutional neural networks (CNNs), artificial neural 
networks (ANNs), and recurrent neural networks (RNNs) 
on the CICDDoS2019 and ToN-IoT datasets. They 
achieved accuracies of 95% and 99% for multiclass and 
binary classification on the CICDDoS2019 dataset, 
respectively. On the ToN-IoT dataset, they attained a 
multiclass classification accuracy of 98%. Kılınçer and 
Katar [14] conducted a multi-class classification study 
using the Light Gradient Boosting Machine (LGBM) 
classifier on the ToN_IoT dataset. The results were 
compared with the similar studies, and it was observed that 
the presented method is one of the algorithms with the 
highest performance for classification. 

Moving on to the experimental setup, the paper details 
the creation of an IoT application and the execution of cyber 
attacks, including DDoS, HTTP Flood, SYN Flood, Port 
Scan, and UDP Flood, on the established IoT network. 
Using the necessary hardware and software, a novel IoT 
traffic dataset was created, namely OGU-IoT23. The 
dataset characteristics and the software tools used for 
attacks, network traffic monitoring, and machine learning 
algorithms are comprehensively presented. 

The results section provides insights into the 
performance of the ML algorithms, emphasizing accuracy, 
F1-score, precision, recall, and test accuracy. The confusion 
matrix results for each algorithm, as well as the training and 
testing times, are thoroughly examined. Notably, Random 
Forest and AdaBoost algorithms exhibit superior 
performance across a range of metrics, making them 
promising candidates for IoT security applications. 

In summary, this paper contributes to the understanding 
of the strengths and limitations of diverse ML algorithms in 
the context of IoT security. A new dataset, OGU-IoT23, 
was developed in an authentic environment, and all 
machine learning algorithms were equitably evaluated 
using this dataset. Within this research, seven distinct 
machine learning algorithms were assessed across five 
different types of attacks. The empirical evaluation, 

encompassing attack scenarios and diverse performance 
metrics, provides valuable insights for researchers and 
practitioners seeking effective solutions to secure IoT 
environments. 

Method 

Machine Learning Algorithms 

 In this section,  a brief explanation will be given of the 

characteristics and functionalities of several pivotal 

Machine Learning (ML) algorithms employed in the field 

of cybersecurity, particularly within the context of an 

Internet of Things (IoT) application. These algorithms, 

namely Random Forest, AdaBoost, Decision Trees, Naive 

Bayes, Logistic Regression, Support Vector Machines 

(SVM), and k-Nearest Neighbors (k-NN), play a crucial 

role in enhancing the accuracy and efficiency of 

classification tasks. Each algorithm will be succinctly 

described, outlining its unique features, strengths, and 

applications. The subsequent exploration of their 

performances, evaluated through a comprehensive 

experimental setup involving cyber attacks on an IoT 

network, aims to provide valuable insights into their 

effectiveness and suitability for securing IoT environments. 

Random Forest 

 The Random Forest algorithm proves to be a robust and 

effective tool in the realm of IoT security, specifically for 

classification tasks [15]. Leveraging an ensemble of 

decision trees generated during the training phase, Random 

Forest excels in detecting and categorizing diverse cyber 

threats targeting IoT networks. Its utilization entails 

building numerous decision trees by employing 

bootstrapped samples from the training data and evaluating 

random subsets of features at each decision node. In IoT 

security scenarios, Random Forest demonstrates prowess in 

handling high-dimensional datasets, offering versatility in 

identifying various attack types, including DDoS, Port 

Scan, and Syn Flood attacks [16]. The algorithm's strength 

lies in its ability to mitigate overfitting by introducing 

randomness, resulting in a more resilient and accurate 

model. However, it is essential to acknowledge potential 

disadvantages, such as increased computational complexity 

and potential difficulties in interpreting the decision-

making process due to the ensemble nature of the algorithm. 

Despite these considerations, the overall performance and 

adaptability of Random Forest make it a compelling choice 

for bolstering the security of IoT systems [17].  

AdaBoost 

AdaBoost, short for Adaptive Boosting, emerges as a 

powerful ensemble learning algorithm with significant 

applications in IoT security for classification tasks [18]. Its 

distinctive feature lies in its ability to capacity to boost 

performance of weak learners sequentially, assigning 

higher weights to misclassified instances in each iteration. 

In the context of IoT security, AdaBoost proves valuable for 

its adaptability and efficiency in recognizing and mitigating 

various cyber threats. By iteratively training weak learners 

and emphasizing misclassified instances, AdaBoost creates 

a strong classifier capable of accurately identifying 
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complex attack patterns [19]. One of its primary advantages 

is its versatility, as it can be applied to different types of 

attacks within the IoT domain. However, AdaBoost's 

sensitivity to noisy data and outliers may pose challenges, 

and its performance might be affected if weak learners are 

too complex or if the dataset is noisy [20]. Nonetheless, 

AdaBoost's ability to create robust ensembles and improve 

overall classification accuracy makes it a compelling choice 

for bolstering the security of IoT systems. 

Decision Trees 

 The Decision Tree algorithm stands as a versatile and 

interpretable tool in the landscape of IoT security, 

particularly for classification purposes [21]. In the realm of 

cybersecurity, Decision Trees recursively partition the input 

space based on features, creating a tree-like structure of 

decision nodes and leaves. In IoT security scenarios, 

Decision Trees excel in providing transparency into the 

decision-making process, aiding in the understanding of the 

identified attack patterns. The algorithm selects features at 

decision nodes to optimize classification criteria, such as 

Gini impurity for classification tasks [22]. While Decision 

Trees are intuitive and straightforward, offering a clear 

representation of decision logic, they may be susceptible to 

overfitting, especially when the trees are deep or complex. 

Techniques like pruning are often employed to address this 

concern. In the context of IoT security, Decision Trees 

showcase effectiveness in detecting and classifying various 

attacks, including DDoS, Port Scan, and SYN Flood attacks 

[23]. The simplicity, interpretability, and adaptability of 

Decision Trees render them valuable assets for fortifying 

the security of IoT environments. 

Naive Bayes 

 In the domain of IoT security, the Naive Bayes 

algorithm stands out as a probabilistic classification tool 

widely utilized for its simplicity and efficiency. Leveraging 

Bayes' theorem and assuming feature independence, Naive 

Bayes computes the probability of a specific class given a 

set of features. The algorithm performs remarkably well in 

practice, especially in scenarios with high-dimensional 

datasets common in IoT applications [24]. In the context of 

IoT security, Naive Bayes demonstrates effectiveness in 

identifying and categorizing different attack types, with a 

notable aptitude for detecting DDoS attacks [25]. Due to its 

computational efficiency and straightforward 

implementation, Naive Bayes is well-suited for real-time 

applications and environments with restricted 

computational resources. However, the independence 

assumption may not always align with the intricacies of 

real-world datasets, posing a limitation to its application in 

certain contexts [26]. Despite this, Naive Bayes remains a 

valuable and pragmatic choice within the machine learning 

toolkit for IoT security applications. 

Logistic Regression 

 Logistic Regression, despite its name, is a fundamental 

and widely applied algorithm in ML, particularly in the 

context of IoT security for many classification tasks [27]. It 

calculates the likelihood of an instance belonging to a 

particular class by employing the logistic function. In IoT 

security applications, Logistic Regression proves valuable 

for its simplicity, interpretability, and efficiency, 

particularly in cases where the relationship between 

features and the target variable exhibits an approximately 

linear nature [28]. The algorithm estimates weights for each 

feature by minimizing a logistic loss function, typically 

through iterative optimization techniques like gradient 

descent. The logistic function transforms the linear 

combination of input features and weights into a range 

between 0 and 1, signifying the probability of belonging to 

the positive class. Logistic Regression excels in scenarios 

where transparency into decision-making is crucial. 

Nonetheless, its effectiveness might be hindered when 

dealing with non-linear relationships between features and 

the target variable, potentially constraining its ability to 

capture intricate attack patterns. Nonetheless, Logistic 

Regression remains a versatile and widely-used algorithm 

for binary classification tasks in IoT security due to its 

simplicity and interpretability [29]. 

Support Vector Machines 

 Support Vector Machines (SVMs) emerge as potent 

tools in the realm of IoT security for both classification and 

regression tasks. SVMs demonstrate excellence in 

situations where the objective is to identify a hyperplane 

that effectively separates data points belonging to different 

classes in the feature space. In IoT security applications, 

SVMs play a pivotal role in delineating complex decision 

boundaries, making them effective in scenarios with 

intricate attack patterns [30]. The algorithm aims to 

optimize the margin, which is defined as the gap between 

the hyperplane and the nearest data points of each class, thus 

promoting resilient generalization to unseen data. SVMs 

showcase resilience against overfitting, contributing to their 

suitability for diverse IoT security environments [31]. 

However, the computational complexity of SVMs may pose 

challenges in resource-constrained IoT devices. 

Additionally, the choice of an appropriate kernel function 

becomes crucial, impacting the algorithm's performance. 

SVMs are widely adopted in IoT security for tasks like 

image classification, text categorization, and 

bioinformatics, owing to their capability to handle high-

dimensional data and discern intricate attack signatures 

[32]. 

K-Nearest Neighbors  

 K-Nearest Neighbors (k-NN) stands as a 

straightforward yet effective algorithm in the landscape of 

IoT security, applicable to both classification and regression 

tasks [33]. Functioning on the principle of proximity, k-NN 

makes predictions for new instances based on the majority 

class or the average value of the k-nearest neighbors in the 

feature space. In IoT security applications, k-NN offers 

simplicity and ease of interpretation, making it suitable for 

scenarios where transparency and simplicity are valued. 

Nonetheless, its performance sensitivity to the chosen 

parameter "k" and the employed distance metric, along with 

the trade-off between computational cost and accuracy, 

should be thoughtfully taken into account. k-NN is 
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particularly useful in IoT security applications where 

interpretability and simplicity are prioritized, and where a 

balance between computational cost and accuracy is 

acceptable [34]. 

Performance metrics 

Confusion Matrix 

The confusion matrix is a fundamental and versatile 
performance metric used primarily in classification tasks. It 
furnishes a comprehensive breakdown of the model's 
predictions, contrasting them with the actual class labels. 
(Table 1). The confusion matrix consists of four main 
components: 

True Positive (TP): Corresponds to the instances 
accurately predicted as positive. 

True Negative (TN): Denotes instances accurately 
predicted as negative. 

False Positive (FP): Signifies instances inaccurately 
predicted as positive (Type I error). 

False Negative (FN): Represents instances inaccurately 
predicted as negative (Type II error). 

 

Table 1. Confusion Matrix 

Predicted Class 

Positive Negative 

A
ct

u
a

l 

C
la

ss
 

Positive TP FN 

Negative FP TN 

 

Accuracy 

 Accuracy is the ratio of correctly classified instances to 

the total number of instances (Eq. 1). 

Accuracy =
TP + TN

TP + FP + TN + FN
 

(1) 

Precision 

 Precision is the ratio of correctly predicted positive 

observations to the total predicted positives. It focuses on 

the accuracy of positive predictions (Eq. 2). 

Precision =
TP

TP + FP
 

(2) 

Recall (Sensitivity) 

 Recall, also referred to as Sensitivity, quantifies the 

proportion of correctly predicted positive observations 

relative to all observations within the actual class. It 

assesses the model's capacity to identify all pertinent 

instances  (Eq. 3). 

Recall =
TP

TP + FN
 

(3) 

F1-Score 

 The F1-Score is the harmonic mean of precision and 

recall (Eq. 4). 

F1Skor = 2 x ( 
Precision x Recall

Precision + Recall
) 

(4) 

Experimental Setup 

 In this study, an IoT application has been designed using 

NodeMCU. To create the IoT application, an experimental 

environment has been established through communication 

between NodeMCU and the ThingSpeak cloud platform 

[35]. In this section, firstly, the hardware components and 

tools utilized in the developed IoT application are 

described. Subsequently, attention is given to cyber attacks 

conducted on the IoT application and the steps involved in 

creating the dataset. 

Hardware 

NodeMCU Development Board: NodeMCU is an open-

source electronic circuit development board equipped with 

the ESP8266 Wi-Fi module (Figure 1). Its capability for 

easy internet connectivity has led to its extensive use in IoT 

projects requiring remote control and internet access. Its 

low power consumption makes it a preferred choice for IoT 

projects. NodeMCU can be programmed through the 

Arduino IDE. Power for the NodeMCU device is supplied 

through the built-in Micro USB connector. NodeMCU 

features 32 Kb RAM, 80 Kb DRAM, and 200 Kb Flash 

Memory (Parihar, 2019). In this study, communication with 

the thingspeak.com cloud platform is established using 

NodeMCU. NodeMCU is programmed using the Arduino 

IDE, and the necessary libraries for communication with the 

thingspeak.com cloud platform are installed and 

programmed.  

Figure 1. NodeMCU with ESP8266 Wi-Fi module 
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Arduino IDE: Introduced by Arduino, Arduino IDE is 

software utilized for editing, compiling, and uploading code 

onto Arduino devices. It operates on the Arduino Java 

platform, making it easily accessible across different 

operating systems. In this study, software libraries from 

Arduino IDE, specifically the "ESP8266Wifi.h" and 

"ESP8266HTTPClient.h" libraries, have been employed. 

ThingSpeak: ThingSpeak is an open-source and IoT-based 
platform that communicates over the internet using MQTT 
and HTTP protocols, storing data collected from objects 
and presenting it to users [35]. Through this platform, real-
time tracking can be performed, allowing for the addition 
and removal of data, as well as analysis and control 
processes [36]. It is available for free use for one year and 
enables approximately 3 million messages to be sent. Data 
can be sent, recorded, and visualized every 15 seconds. In 
this study, ThingSpeak is utilized via NodeMCU to record 
and visualize data retrieved over the internet. To send data, 
it is necessary to create a channel after registering and 
logging into this web application (Figure 2). 

 

Figure 2. Creating a channel in ThingSpeak 

IoT Experimental Environment 

In this section, details regarding the communication 

among the devices used in the setup of the IoT experimental 

environment and the configurations are shared. As depicted 

in Figure 3, a experimental environment has been 

established in this study. 

 

Figure 3. IoT experimental environment

 In this established system, the IoT device with the IP 

address 192.168.1.xyz communicates wirelessly with the 

router in our network. The IoT device initially connects to 

the weather.com webpage and extracts real-time weather 

information for the city of Eskişehir through web scraping. 

Subsequently, it promptly transmits this acquired data to the 

Thingspeak cloud platform. The sent data can be viewed by 

users possessing the necessary API credentials. While the 

system continues its normal operation, diverse attacks are 

executed from the Kali Linux machine with the IP address 

192.168.1.pq towards the IoT device. Throughout the 

ongoing attacks, network traffic is recorded by the machine 

with the IP address 192.168.1.abc, which is equipped with 

Wireshark. The process of recording under various attacks 

is carried out sequentially. The network traffic in the 

established platform is saved in CSV format. The steps of 

detecting and classifying the attacks are illustrated in Figure 

4. 

 

Figure 4. Flowchart of detection and classification of 
attacks. 
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Software 

 In this study, various attacks were conducted on the 

designed IoT network, and these attacks were monitored to 

record network data. Table 2 provides information on the 

attack tools, network traffic monitoring tools, cloud 

platform interface, and the software where machine 

learning algorithms were executed in this study. 

Table 2. Utilized Software and Their Purposes 

Software Purpose 

Wireshark Network Traffic Monitoring 

LOIC Attack Tool 

Hping3 Attack Tool 

Orange Data Mining Machine Learning Algorithms 

Thingspeak IoT Cloud Platform 

Dataset 

 In this study, the aim is to create a balanced dataset 

encompassing attacks on IoT devices. For the desired 

dataset, various attacks, including DDoS, HTTP Flood, Port 

Scan, SYN Flood, and UDP Flood, were performed on an 

IoT device in a laboratory environment. Kali Linux was 

used to carry out the attacks and to detect them afterward 

using the Pcap files captured by Wireshark.  

Table 3. Dataset Characteristics 

No Features Area Explanation 

1 Total Length ip.len Total Length 

2 Don't Fragment ip.flags.df Fragmentation 

Value 

3 Time To Live ip.ttl Packet Time-to-

Live 

4 Protocol ip.proto IP Protocol 

Type 

5 Calculated 

Window Size 

tcp.windo

w_size 

TCP Packet 

Window Size 

6 Acknowledgment 

Number 

tcp.ack TCP Packet 

Acknowledgme

nt Number 

7 Sequence 

Number 

tcp.seq TCP Packet 

Sequence 

Number 

8 Length bytes Packet Length 

9 TCP Segment 

Len 

tcp.len TCP Packet 

Segment Length 

10 Source Port tcp.srcport TCP Packet 

Source Port 

11 Header Length ip.hdr_len IP Packet 

Header Length 

12 Class Class Class Label 

The dataset, OGU-IoT23 comprises a total of 116,819 

instances, featuring six different classes, including normal 

packets. Since the dataset is sufficiently large and diverse, 

a fixed proportion data sampling was used, allocating 80% 

for training and 20% for testing. This method leveraged the 

dataset's richness for robust model evaluation. Moreover, to 

address potential overfitting, we employed regularization 

techniques and validation procedures during training. For 

the calculation of performance metrics, we utilized 5-fold 

Cross-Validation, ensuring a comprehensive assessment of 

the model's performance across different subsets of the data. 

 As seen in Table 3, our dataset is composed of 11 

features and consists of six classes: DDoS, HTTP Flood, 

Normal, Port Scan, SYN Flood, and UDP Flood. The 

dataset includes 20,001 examples for the DDoS class, 

19,970 examples for the HTTP Flood class, 18,886 

examples for the Normal class, 18,854 examples for the 

Port Scan class, 20,707 examples for the SYN Flood class, 

and 18,401 examples for the UDP Flood class. In order to 

expedite the classification process, 9 out of the 11 features 

were selected using the Information Gain algorithm. The 

weight rankings of the Information Gain algorithm are 

illustrated in Figure 5. 

 

Figure 5. Features Selected with Information Gain 

Attacks 

In this study, DDoS, HTTP Flood, SYN Flood, Port Scan, 

and UDP Flood attacks were conducted, and attempts were 

made to detect them using machine learning algorithms 

determined by monitoring network traffic. 

DDoS Attack 

A DDoS attack involves a malevolent effort to disrupt a 

targeted device by overwhelming it with a load far beyond 

normal limits [37]. DDoS attacks are executed by utilizing 

multiple computer systems as sources of attack traffic. Such 

attacks prevent regular traffic from reaching its intended 

destination [38]. In this study, the Hping3 tool was 

employed to conduct a DDoS attack on the IoT device. As 

depicted in Figure 6, the data loss during attack periods, as 

observed from the ThingSpeak platform, aligns temporally 

with the Wireshark I/O Graphs. 
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Figure 6. ThingSpeak and Wireshark Graphs During 
DDoS Attack 

 

HTTP Flood Attack 

 HTTP flood attack involves overwhelming a device by 

inundating it with a substantial volume of HTTP requests, 

depleting the device's resources and rendering it non-

operational [39]. These requests are often fake or deceptive 

and are made to exhaust the device's resources. In this study, 

the IoT device sending data to the ThingSpeak platform was 

subjected to HTTP Flood attacks at intervals using the 

LOIC tool. 

SYN Flood Attack 

 A SYN Flood attack is executed to deplete the resources 

of the target device and render it inoperable [40]. During a 

SYN Flood attack, the assailant sends numerous SYN 

messages to the target device. For each SYN received, the 

device creates an entry in its connection table and responds 

with a SYN-ACK message. The attacker either does not 

send an ACK message or frequently provides an incorrect 

IP address in SYN packets, causing the target device not to 

receive SYN-ACK responses. As the attacker persists in 

sending SYN messages, the connection table of the target 

device becomes full, and the device cannot respond to any 

connection requests. Exhausting all resources, the target 

device generates a denial-of-service and cannot establish 

connections with clients [41]. In this study, the IoT device 

sending data to the ThingSpeak platform was subjected to 

SYN Flood attacks at intervals. The impact of the attack can 

be traced in the ThingSpeak platform's provided widgets 

and Wireshark I/O graphs. As observed in Figure 7, data 

transmission from the IoT device to the ThingSpeak 

platform is disrupted during three different time intervals 

when the attack is executed. 

 

Figure 7. ThingSpeak and Wireshark Graphs During SYN 
Flood Attack 

 

Port Scan Attack 

A Port Scan attack aims to discover open ports and exploit 

a known security vulnerability by sending requests to 

device port addresses [42]. In this study, the IoT device 

sending weather information to the ThingSpeak platform 

was subjected to a port scan attack using the Hping3 tool. 

The adverse effects of the Port Scan attack can be observed 

in the widgets provided by the ThingSpeak platform and in 

the Wireshark I/O graphs. As illustrated in Figure 8, the 

transmission of data from the IoT device to the ThingSpeak 

platform experiences disruptions during three distinct time 

intervals when the attack is carried out. 

 

Figure 8. ThingSpeak and Wireshark Graphs During Port 

Scan Attack 

UDP Flood Attack 

 A UDP Flood attack is a kind of attack that aims to 

render the target device inoperable by consuming its 

network bandwidth with UDP packets. UDP Flood attacks 
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can target the port or IP addresses of a device within a 

network, either randomly or specifically [43]. In this study, 

the IoT device sending data to the ThingSpeak platform was 

subjected to a UDP Flood attack using the LOIC tool. 

Results 

 In this study, the dataset collected using the Orange Data 

Mining application was trained. For the training set, 80% of 

the data was utilized, while 20% was reserved for the test 

set. Subsequently, feature selection was performed using 

information gain from the dataset. A model was then 

created using seven different classification algorithms: 

AdaBoost, k-Nearest Neighbors (k-NN), Logistic 

Regression, Naive Bayes, Random Forest, Support Vector 

Machine (SVM), and Decision Tree. The structure of the 

model is illustrated in Figure 9.

 

 

Figure 9. Machine Learning Model Workflow Diagram

The performance metrics of the created model have 
been calculated. Among the algorithms, the Random Forest 
algorithm yields the highest accuracy score compared to the 
other six algorithms, with a score of 99%. The lowest 
accuracy score is obtained with the Logistic Regression 
classification algorithm, achieving a percentage accuracy of 
51%. The results are presented in Table 4. 

Table 4. Comparison of ML Algorithms 

Model [1] Accuracy [2] F1 Score [3] Precision [4] Recall 

AdaBoost [5] 0.997 [6] 0.997 [7] 0.997 [8] 0.997 

k-NN [9] 0.576 [10] 0.575 [11] 0.591 [12] 0.576 

Logistic 
Regression 

[13] 0.515 [14] 0.458 [15] 0.468 [16] 0.515 

Naive Bayes [17] 0.889 [18] 0.885 [19] 0.920 [20] 0.889 

Random Forest [21] 0.997 [22] 0.997 [23] 0.997 [24] 0.997 

SVM [25] 0.560 [26] 0.567 [27] 0.613
  

[28] 0.560 

Decision Tree [29] 0.990 [30] 0.99 [31] 0.990 [32] 0.990  

 The confusion matrix results of the models were 
obtained separately for each model. In Figure 10, the 
confusion matrix results of the AdaBoost algorithm are 
presented. It is observed that the AdaBoost algorithm 
successfully detects Port Scan and SYN Flood attacks more 

effectively compared to other attacks. According to the 
confusion matrix results, the AdaBoost algorithm is 
identified as one of the successful detection algorithms. In 
this experiment, number of estimators was set to 50 and 
linear regression loss function was used.  

 

 

Figure 10. The confusion matrix of the AdaBoost 
algorithm. 

 In Figure 11, the confusion matrix results of the k-NN 
algorithm are depicted. It is observed that the k-NN 
algorithm successfully detects HTTP Flood attacks more 
effectively compared to other attacks. For this test, k was 
taken as 5, Euclidean used as metric type and Uniform used 
as weight.  
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Figure 11. The confusion matrix of the k-NN algorithm. 

 In Figure 12, the confusion matrix results of the Logistic 
Regression algorithm are presented. Similar to the k-NN 
algorithm, it is noted that the Logistic Regression algorithm 
successfully detects HTTP Flood attacks more effectively 
compared to other attacks. In this experiment, Ridge (L2) 
was applied as regularization and C (strength) was set to 1. 

 

Figure 12. The confusion matrix of the Logistic 
Regression algorithm. 

 In Figure 13, the confusion matrix results of the Naive 
Bayes algorithm are displayed. It is observed that the Naive 
Bayes algorithm successfully detects DDoS attacks more 
effectively compared to other attacks. Here, Laplace 
method was selected as smoothing parameter and 
Information Gain was used for Feature Selection.  

 

Figure 13. The confusion matrix of the Naive Bayes 
algorithm. 

 In Figure 14, the confusion matrix results of the Random 
Forest algorithm are presented. The Random Forest 
algorithm is observed to successfully detect DDoS, Port 
Scan, and Syn Flood attacks more effectively compared to 
other attacks. According to the confusion matrix results, the 
Random Forest is identified as one of the successful 

detection algorithms. Here, number of trees was set to 7 and 
subsets were not split if less than 5.  

  

Figure 14. The confusion matrix of the Random Forest 
algorithm. 

 In Figure 15, the confusion matrix results of the SVM 
algorithm are depicted. Similar to the Naive Bayes 
algorithm, it is observed that the SVM algorithm 
successfully detects DDoS attacks more effectively 
compared to other attacks. In this experiment, RBF was 
used as Kernel and iteration limit was set to 100.  

 

Figure 15. The confusion matrix of the SVM algorithm. 

 In Figure 16, the confusion matrix results of the 
Decision Tree algorithm are presented. The Decision Tree 
algorithm is observed to successfully detect DDoS, Port 
Scan, and SYN Flood attacks more effectively compared to 
other attacks. According to the confusion matrix results, the 
Decision Tree algorithm is identified as one of the 
successful detection algorithms. For this test, minimum 
number of instances in leaves was set to 5 and the limit of 
the maximal tree dept was chosen as 100.  

 

Figure 17. The confusion matrix of the Decision Tree 
algorithm. 



DUJE (Dicle University Journal of Engineering) 15:2 (2024) Page 341-353 

 

350 
 

In this study, the calculated training and testing times 
during the classification process are presented in Table 5. 
When evaluated alongside other performance metrics, 
particularly the Naïve Bayes and Decision Tree algorithms 
exhibit notably faster training and testing times compared 
to other algorithms. 

As a summary of the some studies along with their datasets 
and this study is briefly presented in Table 6. By examining 
these studies collectively, readers gain insights into the 
performance and applicability of intrusion detection 
systems across different dataset environments and 
classification types, thus aiding in the selection and 
evaluation of suitable methodologies for securing 
networked systems against cyber threats.  

Table 5. The training and testing times of the algorithms. 

Model [33] Training (sec) [34] Test (sec) 

AdaBoost [35] 22.420 [36] 2.164 

k-NN [37] 0.373 [38] 2.287 

Logistic Regression [39] 2.431 [40] 0.097 

Naive Bayes [41] 0.222 [42] 0.058 

Random Forest [43] 0.652 [44] 0.163 

SVM [45] 20.315 [46] 19.285 

Decision Tree [47] 0.307 [48] 0.017 

Table 6. Comparison of Intrusion Detection Studies: Datasets, Classifications, Dataset Types, and Accuracies 

Research  Dataset Classification Dataset Type Accuracy  

(Farahnakian & Heikkonen, 2018)  KDD CUP 99  Binary  Simulation  96%  

(Khalvati, Keshtgary, & Rikhtegar, 

2018)  

KDD CUP 99  Multi-Class  Simulation 91%  

(Ullah & Mahmoud, 2020) IoTID20 Multi-Class 

Binary 

Real Environment 100%  

100% 

(Ferrag, Shu , Djallel , &  

Choo, 2021)  

CICDDoS2019  Multi-Class 

Binary  

Simulation 95%  

99%  

(Kılınçer, İ. F., & Katar, O. 2023) ToN-IoT Multi-Class Simulation 99% 

Our Work 

 

OGU-IoT23 (our 

novel dataset) 

Multi-Class Real Environment 99% 

Discussion 

This study extensively explores the performance of 

prominent machine learning (ML) algorithms in securing 

Internet of Things (IoT) applications, focusing on Random 

Forest, AdaBoost, Decision Trees, Naive Bayes, Logistic 

Regression, Support Vector Machines (SVM), and k-

Nearest Neighbors (k-NN). Through a comprehensive 

experimental setup involving cyber attacks on an IoT 

network, the algorithms are assessed for their strengths and 

weaknesses. 

The experimental setup involves the creation of an IoT 

application using NodeMCU and the execution of various 

cyber attacks, including DDoS, HTTP Flood, SYN Flood, 

Port Scan, and UDP Flood. A novel dataset named OGU-

IoT23 was generated within a real-world environment, and 

all machine learning algorithms were fairly assessed using 

this dataset. The dataset characteristics, hardware 

components, and tools used for attacks, network traffic 

monitoring, and ML algorithms are comprehensively 

presented. 

Notably, the performance discrepancies observed 

among the ML algorithms underscore the necessity of 

selecting suitable algorithms tailored to the specific 

requirements of IoT security. While Random Forest and 

AdaBoost exhibit remarkable accuracy across diverse 

attack scenarios, algorithms like Logistic Regression and 

k-Nearest Neighbors (k-NN) demonstrate comparatively 

lower performance metrics, reflecting the varied strengths 

and weaknesses inherent in each algorithm. The ensemble 

nature of Random Forest and AdaBoost enhances their 

robustness against a wide range of attack vectors, while 

simpler algorithms like Logistic Regression and Naive 

Bayes may struggle to capture the complexities of IoT 

network traffic.  

It's imperative to assess the robustness and 

generalization capabilities of ML algorithms beyond the 

experimental setup, necessitating further validation across 

diverse datasets and real-world IoT deployment scenarios. 

Additionally, the choice of dataset significantly influences 

algorithm performance and generalizability. Although the 

OGU-IoT23 dataset used in this study reflects realistic IoT 

network traffic, future research could explore the 

transferability of ML models trained on diverse datasets to 

enhance their applicability across different IoT deployment 

environments and attack landscapes. Integrating ML-based 

intrusion detection systems with broader cybersecurity 

frameworks is essential for effective IoT security, ensuring 

a comprehensive defense strategy against evolving cyber 

threats. 

Conclusion 

 This study presents a comprehensive exploration of the 

performance of prominent machine learning (ML) 
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algorithms in securing Internet of Things (IoT) applications. 

Through rigorous experimentation involving cyber attacks 

on an IoT network, the study assesses the strengths and 

weaknesses of various ML algorithms. Each algorithm is 

introduced with its unique characteristics and applications, 

highlighting their suitability for different IoT security 

contexts. Results demonstrate Random Forest and 

AdaBoost as top performers, showcasing superior accuracy 

and effectiveness across multiple attack scenarios. The 

study underscores the importance of selecting appropriate 

algorithms based on specific IoT application requirements 

and attack scenarios. It provides valuable insights for 

researchers and practitioners seeking effective solutions to 

secure IoT environments, considering both algorithmic 

performance and computational efficiency. By 

understanding the strengths and limitations of different ML 

algorithms, developers can make informed decisions when 

designing and deploying intrusion detection systems for IoT 

security, ultimately contributing to the advancement of IoT 

security practices. 
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