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Öz 

Karayolu hasarı, özellikle sürücülerin konforunu ve güvenliğini ciddi şekilde etkilemektedir. Yollardaki hasarların 

tespiti, sadece ulaşım güvenliği açısından değil, aynı zamanda maliyet açısından da büyük önem taşımaktadır. Yol 

hasarlarının tespiti, erken müdahale ve onarımı sağlamak açısından kritik öneme sahiptir. Bu çalışmada, YOLO 

(You Only Look Once) v8 algoritmasının yol hasar tespit performansı, Çekya-Türkiye, Hindistan-Türkiye, ABD-

Türkiye ve Japonya-Türkiye dahil olmak üzere farklı coğrafyalardan elde edilen veri setleri kullanılarak 

değerlendirildi. Bulgular, algoritmanın hasar tespit konusundaki yeteneklerini ve belirli hasar türlerini ayırt etmede 

karşılaştığı zorlukları ortaya koydu. Türkiye veri setinin oluşturulması için Hatay ilindeki yolların görüntüleri 

kaydedildi. Bu görüntüler, Microsoft'un VoTT uygulaması kullanılarak etiketlendi. Geliştirilen modeller arasında 

karşılaştırmalar ve değerlendirmeler yapıldı. Bu modeller arasında en iyi sonuçları Japonya-Türkiye modeli, 0.55 

mAP ve 0.54 F1 skoru ile verdi. Modellerin sonuçları, hasarın görünümünün coğrafi konuma ve yol verilerinin 

kalitesine göre değiştiğini gösterdi. Yerel görüntülerden ve belirsiz hasar türlerinden oluşan verilerin eğitimde 

önemli olduğu gözlemlendi. 
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Abstract 

Road damage seriously affects the comfort and safety of drivers. The detection of road damage is of great 

importance not only for transportation safety, but also in terms of cost. The detection of road damage is critical for 

enabling early intervention and repair. In this study, the road damage detection performance of the YOLO (You 

Only Look Once) v8 algorithm was evaluated using datasets obtained from different geographies, including 

Czechia -Türkiye, India-Türkiye, USA-Türkiye, and Japan-Türkiye. The findings revealed both the capabilities of 

the algorithm in damage detection and the challenges it faced in distinguishing certain types of damage. For the 

creation of the Türkiye dataset, images of roads in the province of Hatay were recorded. These images were labeled 

using Microsoft's VoTT application. Comparisons and evaluations were made among the developed models. 

Among these models, the Japan-Türkiye model yielded the best results with a 0.55 mAP and 0.54 F1 score. The 

results of the models indicated that the appearance of damage varies according to the geographical location and 

the quality of road data. It was observed that data consisting of local images and uncertain damage types were 

important in training. 
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1. Introduction 
 

Currently, monitoring and maintenance of road infrastructure are largely conducted through physical 

observations. However, this method not only leads to delays in identifying damages, but is also notably time-

consuming. Manual road surveillance faces challenges in keeping pace with the rapid deterioration of roads 

due to factors such as rising traffic density, environmental effects, and wear over time. In Türkiye, there has 

been a significant rise in the number of vehicles over the years due to an increasing population and per capita 

gross national income. In Figure 1, the red-colored histogram depicts the country's population, while the 

black line demonstrates the number of vehicles. 

 

 
 

Figure 1. Distribution of population and number of vehicles in Türkiye by years [1] 

 

Concomitant with the increase in the number of vehicles, as seen in Figure 2, road networks have undergone 

expansion and their quality has been enhanced. In Figure 2, the line graphs depict different types of roads; in 

particular, the augmentation in bituminous roads, represented by red and black, has elevated the significance 

of road maintenance and administration. To administer the expanding road networks, the highways within 

the country have been segmented into regions, and these regions further subdivided into administrative units. 

 

 
 

Figure 2. Lengths of road types in Türkiye by year [1] 
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The regional directorates and administrative divisions in Türkiye are given in Figure 3. Delays in detecting 

and repairing road damage not only amplify the extent of the damage but also lead to higher repair costs and 

constitute serious safety risks to drivers. The detection of road damage is crucial for early intervention and 

repair. Therefore, numerous studies are being conducted using machine learning techniques to detect, discern, 

and classify road damages. 

 

 
 

Figure 3. Highways (a) regional directorates (b) branches of the 5th region [2, 3]. 

 

The literature on road damage detection has experienced significant advancements in recent years, 

particularly with the utilization of deep neural networks and deep learning models. Maeda et al. introduced a 

method for road damage detection and classification using deep neural networks with smartphone images, 

highlighting the importance of utilizing smartphone technology for data collection [4]. Wang et al. focused 

on adjusting relevant parameters of the model based on analyses of aspect ratios and sizes of damaged areas 

in the training dataset. As a result of this approach, they obtained an F1 score of 0.62 [5]. Additionally, Maeda 

et al. emphasized the lack of a uniform road damage dataset and made their experimental results and 

smartphone application publicly available [4]. Cao et al. conducted a comprehensive evaluation of deep 
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learning models for road damage detection using multiple dashcam images and highlighted the importance 

of increasing the diversity of image sources to improve model performance [6]. Arya et al. discussed transfer 

learning-based road damage detection for multiple countries and highlighted the need for effective solutions 

in countries struggling with road damage detection [7]. Furthermore, Arya et al.  summarized the Global 

Road Damage Detection Challenge (GRDDC), which aimed to propose methods for automatically detecting 

road damages in countries like India, Japan, and the Czechia [8].  Arya et al. presented a labeled image dataset 

(RDD2020) for road damage detection using deep learning, providing a valuable resource for developing 

and testing road damage detection models [9]. 

 

Jeong and Kim explored the use of image tiling techniques to effectively use high-resolution road damage 

images captured in Norway in combination with other images of similar resolution. This approach was used 

to train twelve YOLO (You Only Look Once) v5x models for the detection of four distinct types of road 

damage. The study achieved an impressive average F1 score of 0.6744, demonstrating the effectiveness of 

the proposed methodology [10]. Wang and colleagues addressed the need for efficient road damage detection 

as an alternative to traditional, time-consuming manual methods. They proposed an automated, image-based 

approach utilizing a consensus model based on the YOLOv5 network and attention modules specifically 

designed for road-focused imaging. This innovative model combines ensemble learning with increased test 

duration to enhance detection performance. When evaluated across five test datasets in the CRDDC2022, the 

method attained an average F1 score of 0.65177, showcasing its potential for real-world applications [11]. 

 

Lu and colleagues presented an improved YOLOv5-based model for road condition and vehicle detection. 

The model aims to address the challenges related to the uneven distribution of samples and the presence of 

small objects in the dataset. Experimental results demonstrated that the improved model maintained real-

time performance while achieving a mean average precision (mAP) of 64.5%, surpassing the original 

YOLOv5 model's mAP of 62% [12]. Xie and Liang explored the use of deep learning-based models, namely 

YOLOv5 and Nanodet, which are renowned for their high-speed detection capabilities, in the context of road 

damage detection. The models were trained using a dataset of 21,041 images and subsequently adapted for 

mobile Android devices. A comparative analysis of the models' performance revealed that the YOLOv5s 

model achieved a mAP of 51% on a PC [13]. Madarapu Sathvik and his team, the YOLOv7 algorithm was 

employed to detect potholes on road surfaces. The authors reported an F1 score of 0.51, indicating promising 

results for this application [14]. 

 

Overall, the literature review highlights the progress made in road damage detection through the use of deep 

learning models, smartphone technology, and innovative algorithms. The availability of datasets and 

challenges like the GRDDC have further contributed to advancements in this field, paving the way for more 

efficient and accurate road damage detection and classification methods. 

 

These studies indicate that machine learning techniques are efficacious in detecting road damage. These 

methods can aid in early intervention, thereby reducing repair times and costs. Considering the growing 

number of vehicles and expansion of road networks in Türkiye, there is a demand for automatic and effective 

methods for road damage detection. This study will explore the application of machine learning techniques 

for the detection of road damage. 

 

2. Data Set and Methodology 

2.1. Dataset 
 

The availability of a standardized road damage dataset is crucial for the development and evaluation of road 

damage detection systems. Maeda et al. highlighted the absence of a benchmark dataset for road damage 

detection, in collaboration with seven municipalities in Japan, created a dataset for road damage detection by 

recording images of roads spanning over 1,500 km and spending over 40 hours, thereby making them 

processable for analysis [4]. In the dataset, each type of damage was labeled with class tags such as 'D00', 

'D10'. Figure 4 shows sample images from the RDD2018 dataset. Arya et al. introduced the RDD2020 

dataset, comprising 26,336 road images with over 31,000 instances of road damage, intended for developing 
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deep learning-based methods for automatic detection and classification of road damage [9]. Arya et al.  

further expanded on the road damage dataset with RDD2022, which includes images from six countries and 

was released as part of the Crowd sensing-based Road Damage Detection Challenge [15]. 

 

 
 

Figure 4. Damage types and sample photos in the RDD2018 dataset [4] 

 
Within the scope of the study, addition to the RDD2022 dataset, a dataset comprising images of Hatay's 

highways has been created to be recognized by models employing the Convolutional Neural Networks 

(CNN) algorithm in Türkiye. For the creation of the dataset, the use of a 70mai Dash Cam 4K A800S camera, 

featuring a 140-degree field of view and a resolution of 2848 x 1600 pixels, was employed (as shown in 

Figure 5) [16]. To record the roads, image recording was carried out starting from the center of Iskenderun 

and traveling through the surrounding districts. 
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Figure 5. 70mai Dash Cam 4K A800S and vehicle integration 

 
It was configured to produce an output in mp4 format every 3 minutes. The purpose of the video recording 

was to capture the entire road without any loss of image. The recorded images were transformed into 

photographs at a rate of one frame for every 50 frames. The created dataset consisted of a total of 2209 

photographs with a resolution of 2848x1600. The acquired photographs were assessed by an expert in the 

field of transportation. Images that would technically not be worth labeling, such as blurriness, noise, or 

photos that did not show the road, were cleaned up. Types of damage were identified among the selected, 

high-quality images. 

 
Table 1. Types and details of road damage in RDD2022 and the created dataset. 

 

Type of Damage Class Name 

Longitudinal Liner Crack D00 

Lateral Liner Crack D10 

Alligator Crack D20 

Rutting, Bump, Pothole, Separation D40 

2.2. Method 
 

The collected images were labeled according to the types of damage and prepared for model training using 

the VoTT (Visual Object Tagging Tool) toolbox [17]. The labeling process and bounding boxes are shown 

in Figure 6. The gathered dataset was labeled using VoTT, an open-source image labeling program. The 

labels of the data obtained from RDD2022 and the Hatay highways were converted from Pascal-VOC format 

to YOLO format, making them suitable for the YOLOv8 algorithm. Models were developed on datasets 

obtained from various geographies, such as Czechia-Türkiye, India-Türkiye, USA-Türkiye, and Japan-

Türkiye. These models and their labeling processes are displayed in Figure 7. 
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Figure 6. The ultimate annotated image comprises of bounding boxes and a class label, which in this instance is 

denoted as D00 

 

 
 

Figure 7. The content of the models and their label classes 

 

The YOLO algorithm operates faster than other algorithms by processing the image through the neural 

network in a single pass. The introduction of the YOLO algorithm by Redmon and colleagues has created a 

fundamental change in the field by providing a faster and more efficient alternative for real-time object 

detection [18]. 

 

YOLOv8, the eighth iteration of the algorithm, offers faster and more accurate results compared to its 

previous versions [19]. Equipped with a deep learning-based structure, YOLOv8 typically operates in 

conjunction with convolutional neural networks. This algorithm scans the image in a single pass, determining 

which object each pixel belongs to. Consequently, unlike traditional methods, it integrates the steps of region 

detection and classification into a single process.  

 

The structure of the YOLOv8 algorithm is illustrated in Figure 8. The sequential definition of this structure 

encompasses three main components: the backbone, neck, and head. The backbone, often represented by a 

convolutional neural network, serves the purpose of extracting noteworthy characteristics from the image at 

different scales. The neck component processes these extracted features, thereby augmenting the spatial and 

semantic information. Ultimately, the head component utilizes these enhanced features to generate 

predictions for the task of object detection. 
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Figure 8. Structure of the YOLOv8 algorithm [20] 

 

3. Results 

3.1. Experiment Environment and Metrics 

 
The data that has been compiled for the purpose of identifying road damage has been categorized into four 

main types of damage: D20, D40, D00 and D10. These were then divided into training and testing datasets. 

The developed models were trained and tested on Colab using an A100 graphics card [21]. This GPU features 

6,912 cores, 40 GB of memory capacity, and a power of 19.49 TFLOPS. Various metrics have been 

examined to evaluate models with different image and label counts from different countries. The most 

commonly preferred metrics in object detection evaluation, such as the mAP (Mean Average Precision) and 

F1 score, were used. Additionally, the results of the method have been presented in a confusion matrix. The 

customized matrix for this study is displayed in Table 2, while the formulas for each metric are given below. 

 

Precision is the likelihood of correctly guessing a positive instance from all predicted positive instances, and 

recall is the likelihood of guessing a positive instance from true positive instances. The formulas for precision 

and recall are shown in equations (1), (2). 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

 
 

Table 2. Confusion Matrix Explanation. 

 

Terms  Results 

True Positive (TP)  Cases where the model predicts damage and there is indeed damage. 

True Negative (TN) Cases where the model predicts no damage and there is indeed no damage. 

False Positive (FP) Cases where the model predicts damage but there is no damage. 

False Negative (FN) Cases where the model predicts no damage but there is actually damage. 

 

In the field of object detection, Precision and Recall are interdependent metrics that are not suitable for direct 

assessment of the detection process. Consequently, the introduction of Average Precision (AP) serves to 
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characterize the precision of detection, while the F1-Score acts as a holistic measure to assess the model 

comprehensively. Increasing values of AP and F1-Score indicate high accuracy of the network, while mAP 

reflects the average accuracy in n defect categories. The mathematical formulations for AP, mAP, and F1-

Score are delineated in equations (3), (4), and (5). 

 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0

 
(3) 

 

 

𝑚𝐴𝑃 =
1

𝑛
∑𝐴𝑃𝑖
𝑚

𝑖=1

 
(4) 

 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
 

(5) 

 

 

mAP, or Mean Average Precision, serves as a measure employed to assess the efficacy of object detection 

systems. It represents the average accuracy of all predictions made by the system. Typically, it is calculated 

by taking the average of AP (Average Precision) values for different IoU (Intersection over Union) 

thresholds. The accuracy of the predicted bounding boxes in AP is evaluated through the utilization of IoU. 

IoU is a metric that represents the proportion of the intersecting area to the combined area of the actual and 

predicted bounding boxes, as depicted in Figure 9. It measures how closely the actual and predicted bounding 

boxes overlap. In this study, the IoU threshold is set at 0.5, meaning a prediction must have an IoU of at least 

0.5 to be considered accurate. 

 

 
 

Figure 9. Intersection over Union (IoU). (a) The intersection area of two bounding boxes divided by their total area 

yields the IoU value; (b) three distinct IoU values for boxes placed differently are given as examples [20] 

3.2. Experimental Results 
 

In this section, we delve into the empirical outcomes obtained from the conducted experiments. The results 

are systematically organized and displayed in Table 3. The table encapsulates a comparative analysis of 

detection performance metrics across differnt bilateral model configurations, with a particular emphasis on 

the collaborative models between Türkiye and various other countries. It is noteworthy that the Japan-Türkiye 

model configuration stands out, exhibiting superior performance as evidenced by the quantitative measures. 
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Table 3. Comparison of Detection Performance of the Models 

 

Country F1 Score mAP@0.5 

Czechia-Türkiye 0.34 0.31 

India-Türkiye 0.41 0.367 

USA-Türkiye 0.51 0.52 

Japan-Türkiye 0.54 0.55 

 

Upon examining the tabulated data, it becomes apparent that the Japan-Türkiye collaboration yields the most 

commendable results with an F1 Score of 0.54 and an mAP@0.5 of 0.55. These figures not only surpass the 

other country pairs but also suggest a robust model performance in detecting the objects of interest with high 

accuracy and reliability. 

 

The results from the Czechia-Türkiye pair indicate a relatively lower detection performance, with an F1 Score 

of 0.34 and an mAP@0.5 of 0.31. Similarly, the India-Türkiye configuration demonstrates moderate 

performance improvements with an F1 Score of 0.41 and an mAP@0.5 of 0.367. The USA-Türkiye model 

shows further enhancement in detection capabilities, achieving an F1 Score of 0.51 and an mAP@0.5 of 

0.52, which is indicative of a well-tuned model that balances precision and recall effectively. 

 
Table 4. Summary of comparison with methods in other studies using road damage detection 

  

F1 Score mAP 

Sathvik et al. [14] 0.51 - 

Wang et al. [11] 0.65 - 

Xie and Liang [13] - 0.64 

Our method 

(Japan-Türkiye) 

0.54 0.55 

 

Designated as Table 4, this summary ranks each method according to their F1 score and mean Average 

Precision (mAP) values. According to the table, the method developed by Sathvik et al. [14] has been 

evaluated with an F1 score of 0.51, but the mAP value has not been provided. The study by Wang et al. [11] 

exhibits higher performance with an F1 score of 0.65. Xie and Liang [13] are represented solely by the mAP 

value and have achieved a considerably high value of 0.64. Lastly, the method referred to as Our method 

(Japan-Türkiye) shows a balanced performance with both F1 score (0.54) and mAP (0.55) values. This 

comparison table serves as a useful resource for analyzing the performance of road damage detection 

methods developed in different countries. Notably, the method developed through collaboration between 

Japan and Türkiye demonstrates a balanced performance in terms of both F1 score and mAP values, 

indicating it as an effective alternative for road damage detection. Let's take a closer look at the graphs 

presented below for a more detailed analysis and evaluation of our Japan-Türkiye model. 

 

The F1-Confidence Curve illustrates how the F1 scores of a model's predictions vary within a certain 

confidence range. In the curve shown in Figure 10, the horizontal axis denotes the confidence level of the 

model's predictions, while the vertical axis indicates the F1 score. While the D40 class has low F1 scores, the 
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D20 class shows higher F1 scores. The best F1 score for all classes is the value of 0.54, obtained at 

approximately a 0.32 confidence threshold. 

 

 
 

Figure 10. Japan-Türkiye F1-Confidence Curve 

 
The Precision-Confidence Curve demonstrates the precision of a model's predictions within a certain 

confidence range. In the curve presented in Figure 11, the horizontal axis denotes confidence, reflecting how 

certain the model's predictions are, while the vertical axis indicates precision, which reflects how many of 

the selected items are indeed positive. The D20 class demonstrates higher precision compared to other 

classes, while the D40 class exhibits the lowest precision. The maximum precision for all classes is specified 

as 1.00 at a confidence threshold of 0.877. 

 

 
 

Figure 11. Japan-Türkiye Precision-Confidence Curve 

 
The Recall-Confidence Curve illustrates how well the model detects true positives at a certain level of 

confidence. In the curve presented in Figure 12, the horizontal axis denotes the confidence level, while the 
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vertical axis indicates recall, which is the proportion of true positives that have been correctly identified. The 

D20 class exhibits high recall, while the D40 class shows the lowest recall. The maximum recall for all 

classes is shown as 0.87, but this is achieved at a 0.00 confidence threshold, which may not be practical to 

use. 

 

 
 

Figure 12. Japan-Türkiye Recall-Confidence Curve 

 
The Confusion Matrix demonstrates the accurate and erroneous predictions generated by the model for every 

category. The normalized confusion matrix expresses these values as percentages of the total number of 

samples, providing a clearer indication of the model's performance. This is useful for comparing the model's 

performance across different classes. The normalized confusion matrix is presented in Figure 13. The high 

accuracy rate (0.66) of the D20 class is notable, but it seems that the D00 and D10 classes tend to be confused 

with the background (0.46 and 0.48, respectively). 

 

 
 

Figure 13. Japan-Türkiye Normalized confusion matrix 

 
The Precision-Recall Curve displays the precision and recall values of the model at different threshold levels. 

The larger the area under the curve presented in Figure 14, the better the performance of the model.  Here, 

the D20 class has the highest mAP@0.5 value (0.678), indicating better classification performance compared 

to other classes. 
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Figure 14. Japan-Türkiye Precision-Recall Curve 

 

Figure 15 shows the curves of the metrics showing the epochs and their changes during the training of the 

model. A decrease in losses over time indicates that the model is learning from the data. Training losses have 

significantly dropped, while validation losses have decreased in a somewhat slower but steady manner. The 

increase in precision and recall metrics also indicates an improvement in the model's performance. 

 

 
 

Figure 15. Japan-Türkiye model training curves 

 

4. Conclusion 
 

The study embarked on an exploration of road damage detection using the YOLOv8 algorithm, leveraging 

datasets from diverse geographical contexts, including collaborations between Türkiye and other countries 

such as Czechia, India, the USA, and Japan. The primary objective was to assess the algorithm's efficacy in 

identifying road damages, a critical concern for transportation safety and maintenance cost optimization. 
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The methodological approach entailed the utilization of the VoTT Image Labeling Program for object 

labeling and the employment of Nvidia's A100 graphics card within Google's Colab service for the training 

process. The evaluation of the models was predicated on their mAP and F1 scores, with a particular focus on 

the Japan-Türkiye model, which demonstrated superior performance. 

 

The results of the study are succinctly summarized as follows: 

- The Japan-Türkiye model emerged as the most effective, achieving an mAP of 0.55 and an F1 score of 

0.54. 

- Comparative analysis revealed that this model outperformed other bilateral configurations, with notable 

proficiency in detecting specific types of road damage such as potholes and alligator cracks. 

- The study highlighted the variability in damage appearance across different geographies and underscored 

the importance of training models on local datasets. 

 

However, the study is not without its limitations. The detection of certain damage types, such as longitudinal 

and lateral cracks, proved challenging, often resulting in misclassification. Additionally, the model exhibited 

a tendency towards overfitting, as evidenced by fluctuations in validation losses. These insights pave the way 

for future research, emphasizing the refinement of detection algorithms and the exploration of more 

sophisticated training methodologies to enhance model generalizability and accuracy. 

 

Based on the findings and insights from this study, several directions for future research have been identified 

for the development and improvement of road damage detection methodologies. Suggested areas for future 

work include: 

 

- Algorithm Enhancement: Investigating the integration of advanced machine learning algorithms and 

exploring the potential of deep learning architectures beyond YOLOv8. This includes the examination of 

newer versions of YOLO or alternative frameworks that may offer improved detection capabilities, especially 

for less distinct types of road damage. 

 

- Data Augmentation and Diversification: Expanding the dataset to include a wider array of geographical 

locations and road conditions. This would entail the collection and labeling of road damage images from 

varied climates and topographies to enhance the model's generalizability and robustness across different 

environments. 

 

By pursuing these directions, future research can significantly contribute to the advancement of road damage 

detection technologies, ultimately enhancing road safety and maintenance efficiency. 
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